首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Usher syndrome is the most commonly recognized cause of combined visual and hearing loss in technologically developed countries. There are several different types and all are inherited in an autosomal recessive manner. There may be as many as five different genes responsible for at least two closely related phenotypes. The nature of the gene defects is unknown, and positional cloning strategies are being employed to identify the genes. This is a report of the localization of one gene for Usher syndrome type I to chromosome 11q, probably distal to marker D11S527. Another USH1 gene had been previously localized to chromosome 14q, and this second localization establishes the existence of a new and independent locus for Usher syndrome.  相似文献   

2.
Facioscapulohumeral muscular dystrophy (FSHD) is a relatively common autosomal dominant neuromuscular disorder. The gene for FSHD has recently been assigned to chromosome 4q35. Although abnormal mitochondrial and biochemical changes have been observed in FSHD, the molecular defect is unknown. In addition to the FSHD gene, the human muscle adenine nucleotide translocator gene (ANT1) is located on chromosome 4. Interestingly, biochemical studies recently showed a possible defect of ANT1. In order to evaluate the potential role of ANT1 in the etiology of FSHD, the human ANT1 gene was isolated by cosmid cloning and localized to 4q35, in the region containing the FSHD gene. However, in situ hybridization and physical mapping of somatic cell hybrids localized the ANT1 gene proximal to the FSHD gene. In addition, a polymorphic CA-repeat 5 kb upsstream of the ANT1 gene was used as a marker in FSHD and Centre d'Etude du Polymorphisme Humain families to perform linkage analysis. These data together exclude ANT1 as the primary candidate gene for FSHD. The most likely order of the loci on chromosome 4q35 is cen-ANT1-D4S171-F11-D4S187-D4S163-D4S139-FSHD-tel.  相似文献   

3.
Neurochemical and Neurogenetic Correlates of Parkinson's Disease   总被引:5,自引:2,他引:3  
Abstract: We discuss neurochemical and neurogenetic correlates of Parkinson's disease (PD) based on the recent progress in the study of its etiology and pathogenesis. Nigral degeneration with the presence of Lewy bodies in the remaining neurons is the pathologic hallmark of PD, and the resultant loss of striatal dopamine is responsible for most of the clinical manifestations. Although the primary cause is still unknown, mitochondrial respiratory failure and oxidative stress appear to be two major contributors to the nigral cell death. Many endogenous and exogenous compounds with structural similarity to MPTP have been postulated as potential neurotoxins inducing nigral cell death in PD, but there is little evidence of accumulation of such compounds in the nigra. Genetic influence has increasingly been recognized as an important risk factor for PD. In this respect, genetic linkage analysis and molecular cloning of the disease genes in familial parkinsonism are of utmost importance today. Recently, the disease gene for one of the autosomal dominant forms of familial PD was identified, and we cloned the gene for an autosomal recessive type of familial parkinsonism that had been mapped to the long arm of chromosome 6 by our group. Information obtained on familial parkinsonism will contribute to the studies on sporadic PD as well.  相似文献   

4.
Thomas JH 《Genetics》2006,172(1):127-143
An algorithm for detecting local clusters of homologous genes was applied to the genome of Caenorhabditis elegans. Clusters of two or more homologous genes are abundant, totaling 1391 clusters containing 4607 genes, over one-fifth of all genes in C. elegans. Cluster genes are distributed unevenly in the genome, with the large majority located on autosomal chromosome arms, regions characterized by higher genetic recombination and more repeat sequences than autosomal centers and the X chromosome. Cluster genes are transcribed at much lower levels than average and very few have gross phenotypes as assayed by RNAi-mediated reduction of function. The molecular identity of cluster genes is unusual, with a preponderance of nematode-specific gene families that encode putative secreted and transmembrane proteins, and enrichment for genes implicated in xenobiotic detoxification and innate immunity. Gene clustering in Drosophila melanogaster is also substantial and the molecular identity of clustered genes follows a similar pattern. I hypothesize that autosomal chromosome arms in C. elegans undergo frequent local gene duplication and that these duplications support gene diversification and rapid evolution in response to environmental challenges. Although specific gene clusters have been documented in C. elegans, their abundance, genomic distribution, and unusual molecular identities were previously unrecognized.  相似文献   

5.
The positional cloning of the hypocretin receptor 2, the gene for autosomal recessive canine narcolepsy, has led to the development of a physical map spanning a large portion of canine chromosome 12 (CFA12), in a region corresponding to human chromosome 6p12-q13. More than 40 expressed sequence tags (ESTs) were used in homology search experiments, together with chromosome walking, to build both physical and radiation hybrid maps of the CFA12 13-21 region. The resulting map of bacterial artificial chromosome ends, ESTs, and microsatellite markers represents the longest continuous high-density map of the dog genome reported to date. These data further establish the dog as a system for studying disease genes of interest to human populations and highlight feasible approaches for positional cloning of disease genes in organisms where genomic resources are limited.  相似文献   

6.
Recombination events suggest potential sites for the Huntington's disease gene   总被引:17,自引:0,他引:17  
The Huntington's disease gene (HD) maps distal to the D4S10 marker in the terminal 4p16.3 subband of chromosome 4. Directed cloning has provided several DNA segments that have been grouped into three clusters on a physical map of approximately 5 X 10(6) bp in 4p16.3. We have typed RFLPs in both reference and HD pedigrees to produce a fine-structure genetic map that establishes the relative order of the clusters and further narrows the target area containing the HD gene. Despite the large number of meiotic events examined, the HD gene cannot be positioned relative to the most distal cluster. One recombination event with HD suggests that the terminal-most markers flank the disease gene; two others favor a telomeric location for the defect. Efforts to isolate the HD gene must be divided between these two distinct intervals until additional genetic data resolve the apparent contradiction in localization.  相似文献   

7.
The gene for variegate porphyria (VP), an autosomal dominant disease with a high prevalence in South Africa, evidently due to a founder effect, was previously mapped to chromosome 14q32. In the current study this localization was evaluated by linkage and haplotype analyses using microsatellite markers spanning a region of more than 20 cM on chromosome 14q32. In many recent studies linkage disequilibrium between disease and marker loci has been utilized to map genes in founder populations, but we could not find any association between VP and the markers used in this study. Our data suggest that the allocation of VP to chromosome 14q32 may be incorrect. Received: 1 September 1995 / Revised: 1 November 1995  相似文献   

8.
The gene for Huntington disease, a neurodegenerative disorder with autosomal dominant inheritance, has been localized to the terminal portion of the short arm of human chromosome 4 (4p16.3) by linkage analysis. Since eventual isolation of the gene requires the application of high-resolution genetic analysis coupled with long-range DNA mapping and cloning techniques, we have constructed a physical map of the chromosomal region 4p16.3 using more than 20 independently derived probes. We have grouped these markers into three clusters which have been ordered and oriented by genetic and somatic cell genetic mapping information. The mapped region extends from D4S10 (G8) toward the telomere and covers minimally 5 Mb.  相似文献   

9.
We report a protocol for cloning large DNA fragments in yeast artificial chromosomes (YAC). A partial library has been constructed from a somatic hybrid containing chromosome 21 as the single source of human DNA. About 4.0 Mb of human DNA was recovered in 17 YAC clones. Three clones were analyzed by in situ hybridization and mapped on chromosome 21. One clone hybridized with the chromosome 21 centromeric region and may provide new insight both on the molecular structure of centromere and on the localization of Alzheimer disease gene.  相似文献   

10.
刘先方  马晓  侯成香  李冰  李木旺 《遗传》2013,35(3):373-378
家蚕长形卵(elp)、第二隐性赤蚁(ch-2)、暗化型(mln)均为第18染色体上的隐性突变, 在经典连锁图谱上的顺序和遗传距离已经排定。文章采用正常卵、正常黑蚁及正常白蛾品种P50与包含此3个隐性突变的三隐性测交系W18组配正反交群体, F1回交W18后获得回交群体(P50×W18)♀×W18♂ 和W18♀×(P50×W18)♂, 分别记作BC1F和BC1M, 利用已构建的家蚕SSR分子连锁图谱和根据家蚕基因组精细图设计的STS标记, 对这3个突变基因elp、ch-2、mln进行了分子定位研究, 并根据家蚕基因组精细图, 将第18连锁群的经典遗传图、分子连锁图和基因组物理图进行了对应。整合后的图谱遗传距离为94.2 cM, 突变基因和分子标记的排列顺序分别与形态标记连锁图和基因组精细图相一致, 研究结果对家蚕第18 染色体上其他突变的定位与克隆有重要的借鉴作用。  相似文献   

11.
The repeated epilation (Er) mutation is an autosomal defect that blocks differentiation in stratified epithelia and appendages in mice. Plasma retinol binding protein (RBP) was tested as a possible candidate gene for the Er defect because of the importance of retinol as a modulator of epithelial morphogenesis and differentiation. Two approaches were used: (1) cloning and sequencing of the RBP cDNA from normal and mutant mice, and (2) the chromosomal localization of the mouse RBP gene. The mouse RBP sequence differs slightly from that of the rat RBP, but mutant and normal mouse RBP have identical sequences. The mouse RBP gene was localized by in situ hybridization to the distal portion of chromosome 19. This physical mapping confirms the recent assignment of the gene to chromosome 19 by linkage analysis. These results eliminate the RBP gene as a candidate gene for the defect in the Er mutation that maps to chromosome 4.  相似文献   

12.
编码锌指蛋白的人类新基因TFL76的电子克隆   总被引:2,自引:1,他引:1  
目的:根据基因同源同功原理电子克隆人类新基因。方法:利用基于基因识别软件Genescan和EST拼接的同源基因克隆法得到人类新基因序列TFL76,再利用生物信息学数据库和软件对其进行功能的预测和分析。结果:TFL76的cDNA序列长2268bp,开放阅读框编码677个氨基酸残基,含12个连续的C2H2型锌指基序,其分子量为76kDa。编码区序列被4个内含子分割。染色体定位于19q13.4。此位点存在很多与胃癌、膀胱癌、乳腺癌等癌症相关的基因。TFL76的N末端含有多种蛋白激酶的磷酸化位点和核定位信号。结论:TFL76可能是一个和癌症相关的核转录因子。  相似文献   

13.
14.
Fec基因及BMPR-IB基因的突变特性与生物学意义   总被引:8,自引:1,他引:8  
柳淑芳  闫艳春  杜立新 《遗传》2003,25(1):93-96
FecB基因位于Booroola绵羊的常染色体上,具有提高排卵率和产羔数等生物学作用。FecB基因已被定位在绵羊6号染色体6q23~q31的狭窄区域内,并且已从分子水平上找到了控制Booroola绵羊排卵数的主效基因。本文详细阐述了近年来对FecB基因的定位及分子生物学作用机制方面的研究进展。  相似文献   

15.
Fanconi anemia (FA) is an autosomal recessive chromosomal instability syndrome with at least seven different complementation groups. Four FA genes (FANCA, FANCC, FANCF, and FANCG) have been identified, and two other FA genes (FANCD and FANCE) have been mapped. Here we report the identification, by complementation cloning, of the gene mutated in FA complementation group E (FANCE). FANCE has 10 exons and encodes a novel 536-amino acid protein with two potential nuclear localization signals.  相似文献   

16.
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder of late onset, characterized by progressive motor disturbance, psychological manifestations, and intellectual deterioration. The HD gene has been genetically mapped by linkage to the DNA marker D4S10, but the exact physical location of the HD defect has remained uncertain. To delineate critical recombination events revealing the physical position of the HD gene, we have identified restriction fragment length polymorphisms for two recently mapped chromosome 4 loci, RAF2 and D4S62, and determined the pattern of segregation of these markers in both reference and HD pedigrees. Multipoint linkage analysis of the new markers with D4S10 and HD establishes that the HD gene is located in a very small physical region at the tip of the chromosome, bordered by D4S10 and the telomere. A crossover within the D4S10 locus orients this segment on the chromosome, providing the necessary information for efficient application of directional cloning strategies for progressing toward, and eventually isolating, the HD gene.  相似文献   

17.
Chromosome mapping of the growth hormone receptor gene in man and mouse   总被引:2,自引:0,他引:2  
Pituitary growth hormone (GH) is essential for normal growth and development in animals and GH deficiency leads to dwarfism. This hormone acts via specific high-affinity cell surface receptors found in liver and other tissues. The recent cloning and sequencing of cDNAs encoding human and rabbit GH receptors (GHR) has demonstrated that this receptor is unrelated to any previously described cell membrane receptor or growth factor receptor. We have used the cloned human GHR cDNA to map the GHR locus to the proximal short arm of human chromosome 5, region p13.1----p12, and to mouse chromosome 15 by Southern blot analysis and in situ hybridization. While human chromosome 5 carries several genes for hormone and growth factor receptors, GHR is the only growth-related gene so far mapped to the short arm. Inasmuch as GHR is the first gene with apparently homologous loci on human chromosome 5 and mouse chromosome 15, it identifies a new homologous conserved region. In humans, deficiency of GH receptor activity probably causes Laron-type dwarfism, an autosomal recessive disorder prevalent in Oriental Jews. In mice, the autosomal recessive mutation miniature (mn) is characterized by severe growth failure and early death and has been mapped to chromosome 15. Our assignment of Ghr to mouse chromosome 15 suggests this as a candidate gene for the mn mutation.  相似文献   

18.
The male-specific region (MSY) of the Y chromosome contains genes involved mainly in male sex determination and in spermatogenesis. The majority of genes involved in male fertility are localized in multiple copies in the long arm of the Y chromosome, within specific regions defined as "ampliconic regions." It has been suggested that these genes derived from X-linked or autosomal ancestors during evolution, providing a benefit for male fertility when transposed onto the Y chromosome. So far, the autosomal origin has been demonstrated only for two MSY genes, DAZ and CDY. In the present study we report on the identification within chromosome 8q11.2 of a region homologous to the g amplicon, containing the VCY2 (approved gene symbol BPY2), TTTY4, and TTTY17 genes. A search for ancestor genes within the 8q11.2 region allowed us to identify a gene named BEYLA and to characterize the genomic organization and the expression patterns of this gene.  相似文献   

19.
Although the role of genetic factors in the origin of Parkinson disease has long been disputed, several genes involved in autosomal dominant and recessive forms of the disease have been localized. Mutations associated with early-onset autosomal recessive parkinsonism have been identified in the Parkin gene, and recently a second gene, PARK6, involved in early-onset recessive parkinsonism was localized on chromosome 1p35-36. We identified a family segregating early-onset parkinsonism with multiple consanguinity loops in a genetically isolated population. Homozygosity mapping resulted in significant evidence for linkage on chromosome 1p36. Multipoint linkage analysis using MAPMAKER-HOMOZ generated a maximum LOD-score of 4.3, with nine markers spanning a disease haplotype of 16 cM. On the basis of several recombination events, the region defining the disease haplotype can be clearly separated, by > or =25 cM, from the more centromeric PARK6 locus on chromosome 1p35-36. Therefore, we conclude that we have identified on chromosome 1 a second locus, PARK7, involved in autosomal recessive, early-onset parkinsonism.  相似文献   

20.
Yeast artificial chromosome (YAC) cloning systems have advanced the analysis of complex genomes considerably. They permit the cloning of larger fragments than do bacterial artificial chromosome systems, and the cloned material is more easily modified. We recently developed a novel YAC cloning system called transformation-associated recombination (TAR) cloning. Using in vivo recombination in yeast, TAR cloning selectively isolates, as circular YACs, desired chromosome segments or entire genes from complex genomes. The ability to do that without constructing a representative genomic library of random clones greatly facilitates analysis of gene function and its role in disease. In this review, we summarize how recombinational cloning techniques have advanced the study of complex genome organization, gene expression, and comparative genomics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号