首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fucosyllactoses, including 2′-fucosyllactose (2′-FL) and 3-fucosyllactose (3-FL), are important oligosaccharides in human milk that are commonly used as nutritional additives in infant formula due to their biological functions, such as the promotion of bifidobacteria growth, inhibition of pathogen infection, and improvement of immune response. In this study, we developed a synthetic biology approach to promote the efficient biosynthesis of 2′-FL and 3-FL in engineered Escherichia coli. To boost the production of 2′-FL and 3-FL, multiple modular optimization strategies were applied in a plug-and-play manner. First, comparisons of various exogenous α1,2-fucosyltransferase and α1,3-fucosyltransferase candidates, as well as a series of E. coli host strains, demonstrated that futC and futA from Helicobacter pylori using BL21(DE3) as the host strain yielded the highest titers of 2′-FL and 3-FL. Subsequently, both the availability of the lactose acceptor substrate and the intracellular pool of the GDP-L-fucose donor substrate were optimized by inactivating competitive (or repressive) pathways and strengthening acceptor (or donor) availability to achieve overproduction. Moreover, the intracellular redox regeneration pathways were engineered to further enhance the production of 2′-FL and 3-FL. Finally, various culture conditions were optimized to achieve the best performance of 2′-FL and 3-FL biosynthesizing strains. The final concentrations of 2′-FL and 3-FL were 9.12 and 12.43 g/L, respectively. This work provides a platform that enables modular construction, optimization and characterization to facilitate the development of FL-producing cell factories.  相似文献   

2.
3-Fucosyllactose (3-FL) is one of the major fucosylated oligosaccharides in human milk. Along with 2′-fucosyllactose (2′-FL), it is known for its prebiotic, immunomodulator, neonatal brain development, and antimicrobial function. Whereas the biological production of 2′-FL has been widely studied and made significant progress over the years, the biological production of 3-FL has been hampered by the low activity and insoluble expression of α-1,3-fucosyltransferase (FutA), relatively low abundance in human milk oligosaccharides compared with 2′-FL, and lower digestibility of 3-FL than 2′-FL by bifidobacteria. In this study, we report the gram-scale production of 3-FL using E. coli BL21(DE3). We previously generated the FutA quadruple mutant (mFutA) with four site mutations at S46F, A128N, H129E, Y132I, and its specific activity was increased by nearly 15 times compared with that of wild-type FutA owing to the increase in kcat and the decrease in Km. We overexpressed mFutA in its maximum expression level, which was achieved by the optimization of yeast extract concentration in culture media. We also overexpressed L-fucokinase/GDP- L -fucose pyrophosphorylase to increase the supply of GDP-fucose in the cytoplasm. To increase the mass of recombinant whole-cell catalysts, the host E. coli BW25113 was switched to E. coli BL21(DE3) because of the lower acetate accumulation of E. coli BL21(DE3) than that of E. coli BW25113. Finally, the lactose operon was modified by partially deleting the sequence of LacZ (lacZΔm15) for better utilization of D -lactose. Production using the lacZΔm15 mutant yielded 3-FL concentration of 4.6 g/L with the productivity of 0.076 g·L−1·hr−1 and the specific 3-FL yield of 0.5 g/g dry cell weight.  相似文献   

3.
Human milk oligosaccharides (HMOs) are beneficial for infants’ health and growth. As one of the most abundant oligosaccharides in human milk, 2′-fucosyllactose (2′-FL) has been approved to supplement in infant formula. Microbial synthesis of 2′-FL achieved in E. coli tends to use a T7-expression system for the heterologous expression of the fucosyltransferase and/or enzymes involved in fucose metabolism. In this paper, we report a novel bioconversion route of 2′-FL by engineering a low pH triggered colanic acid (CA) synthetic pathway, found in E. coli S17−3, which supplies GDP-l-fucose for in vivo 2′-FL formation catalyzed by the heterologous α-1,2-fucosyltransferases. In medium added with 10 g/L lactose and 20 g/L glycerol, recombinant S17−3 was able to produce 0.617 g/L of 2′-FL. The concentration of 2′-FL came to 1.029 g/L when a heterologous pathway for the synthesis of polyhydroxybutyrate was additionally introduced in the engineered S17−3.  相似文献   

4.
2′-Fucosyllactose (2′-FL), a human milk oligosaccharide with confirmed benefits for infant health, is a promising infant formula ingredient. Although Escherichia coli, Saccharomyces cerevisiae, Corynebacterium glutamicum, and Bacillus subtilis have been engineered to produce 2′-FL, their titers and productivities need be improved for economic production. Glucose along with lactose have been used as substrates for producing 2′-FL, but accumulation of by-products due to overflow metabolism of glucose hampered efficient production of 2′-FL regardless of a host strain. To circumvent this problem, we used xylose, which is the second most abundant sugar in plant cell wall hydrolysates and is metabolized through oxidative metabolism, for the production of 2′-FL by engineered yeast. Specifically, we modified an engineered S. cerevisiae strain capable of assimilating xylose to produce 2′-FL from a mixture of xylose and lactose. First, a lactose transporter (Lac12) from Kluyveromyces lactis was introduced. Second, a heterologous 2′-FL biosynthetic pathway consisting of enzymes Gmd, WcaG, and WbgL from Escherichia coli was introduced. Third, we adjusted expression levels of the heterologous genes to maximize 2′-FL production. The resulting engineered yeast produced 25.5 g/L of 2′-FL with a volumetric productivity of 0.35 g/L∙h in a fed-batch fermentation with lactose and xylose feeding to mitigate the glucose repression. Interestingly, the major location of produced 2′-FL by the engineered yeast can be changed using different culture media. While 72% of the produced 2′-FL was secreted when a complex medium was used, 82% of the produced 2′-FL remained inside the cells when a minimal medium was used. As yeast extract is already used as food and animal feed ingredients, 2′-FL enriched yeast extract can be produced cost-effectively using the 2′-FL-accumulating yeast cells.  相似文献   

5.
2′-Fucosyllactose (2-FL), one of the most abundant oligosaccharides in human milk, has been spotlighted for its neutraceutical and pharmaceutical potentials. Microbial production of 2-FL is promising since it is efficient as compared to other production methods. In 2-FL microbial production via the salvage pathway for biosynthesis of guanosine 5′-diphosphate (GDP)-l -fucose from fucose, the conversion yield from fucose is important because of the high price of fucose. In this study, deletion of the genes (araA and rhaA) coding for arabinose isomerase (AraA) and rhamnose isomerase (RhaA) was attempted in engineered Escherichia coli for improving 2-FL production by using fucose, lactose, and glycerol. The engineered E. coli constructed previously is able to express fucokinase/GDP-l -fucose pyrophosphorylase (Fkp) from Bacteroides fragilis and the α-1,2-fucosyltransferase (FucT2) from Helicobacter pylori and deficient in β-galactosidase (LacZ), fucose isomerase (FucI), and fuculose kinase (FucK). The additional double-deletion of the araA and rhaA genes in the engineered E. coli enhanced the product yield of 2-FL to 0.52 mole 2-FL/mole fucose, and hence the concentration of 2-FL reached to 47.0 g/L, which are 44% and two-fold higher than those (23.1 g/L and 0.36 mole 2-FL/mole fucose) of the control strain in fed-batch fermentation. Elimination of sugar isomerases exhibiting promiscuous activities with fucose might be critical in the microbial production of 2-FL through the salvage pathway of GDP-l -fucose.  相似文献   

6.
As one of the most abundant components in human milk oligosaccharides, 2′-fucosyllactose (2′-FL) possesses versatile beneficial health effects. Although most studies focused on overexpressing or fine-tuning the expression of pathway enzymes and achieved a striking increase of 2′-FL production, directly facilitating the metabolic flux toward the key intermediate GDP-l -fucose seems to be ignored. Here, multienzyme complexes consisting of sequential pathway enzymes were constructed by using specific peptide interaction motifs in recombinant Escherichia coli to achieve a higher titer of 2′-FL. Specifically, we first fine-tuned the expression level of pathway enzymes and balanced the metabolic flux toward 2′-FL synthesis. Then, two key enzymes (GDP-mannose 4,6-dehydratase and GDP- l -fucose synthase) were self-assembled into enzyme complexes in vivo via a short peptide interaction pair RIAD–RIDD (RI anchoring disruptor–RI dimer D/D domains), resulting in noticeable improvement of 2′-FL production. Next, to further strengthen the metabolic flux toward 2′-FL, three pathway enzymes were further aggregated into multienzyme assemblies by using another orthogonal protein interaction motif (Spycatcher–SpyTag or PDZ–PDZlig). Intracellular multienzyme assemblies remarkably enlarged the flux toward 2′-FL biosynthesis and showed a 2.1-fold increase of 2′-FL production compared with a strain expressing free-floating and unassembled enzymes. The optimally engineered strain EZJ23 accumulated 4.8 g/L 2′-FL in shake flask fermentation and was capable of producing 25.1 g/L 2′-FL by fed-batch cultivation. This work provides novel approaches for further improvement and large-scale production of 2′-FL and demonstrates the effectiveness of spatial assembly of pathway enzymes to improve the production of valuable products in the engineered host strain.  相似文献   

7.
L -Fucose (6-deoxy-L -galactose) is a major constituent of glycans and glycolipids in mammals. Fucosylation of glycans can confer unique functional properties and may be an economical way to manufacture L -fucose. Research can extract L -fucose directly from brown algae, or by enzymatic hydrolysis of L -fucose-rich microbial exopolysaccharides. However, these L -fucose production methods are not economical or scalable for various applications. We engineered an Escherichia coli strain to produce L -fucose. Specifically, we modified the strain genome to eliminate endogenous L -fucose and lactose metabolism, produce 2′-fucosyllactose (2′-FL), and to liberate L -fucose from 2′-FL. This E. coli strain produced 16.7 g/L of L -fucose with productivity of 0.1 g·L−1·h−1 in a fed-batch fermentation. This study presents an efficient one-pot biosynthesis strategy to produce a monomeric form of L -fucose by microbial fermentation, making large-scale industrial production of L -fucose feasible.  相似文献   

8.
2′-Fucosyllactose (2′-FL), one of the most abundant human milk oligosaccharides (HMOs), is used as a promising infant formula ingredient owing to its multiple health benefits for newborns. However, limited availability and high-cost preparation have restricted its extensive use and intensive research on its potential functions. In this work, a powerful Escherichia coli cell factory was developed to ulteriorly increase 2′-FL production. Initially, a modular pathway engineering was strengthened to balance the synthesis pathway through different plasmid combinations with a resulting maximum 2′-FL titre of 1.45 g l−1. To further facilitate the metabolic flux from GDP-l -fucose towards 2′-FL, the CRISPR-Cas9 system was utilized to inactivate the genes including lacZ and wcaJ, increasing the titre by 6.59-fold. Notably, the co-introduction of NADPH and GTP regeneration pathways was confirmed to be more conducive to 2′-FL formation, achieving a 2′-FL titre of 2.24 g l−1. Moreover, comparisons of various exogenous α1,2-fucosyltransferase candidates revealed that futC from Helicobacter pylori generated the highest titre of 2′-FL. Finally, the viability of scaled-up production of 2′-FL was evidenced in a 3 l bioreactor with a maximum titre of 22.3 g l−1 2′-FL and a yield of 0.53 mole 2′-FL mole−1 lactose.  相似文献   

9.
Fucosyllactoses (FL), including 2′-fucosyllactose (2′-FL) and 3-fucosyllactose (3-FL), have garnered considerable interest for their value in newborn formula and pharmaceuticals. In this study, an engineered Escherichia coli was developed for high-titer FL biosynthesis by introducing multi-level metabolic engineering strategies, including (1) individual construction of the 2′/3-FL-producing strains through gene combination optimization of the GDP-L-fucose module; (2) screening of rate-limiting enzymes (α-1,2-fucosyltransferase and α-1,3-fucosyltransferase); (3) analysis of critical intermediates and inactivation of competing pathways to redirect carbon fluxes to FL biosynthesis; (4) enhancement of the catalytic performance of rate-limiting enzymes by the RBS screening, fusion peptides and multi-copy gene cloning. The final strains EC49 and EM47 produced 9.36 g/L for 2′-FL and 6.28 g/L for 3-FL in shake flasks with a modified-M9CA medium. Fed-batch cultivations of the two strains generated 64.62 g/L of 2′-FL and 40.68 g/L of 3-FL in the 3-L bioreactors, with yields of 0.65 mol 2′-FL/mol lactose and 0.67 mol 3-FL/mol lactose, respectively. This research provides a viable platform for other high-value-added compounds production in microbial cell factories.  相似文献   

10.
A major challenge in producing chemicals and biofuels is to increase the tolerance of the host organism to toxic products or byproducts. An Escherichia coli strain with superior ethanol and more generally alcohol tolerance was identified by screening a library constructed by randomly integrating Lactobacillus plantarum genomic DNA fragments into the E. coli chromosome via Cre-lox recombination. Sequencing identified the inserted DNA fragment as the murA2 gene and its upstream intergenic 973-bp sequence, both coded on the negative genomic DNA strand. Overexpression of this murA2 gene and its upstream 973-bp sequence significantly enhanced ethanol tolerance in both E. coli EC100 and wild type E. coli MG1655 strains by 4.1-fold and 2.0-fold compared to control strains, respectively. Tolerance to n-butanol and i-butanol in E. coli MG1655 was increased by 1.85-fold and 1.91-fold, respectively. We show that the intergenic 973-bp sequence contains a native promoter for the murA2 gene along with a long 5′ UTR (286 nt) on the negative strand, while a noncoding, small RNA, named MurA2S, is expressed off the positive strand. MurA2S is expressed in E. coli and may interact with murA2, but it does not affect murA2’s ability to enhance alcohol tolerance in E. coli. Overexpression of murA2 with its upstream region in the ethanologenic E. coli KO11 strain significantly improved ethanol production in cultures that simulate the industrial Melle-Boinot fermentation process.  相似文献   

11.
12.
The primary explosive found in most land mines, 2,4,6-trinitrotoluene (2,4,6-TNT), is often accompanied by 2,4-dinitrotoluene (2,4-DNT) and 1,3-dinitrobenzene (1,3-DNB) impurities. The latter two compounds, being more volatile, have been reported to slowly leak through land mine covers and permeate the soil under which they are located, thus serving as potential indicators for buried land mines. We report on the construction of genetically engineered Escherichia coli bioreporter strains for the detection of these compounds, based on a genetic fusion between two gene promoters, yqjF and ybiJ, to either the green fluorescent protein gene GFPmut2 or to Photorhabdus luminescens bioluminescence luxCDABE genes. These two gene promoters were identified by exposing to 2,4-DNT a comprehensive library of about 2,000 E. coli reporter strains, each harboring a different E. coli gene promoter controlling a fluorescent protein reporter gene. Both reporter strains detected 2,4-DNT in an aqueous solution as well as in vapor form or when buried in soil. Performance of the yqjF-based sensor was significantly improved in terms of detection threshold, response time, and signal intensity, following two rounds of random mutagenesis in the promoter region. Both yqjF-based and ybiJ-based reporters were also induced by 2,4,6-TNT and 1,3-DNB. It was further demonstrated that both 2,4,6-TNT and 2,4-DNT are metabolized by E. coli and that the actual induction of both yqjF and ybiJ is caused by yet unidentified degradation products. This is the first demonstration of an E. coli whole-cell sensor strain for 2,4-DNT and 2,4,6-TNT, constructed using its own endogenous sensing elements.  相似文献   

13.
Human milk oligosaccharides have been proposed to exert beneficial effects on brain development. During the last decades, most of the studies have focused on the evaluation of sialylated structures but recent experiments have also tested fucosylated oligosaccharides, i.e. 2′-fucosyllactose (2′-FL). The present study aimed to determine whether oral 2′-FL has an effect on the development of newborn brain, contributing to enhance cognitive skills later in life. Rat pups received an oral supplementation of 2′-FL (2′-FL group) or water (control group) during the lactation period. Thereafter, animals were maintained on a rodent standard diet. Rats (n = 12 rats/group) were evaluated twice, at age 4–6 weeks and again at age 1 year, using classical behavioral tests. In vivo long-term potentiation (LTP) was also performed at the same ages (n = 10 rats/group). Both groups showed similar behavior when the animals were assessed just after weaning (age 4–6 weeks), although the 2′-FL group seemed to perform slightly better in Morris Water Maze. At age 1 year, 2′-FL rats performed significantly better in the Novel Object Recognition and Y maze paradigms, when compared to controls. In addition, LTP was more intense and longer lasting in the rats supplemented with 2′-FL than in control animals, both in young and adult animals. Oral administration of 2′-FL exclusively during lactation enhanced cognitive abilities, not only in childhood but also in adulthood.  相似文献   

14.
Biotechnological production of fuels and chemicals from renewable resources is an appealing way to move from the current petroleum-based economy to a biomass-based green economy. Recently, the feedstocks that can be used for bioconversion or fermentation have been expanded to plant biomass, microbial biomass, and industrial waste. Several microbes have been engineered to produce chemicals from renewable resources, among which Escherichia coli is one of the best studied. Much effort has been made to engineer E. coli to produce fuels and chemicals from different renewable resources. In this paper, we focused on E. coli and systematically reviewed a range of fuels and chemicals that can be produced from renewable resources by engineered E. coli. Moreover, we proposed how can we further improve the efficiency for utilizing renewable resources by engineered E. coli, and how can we engineer E. coli for utilizing alternative renewable feedstocks. e.g. C1 gases and methanol. This review will help the readers better understand the current progress in this field and provide insights for further metabolic engineering efforts in E. coli.  相似文献   

15.
Escherichia coli is by far the most widely used bacterial host for the production of membrane proteins. Usually, different strains, culture conditions and production regimes are screened for to design the optimal production process. However, these E. coli-based screening approaches often do not result in satisfactory membrane protein production yields. Recently, it has been shown that (i) E. coli strains with strongly improved membrane protein production characteristics can be engineered or selected for, (ii) many membrane proteins can be efficiently produced in E. coli-based cell-free systems, (iii) bacteria other than E. coli can be used for the efficient production of membrane proteins, and, (iv) membrane protein variants that retain functionality but are produced at higher yields than the wild-type protein can be engineered or selected for. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

16.
Four different green fluorescent protein (GFP)-based whole-cell biosensors were created based on the DNA damage inducible SOS response of Escherichia coli in order to evaluate the sensitivity of individual SOS promoters toward genotoxic substances. Treatment with the known carcinogen N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) revealed that the promoter for the ColD plasmid-borne cda gene had responses 12, 5, and 3 times greater than the recA, sulA, and umuDC promoters, respectively, and also considerably higher sensitivity. Furthermore, we showed that when the SOS-GFP construct was introduced into an E. coli host deficient in the tolC gene, the minimal detection limits toward mitomycin C, MNNG, nalidixic acid, and formaldehyde were lowered to 9.1 nM, 0.16 μM, 1.1 μM, and 141 μM, respectively, which were two to six times lower than those in the wild-type strain. This study thus presents a new SOS-GFP whole-cell biosensor which is not only able to detect minute levels of genotoxins but, due to its use of the green fluorescent protein, also a reporter system which should be applicable in high-throughput screening assays as well as a wide variety of in situ detection studies.  相似文献   

17.
邢敏钰  谭丹  冉淦侨 《微生物学报》2022,62(7):2478-2497
母乳是新生儿最理想的营养剂。其中,人乳寡糖作为母乳的第三大固体组分,对新生儿的生长、发育及健康状况有重要影响,被应用于婴幼儿配方食品中。2′-岩藻糖基乳糖(2′-fucosyllactose,2′-FL),是分泌型母乳中含量最高的人乳寡糖,约占人乳寡糖总量的30%,具有重要的营养和医学价值。2′-FL能够促进婴幼儿生长发育、提高其认知能力、增强免疫力、抗过敏、抗病毒,以及调节肠道菌群,是极具潜力的新型营养强化剂。但是,2′-FL来源于母乳,依靠分离、提取获得大量2′-FL并不现实,因此亟需进行人工合成。人工合成2′-FL的方法有3种,包括:化学合成法、酶催化合成法和全细胞生物合成法。全细胞生物合成法因其成本相对低廉,且易于规模化扩大,而引起了国内外的广泛关注和研究。目前,国外很多跨国公司均开始布局2′-FL的工业化生产和应用,而我国在该领域尚处于研发阶段,因此,了解和掌握2′-FL的合成方法对我国开展2′-FL规模化生产具有重要的意义。本文旨在介绍2′-FL的功能特性,系统阐述其全细胞生物合成的关键技术和最新进展,讨论了针对限速步骤进一步提高产量的策略,旨在为2′-FL的合成和商业化生...  相似文献   

18.
Acrylic acid and propionic acid are important chemicals requiring affordable, renewable production solutions. Here, we metabolically engineered Escherichia coli with genes encoding components of the 3-hydroxypropionate/4-hydroxybutyrate cycle from Metallosphaera sedula for conversion of glucose to acrylic and propionic acids. To construct an acrylic acid-producing pathway in E. coli, heterologous expression of malonyl-CoA reductase (MCR), malonate semialdehyde reductase (MSR), 3-hydroxypropionyl-CoA synthetase (3HPCS), and 3-hydroxypropionyl-CoA dehydratase (3HPCD) from M. sedula was accompanied by overexpression of succinyl-CoA synthetase (SCS) from E. coli. The engineered strain produced 13.28 ± 0.12 mg/L of acrylic acid. To construct a propionic acid-producing pathway, the same five genes were expressed, with the addition of M. sedula acryloyl-CoA reductase (ACR). The engineered strain produced 1430 ± 30 mg/L of propionic acid. This approach can be expanded to synthesize many important organic chemicals, creating new opportunities for the production of chemicals by carbon dioxide fixation.  相似文献   

19.
20.
Some members of the family Enterobacteriaceae ferment sugars via the mixed-acid fermentation pathway. This yields large amounts of acids, causing strong and sometimes even lethal acidification of the environment. Other family members employ the 2,3-butanediol fermentation pathway, which generates comparatively less acidic and more neutral end products, such as acetoin and 2,3-butanediol. In this work, we equipped Escherichia coli MG1655 with the budAB operon, encoding the acetoin pathway, from Serratia plymuthica RVH1 and investigated how this affected the ability of E. coli to cope with acid stress during growth. Acetoin fermentation prevented lethal medium acidification by E. coli in lysogeny broth (LB) supplemented with glucose. It also supported growth and higher stationary-phase cell densities in acidified LB broth with glucose (pH 4.10 to 4.50) and in tomato juice (pH 4.40 to 5.00) and reduced the minimal pH at which growth could be initiated. On the other hand, the acetoin-producing strain was outcompeted by the nonproducer in a mixed-culture experiment at low pH, suggesting a fitness cost associated with acetoin production. Finally, we showed that acetoin production profoundly changes the appearance of E. coli on several diagnostic culture media. Natural E. coli strains that have laterally acquired budAB genes may therefore have escaped detection thus far. This study demonstrates the potential importance of acetoin fermentation in the ecology of E. coli in the food chain and contributes to a better understanding of the microbiological stability and safety of acidic foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号