首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Phenotype-centric modeling enables a paradigm shift in the analysis of mechanistic models. It brings the focus to a network's biochemical phenotypes and their relationship with measurable traits (e.g., product yields, system dynamics, signal amplification factors, etc.) and away from computationally intensive simulation-centric modeling. Here, we explore applications of this new modeling strategy in the field of rational metabolic engineering using the amorphadiene biosynthetic network as a case study. This network has previously been studied using a mechanistic model and the simulation-centric strategy, and thus provides an excellent means to compare and contrast results obtained from these two very different strategies. We show that the phenotype-centric strategy, without values for the parameters, not only identifies beneficial intervention strategies obtained with the simulation-centric strategy, but it also provides an understanding of the mechanistic context for the validity of these predictions. Additionally, we propose a set of hypothetical strains with the potential to outperform reported production strains and to enhance the mechanistic understanding of the amorphadiene biosynthetic network. Further, we identify the landscape of possible intervention strategies for the given model. We believe that phenotype-centric modeling can advance the field of rational metabolic engineering by enabling the development of next generation kinetics-based algorithms and methods that do not rely on a priori knowledge of kinetic parameters but allow a structured, global analysis of system design in the parameter space.  相似文献   

2.
In recent years, a growing number of metabolic engineering strain design techniques have employed constraint-based modeling to determine metabolic and regulatory network changes which are needed to improve chemical production. These methods use systems-level analysis of metabolism to help guide experimental efforts by identifying deletions, additions, downregulations, and upregulations of metabolic genes that will increase biological production of a desired metabolic product. In this work, we propose a new strain design method with continuous modifications (CosMos) that provides strategies for deletions, downregulations, and upregulations of fluxes that will lead to the production of the desired products. The method is conceptually simple and easy to implement, and can provide additional strategies over current approaches. We found that the method was able to find strain design strategies that required fewer modifications and had larger predicted yields than strategies from previous methods in example and genome-scale networks. Using CosMos, we identified modification strategies for producing a variety of metabolic products, compared strategies derived from Escherichia coli and Saccharomyces cerevisiae metabolic models, and examined how imperfect implementation may affect experimental outcomes. This study gives a powerful and flexible technique for strain engineering and examines some of the unexpected outcomes that may arise when strategies are implemented experimentally.  相似文献   

3.
工业微生物是微生物制造的核心,而微生物制造过程中微生物的生产性能是提高微生物制造过程效率的关键。结合基于约束条件的优化算法的基因组规模代谢网络模型是全局规模上认识、调控和优化工业微生物生理功能的重要平台。本文在简述基因组规模代谢网络模型构建的基础上,详细介绍了基于约束条件的优化算法的原理、分类和应用实例,为提高微生物制造过程效率奠定了坚实的基础。  相似文献   

4.
Accelerating the process of industrial bacterial host strain development, aimed at increasing productivity, generating new bio-products or utilizing alternative feedstocks, requires the integration of complementary approaches to manipulate cellular metabolism and regulatory networks. Systems metabolic engineering extends the concept of classical metabolic engineering to the systems level by incorporating the techniques used in systems biology and synthetic biology, and offers a framework for the development of the next generation of industrial strains. As one of the most useful tools of systems metabolic engineering, protein design allows us to design and optimize cellular metabolism at a molecular level. Here, we review the current strategies of protein design for engineering cellular synthetic pathways, metabolic control systems and signaling pathways, and highlight the challenges of this subfield within the context of systems metabolic engineering.  相似文献   

5.

Background  

Infections with Salmonella cause significant morbidity and mortality worldwide. Replication of Salmonella typhimurium inside its host cell is a model system for studying the pathogenesis of intracellular bacterial infections. Genome-scale modeling of bacterial metabolic networks provides a powerful tool to identify and analyze pathways required for successful intracellular replication during host-pathogen interaction.  相似文献   

6.
7.
8.
Bioinformatics tools have facilitated the reconstruction and analysis of cellular metabolism of various organisms based on information encoded in their genomes. Characterization of cellular metabolism is useful to understand the phenotypic capabilities of these organisms. It has been done quantitatively through the analysis of pathway operations. There are several in silico approaches for analyzing metabolic networks, including structural and stoichiometric analysis, metabolic flux analysis, metabolic control analysis, and several kinetic modeling based analyses. They can serve as a virtual laboratory to give insights into basic principles of cellular functions. This article summarizes the progress and advances in software and algorithm development for metabolic network analysis, along with their applications relevant to cellular physiology, and metabolic engineering with an emphasis on microbial strain optimization. Moreover, it provides a detailed comparative analysis of existing approaches under different categories.  相似文献   

9.
Elementary mode analysis has been used to study a metabolic pathway model of a recombinant Saccharomyces cerevisiae system that was genetically engineered to produce the bacterial storage compound poly-beta-hydroxybutyrate (PHB). The model includes biochemical reactions from the intermediary metabolism and takes into account cellular compartmentalization as well as the reversibility/irreversibility of the reactions. The reaction network connects the production and/or consumption of eight external metabolites including glucose, acetate, glycerol, ethanol, PHB, CO(2), succinate, and adenosine triphosphate (ATP). Elementary mode analysis of the wild-type S. cerevisiae system reveals 241 unique reaction combinations that balance the eight external metabolites. When the recombinant PHB pathway is included, and when the reaction model is altered to simulate the experimental conditions when PHB accumulates, the analysis reveals 20 unique elementary modes. Of these 20 modes, 7 produce PHB with the optimal mode having a theoretical PHB carbon yield of 0.67. Elementary mode analysis was also used to analyze the possible effects of biochemical network modifications and altered culturing conditions. When the natively absent ATP citrate-lyase activity is added to the recombinant reaction network, the number of unique modes increases from 20 to 496, with 314 of these modes producing PHB. With this topological modification, the maximum theoretical PHB carbon yield increases from 0.67 to 0.83. Adding a transhydrogenase reaction to the model also improves the theoretical conversion of substrate into PHB. The recombinant system with the transhydrogenase reaction but without the ATP citrate-lyase reaction has an increase in PHB carbon yield from 0.67 to 0.71. When the model includes both the ATP citrate-lyase reaction and the transhydrogenase reaction, the maximum theoretical carbon yield increases to 0.84. The reaction model was also used to explore the possibility of producing PHB under anaerobic conditions. In the absence of oxygen, the recombinant reaction network possesses two elementary modes capable of producing PHB. Interestingly, both modes also produce ethanol. Elementary mode analysis provides a means of deconstructing complex metabolic networks into their basic functional units. This information can be used for analyzing existing pathways and for the rational design of further modifications that could improve the system's conversion of substrate into product.  相似文献   

10.
  1. Download : Download high-res image (104KB)
  2. Download : Download full-size image
  相似文献   

11.
Clustering and correlation analysis techniques have become popular tools for the analysis of data produced by metabolomics experiments. The results obtained from these approaches provide an overview of the interactions between objects of interest. Often in these experiments, one is more interested in information about the nature of these relationships, e.g., cause-effect relationships, than in the actual strength of the interactions. Finding such relationships is of crucial importance as most biological processes can only be understood in this way. Bayesian networks allow representation of these cause-effect relationships among variables of interest in terms of whether and how they influence each other given that a third, possibly empty, group of variables is known. This technique also allows the incorporation of prior knowledge as established from the literature or from biologists. The representation as a directed graph of these relationship is highly intuitive and helps to understand these processes. This paper describes how constraint-based Bayesian networks can be applied to metabolomics data and can be used to uncover the important pathways which play a significant role in the ripening of fresh tomatoes. We also show here how this methods of reconstructing pathways is intuitive and performs better than classical techniques. Methods for learning Bayesian network models are powerful tools for the analysis of data of the magnitude as generated by metabolomics experiments. It allows one to model cause-effect relationships and helps in understanding the underlying processes.  相似文献   

12.
李宏 《生物信息学》2012,10(1):55-60
代谢工程是近年来发展起来的新技术,随着各种组学技术的发展,高通量数据整合方法用于分析细胞的代谢网络,改造代谢途径,以提高目标产物的产量。本文就代谢工程的发展状况,基因组尺度的分析技术,以及代谢工程策略进行了综述。分析了生物信息学和系统生物学方法在代谢途径构建和代谢网络分析中的作用,并就存在的问题和可能的解决途径进行了阐述。  相似文献   

13.
14.
In this work, a novel optimization-based metabolic control analysis (OMCA) method is introduced for reducing data requirement for metabolic control analysis (MCA). It is postulated that using the optimal control approach, the fluxes in a metabolic network are correlated to metabolite concentrations and enzyme activities as a state-feedback control system that is optimal with respect to a homeostasis objective. It is then shown that the optimal feedback gains are directly related to the elasticity coefficients (ECs) of MCA. This approach requires determination of the relative "importance" of metabolites and fluxes for the system, which is possible with significantly reduced experimental data, as compared with typical MCA requirements. The OMCA approach is applied to a top-down control model of glycolysis in hepatocytes. It is statistically demonstrated that the OMCA model is capable of predicting the ECs observed experimentally with few exceptions. Further, an OMCA-based model reconciliation study shows that the modification of four assumed stoichiometric coefficients in the model can explain most of the discrepancies, with the exception of elasticities with respect to the NADH/NAD ratio.  相似文献   

15.
Rational engineering of metabolism is important for bio-production using microorganisms. Metabolic design based on in silico simulations and experimental validation of the metabolic state in the engineered strain helps in accomplishing systematic metabolic engineering. Flux balance analysis (FBA) is a method for the prediction of metabolic phenotype, and many applications have been developed using FBA to design metabolic networks. Elementary mode analysis (EMA) and ensemble modeling techniques are also useful tools for in silico strain design. The metabolome and flux distribution of the metabolic pathways enable us to evaluate the metabolic state and provide useful clues to improve target productivity. Here, we reviewed several computational applications for metabolic engineering by using genome-scale metabolic models of microorganisms. We also discussed the recent progress made in the field of metabolomics and 13C-metabolic flux analysis techniques, and reviewed these applications pertaining to bio-production development. Because these in silico or experimental approaches have their respective advantages and disadvantages, the combined usage of these methods is complementary and effective for metabolic engineering.  相似文献   

16.
Metabolic engineers develop inexpensive enantioselective syntheses of high-value compounds, but their designs are sometimes confounded by the misfolding of heterologously expressed proteins. Geobacillus stearothermophilus NUB3621 is a readily transformable facultative thermophile. It could be used to express and properly fold proteins derived from its many mesophilic or thermophilic Bacillaceae relatives or to direct the evolution of thermophilic variants of mesophilic proteins. Moreover, its capacity for high-temperature growth should accelerate chemical transformation rates in accordance with the Arrhenius equation and reduce the risks of microbial contamination. Its tendency to sporulate in response to nutrient depletion lowers the costs of storage and transportation. Here, we present a draft genome sequence of G. stearothermophilus NUB3621 and describe inducible and constitutive expression plasmids that function in this organism. These tools will help us and others to exploit the natural advantages of this system for metabolic engineering applications.  相似文献   

17.
Classic strain engineering methods have previously been limited by the low-throughput of conventional sequencing technology. Here, we applied a new genomics technology, scalar analysis of library enrichments (SCALEs), to measure >3 million Escherichia coli genomic library clone enrichment patterns resulting from growth selections employing three aspartic-acid anti-metabolites. Our objective was to assess the extent to which access to genome-scale enrichment patterns would provide strain-engineering insights not reasonably accessible through the use of conventional sequencing. We determined that the SCALEs method identified a surprisingly large range of anti-metabolite tolerance regions (423, 865, or 909 regions for each of the three anti-metabolites) when compared to the number of regions (1-3 regions) indicated by conventional sequencing. Genome-scale methods uniquely enable the calculation of clone fitness values by providing concentration data for all clones within a genomic library before and after a period of selection. We observed that clone fitness values differ substantially from clone concentration values and that this is due to differences in overall clone fitness distributions for each selection. Finally, we show that many of the clones of highest fitness overlapped across all selections, suggesting that inhibition of aspartate metabolism, as opposed to specific inhibited enzymes, dominated each selection. Our follow up studies confirmed our observed growth phenotypes and showed that intracellular amino-acid levels were also altered in several of the identified clones. These results demonstrate that genome-scale methods, such as SCALEs, can be used to dramatically improve understanding of classic strain engineering approaches.  相似文献   

18.
19.
A priori information or valuable qualitative knowledge can be incorporated explicitly to describe enzyme kinetics making use of fuzzy-logic models. Although restricted to linear relationships, it is shown that fuzzy-logic augmented models are not only able to capture non-linear features of enzyme kinetics but also allow the proper mathematical treatment of metabolic control analysis. The explicit incorporation of valuable qualitative knowledge is crucial, particularly when handling data estimated from in vivo kinetics studies, since this experimental information is scarce and usually contains measurement errors. Therefore, data-driven techniques, such as the one presented in this work, form a serious alternative to established kinetics approaches.  相似文献   

20.
A topological approach is presented for the analysis of control and regulation in metabolic pathways. In this approach, the control structure of a metabolic pathway is represented by a weighted directed graph. From an inspection of the topology of the graph, the control coefficients of the enzymes are evaluated in a heuristic manner in terms of the enzyme elasticities. The major advantage of the topological approach is that it provides a visual framework for (1) calculating the control coefficients of the enzymes, (2) analyzing the cause-effect relationships of the individual enzymes, (3) assessing the relative importance of the enzymes in metabolic regulation, and (4) simplifying the structure of a given pathway, from a regulatory viewpoint. Results are obtained for (a) an unbranched pathway in the absence of feedback the feedforward regulation and (b) an unbranched pathway with feedback inhibition. Our formulation is based on the metabolic control theory of Kacser and Burns (1973) and Heinrich and Rapoport (1974).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号