首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been widely assumed that Atg8 family LC3/GABARAP proteins are essential for the formation of autophagosomes during macroautophagy/autophagy, and the sequestration of cargo during selective autophagy. However, there is little direct evidence on the functional contribution of these proteins to autophagosome biogenesis in mammalian cells. To dissect the functions of LC3/GABARAPs during starvation-induced autophagy and PINK1-PARK2/Parkin-dependent mitophagy, we used CRISPR/Cas9 gene editing to generate knockouts of the LC3 and GABARAP subfamilies, and all 6 Atg8 family proteins in HeLa cells. Unexpectedly, the absence of all LC3/GABARAPs did not prevent the formation of sealed autophagosomes, or selective engulfment of mitochondria during PINK1-PARK2-dependent mitophagy. Despite not being essential for autophagosome formation, the loss of LC3/GABARAPs affected both autophagosome size, and the efficiency at which they are formed. However, the critical autophagy defect in cells lacking LC3/GABARAPs was failure to drive autophagosome-lysosome fusion. Relative to the LC3 subfamily, GABARAPs were found to play a prominent role in autophagosome-lysosome fusion and recruitment of the adaptor protein PLEKHM1. Our work clarifies the essential contribution of Atg8 family proteins to autophagy in promoting autolysosome formation, and reveals the GABARAP subfamily as a key driver of starvation-induced autophagy and PINK1-PARK2-dependent mitophagy. Since LC3/GABARAPs are not essential for mitochondrial cargo sequestration, we propose an additional mechanism of selective autophagy. The model highlights the importance of ubiquitin signals and autophagy receptors for PINK-PARK2-mediated selectivity rather than Atg8 family-LIR-mediated interactions.  相似文献   

2.
UIS4 is a key protein component of the host-parasite interface in the liver stage of the rodent malaria parasite Plasmodium berghei and required for parasite survival after invasion. In the infectious sporozoite, UIS4 protein has variably been shown to be translated but also been reported to be translationally repressed. Here we show that uis4 mRNA translation is regulated by the P. berghei RNA binding protein Pumilio-2 (PbPuf2 or Puf2 from here on forward) in infectious salivary gland sporozoites in the mosquito vector. Using RNA immunoprecipitation we show that uis4 mRNA is bound by Puf2 in salivary gland sporozoites. In the absence of Puf2, uis4 mRNA translation is de-regulated and UIS4 protein expression upregulated in salivary gland sporozoites. Here, using RNA immunoprecipitation, we reveal the first Puf2-regulated mRNA in this parasite.  相似文献   

3.
Plasmodium salivary sporozoites are the infectious form of the malaria parasite and are dormant inside salivary glands of Anopheles mosquitoes. During dormancy, protein translation is inhibited by the kinase UIS1 that phosphorylates serine 59 in the eukaryotic initiation factor 2α (eIF2α). De-phosphorylation of eIF2α-P is required for the transformation of sporozoites into the liver stage. In mammalian cells, the de-phosphorylation of eIF2α-P is mediated by the protein phosphatase 1 (PP1). Using a series of genetically knockout parasites we showed that in malaria sporozoites, contrary to mammalian cells, the eIF2α-P phosphatase is a member of the PP2C/PPM phosphatase family termed UIS2. We found that eIF2α was highly phosphorylated in uis2 conditional knockout sporozoites. These mutant sporozoites maintained the crescent shape after delivery into mammalian host and lost their infectivity. Both uis1 and uis2 were highly transcribed in the salivary gland sporozoites but uis2 expression was inhibited by the Pumilio protein Puf2. The repression of uis2 expression was alleviated when sporozoites developed into liver stage. While most eukaryotic phosphatases interact transiently with their substrates, UIS2 stably bound to phosphorylated eIF2α, raising the possibility that high-throughput searches may identify chemicals that disrupt this interaction and prevent malaria infection.  相似文献   

4.
Plasmodium parasites are transmitted by Anopheles mosquitoes to the mammalian host and actively infect hepatocytes after passive transport in the bloodstream to the liver. In their target host hepatocyte, parasites reside within a parasitophorous vacuole (PV). In the present study it was shown that the parasitophorous vacuole membrane (PVM) can be targeted by autophagy marker proteins LC3, ubiquitin, and SQSTM1/p62 as well as by lysosomes in a process resembling selective autophagy. The dynamics of autophagy marker proteins in individual Plasmodium berghei-infected hepatocytes were followed by live imaging throughout the entire development of the parasite in the liver. Although the host cell very efficiently recognized the invading parasite in its vacuole, the majority of parasites survived this initial attack. Successful parasite development correlated with the gradual loss of all analyzed autophagy marker proteins and associated lysosomes from the PVM. However, other autophagic events like nonselective canonical autophagy in the host cell continued. This was indicated as LC3, although not labeling the PVM anymore, still localized to autophagosomes in the infected host cell. It appears that growing parasites even benefit from this form of nonselective host cell autophagy as an additional source of nutrients, as in host cells deficient for autophagy, parasite growth was retarded and could partly be rescued by the supply of additional amino acid in the medium. Importantly, mouse infections with P. berghei sporozoites confirmed LC3 dynamics, the positive effect of autophagy activation on parasite growth, and negative effects upon autophagy inhibition.  相似文献   

5.
Zhiyuan Yao 《Autophagy》2018,14(8):1291-1292
The malaria causative parasite, Plasmodium, has received intense focus due to its complex life cycle and threat to human health. When infecting human hepatocytes, the parasite manages to escape clearance by macroautophagy/autophagy. In a recent paper by Real et al., the authors discovered that the parasitophorous vacuole (PV) membrane protein UIS3 encoded by Plasmodium interacts with MAP1LC3/LC3, an important component of the autophagy machinery. This interaction interferes with the association between LC3 and its receptors, which helps the parasite avoid sequestration by a phagophore, and subsequent elimination by the host. This study expands our knowledge about the Plasmodium-host interaction, as well as provides information for a potential anti-Plasmodium drug target.  相似文献   

6.
Several autophagy proteins contain an LC3‐interacting region (LIR) responsible for their interaction with Atg8 homolog proteins. Here, we show that ALFY binds selectively to LC3C and the GABARAPs through a LIR in its WD40 domain. Binding of ALFY to GABARAP is indispensable for its recruitment to LC3B‐positive structures and, thus, for the clearance of certain p62 structures by autophagy. In addition, the crystal structure of the GABARAP‐ALFY‐LIR peptide complex identifies three conserved residues in the GABARAPs that are responsible for binding to ALFY. Interestingly, introduction of these residues in LC3B is sufficient to enable its interaction with ALFY, indicating that residues outside the LIR‐binding hydrophobic pockets confer specificity to the interactions with Atg8 homolog proteins.  相似文献   

7.
Bortezomib is a novel proteasome inhibitor that has promising antitumor activity against various cancer cells. We have assessed its antitumor activity in non-small cell lung cancer (NSCLC) A549 and H157 cells in vitro where it inhibited cell growth and induced apoptosis, which was associated with cytochrome c release and caspase-3 activation. Bortezomib upregulated autophagic-related proteins, the Atg12–Atg5 complex and LC3-II, which indicated autophagy had occurred. The combination of bortezomib with autophagic inhibitor 3-methyladenine or chloroquine significantly enhanced suppression of cell growth and apoptosis induced by bortezomib in A549 and H157 cells. Our study indicated that inhibition of both proteasome and autophagy has great potential for NSCLC treatment.  相似文献   

8.
Immunization with radiation attenuated Plasmodium sporozoites (RAS) elicits sterile protective immunity against sporozoite challenge in murine models and in humans. Similarly to RAS, the genetically attenuated sporozoites (GAPs) named uis3(-), uis4(-) and P36p(-) have arrested growth during the liver stage development, and generate a powerful protective immune response in mice. We compared the protective mechanisms in P. yoelii RAS, uis3(-) and uis4(-) in BALB/c mice. In RAS and GAPs, sterile immunity is only achieved after one or more booster injections. There were no differences in the immune responses to the circumsporozoite protein (CSP) generated by RAS and GAPs. To evaluate the role of non-CSP T-cell antigens we immunized antibody deficient, CSP-transgenic BALB/c mice, that are T cell tolerant to CSP, with P. yoelii RAS or with uis3(-) or uis4(-) GAPs, and challenged them with wild type sporozoites. In every instance the parasite liver stage burden was approximately 3 logs higher in antibody deficient CSP transgenic mice as compared to antibody deficient mice alone. We conclude that CSP is a powerful protective antigen in both RAS and GAPs viz., uis3(-) and uis4(-) and that the protective mechanisms are similar independently of the method of sporozoite attenuation.  相似文献   

9.
Autophagy is a unique intracellular protein degradation system accompanied by autophagosome formation. Besides its important role through bulk degradation in supplying nutrients, this system has an ability to degrade certain proteins, organelles, and invading bacteria selectively to maintain cellular homeostasis. In yeasts, Atg8p plays key roles in both autophagosome formation and selective autophagy based on its membrane fusion property and interaction with autophagy adaptors/specific substrates. In contrast to the single Atg8p in yeast, mammals have 6 homologs of Atg8p comprising LC3 and GABARAP families. However, it is not clear these two families have different or similar functions. The aim of this study was to determine the separate roles of LC3 and GABARAP families in basal/constitutive and/or selective autophagy. While the combined knockdown of LC3 and GABARAP families caused a defect in long-lived protein degradation through lysosomes, knockdown of each had no effect on the degradation. Meanwhile, knockdown of LC3B but not GABARAPs resulted in significant accumulation of p62/Sqstm1, one of the selective substrate for autophagy. Our results suggest that while mammalian Atg8 homologs are functionally redundant with regard to autophagosome formation, selective autophagy is regulated by specific Atg8 homologs.  相似文献   

10.
Toxoplasma gondii resides in an intracellular compartment (parasitophorous vacuole) that excludes transmembrane molecules required for endosome - lysosome recruitment. Thus, the parasite survives by avoiding lysosomal degradation. However, autophagy can re-route the parasitophorous vacuole to the lysosomes and cause parasite killing. This raises the possibility that T. gondii may deploy a strategy to prevent autophagic targeting to maintain the non-fusogenic nature of the vacuole. We report that T. gondii activated EGFR in endothelial cells, retinal pigment epithelial cells and microglia. Blockade of EGFR or its downstream molecule, Akt, caused targeting of the parasite by LC3+ structures, vacuole-lysosomal fusion, lysosomal degradation and killing of the parasite that were dependent on the autophagy proteins Atg7 and Beclin 1. Disassembly of GPCR or inhibition of metalloproteinases did not prevent EGFR-Akt activation. T. gondii micronemal proteins (MICs) containing EGF domains (EGF-MICs; MIC3 and MIC6) appeared to promote EGFR activation. Parasites defective in EGF-MICs (MIC1 ko, deficient in MIC1 and secretion of MIC6; MIC3 ko, deficient in MIC3; and MIC1-3 ko, deficient in MIC1, MIC3 and secretion of MIC6) caused impaired EGFR-Akt activation and recombinant EGF-MICs (MIC3 and MIC6) caused EGFR-Akt activation. In cells treated with autophagy stimulators (CD154, rapamycin) EGFR signaling inhibited LC3 accumulation around the parasite. Moreover, increased LC3 accumulation and parasite killing were noted in CD154-activated cells infected with MIC1-3 ko parasites. Finally, recombinant MIC3 and MIC6 inhibited parasite killing triggered by CD154 particularly against MIC1-3 ko parasites. Thus, our findings identified EGFR activation as a strategy used by T. gondii to maintain the non-fusogenic nature of the parasitophorous vacuole and suggest that EGF-MICs have a novel role in affecting signaling in host cells to promote parasite survival.  相似文献   

11.

Background

Chronic obstructive pulmonary disease (COPD) is a progressive lung disease characterized by abnormal cellular responses to cigarette smoke, resulting in tissue destruction and airflow limitation. Autophagy is a degradative process involving lysosomal turnover of cellular components, though its role in human diseases remains unclear.

Methodology and Principal Findings

Increased autophagy was observed in lung tissue from COPD patients, as indicated by electron microscopic analysis, as well as by increased activation of autophagic proteins (microtubule-associated protein-1 light chain-3B, LC3B, Atg4, Atg5/12, Atg7). Cigarette smoke extract (CSE) is an established model for studying the effects of cigarette smoke exposure in vitro. In human pulmonary epithelial cells, exposure to CSE or histone deacetylase (HDAC) inhibitor rapidly induced autophagy. CSE decreased HDAC activity, resulting in increased binding of early growth response-1 (Egr-1) and E2F factors to the autophagy gene LC3B promoter, and increased LC3B expression. Knockdown of E2F-4 or Egr-1 inhibited CSE-induced LC3B expression. Knockdown of Egr-1 also inhibited the expression of Atg4B, a critical factor for LC3B conversion. Inhibition of autophagy by LC3B-knockdown protected epithelial cells from CSE-induced apoptosis. Egr-1 −/− mice, which displayed basal airspace enlargement, resisted cigarette-smoke induced autophagy, apoptosis, and emphysema.

Conclusions

We demonstrate a critical role for Egr-1 in promoting autophagy and apoptosis in response to cigarette smoke exposure in vitro and in vivo. The induction of autophagy at early stages of COPD progression suggests novel therapeutic targets for the treatment of cigarette smoke induced lung injury.  相似文献   

12.
Cell-autonomous immunity to the bacterial pathogen Chlamydia trachomatis and the protozoan pathogen Toxoplasma gondii is controlled by two families of Interferon (IFN)-inducible GTPases: Immunity Related GTPases (IRGs) and Guanylate binding proteins (Gbps). Members of these two GTPase families associate with pathogen-containing vacuoles (PVs) and solicit antimicrobial resistance pathways specifically to the intracellular site of infection. The proper delivery of IRG and Gbp proteins to PVs requires the autophagy factor Atg5. Atg5 is part of a protein complex that facilitates the transfer of the ubiquitin-like protein Atg8 from the E2-like conjugation enzyme Atg3 to the lipid phosphatidylethanolamine. Here, we show that Atg3 expression, similar to Atg5 expression, is required for IRG and Gbp proteins to dock to PVs. We further demonstrate that expression of a dominant-active, GTP-locked IRG protein variant rescues the PV targeting defect of Atg3- and Atg5-deficient cells, suggesting a possible role for Atg proteins in the activation of IRG proteins. Lastly, we show that IFN-induced cell-autonomous resistance to C. trachomatis infections in mouse cells depends not only on Atg5 and IRG proteins, as previously demonstrated, but also requires the expression of Atg3 and Gbp proteins. These findings provide a foundation for a better understanding of IRG- and Gbp-dependent cell-autonomous resistance and its regulation by Atg proteins.  相似文献   

13.
The protozoan parasite Plasmodium, causative agent of malaria, invades hepatocytes by invaginating the host cell plasma membrane and forming a parasitophorous vacuole membrane (PVM). Surrounded by this PVM, the parasite undergoes extensive replication. Parasites inside a PVM provoke the Plasmodium‐associated autophagy‐related (PAAR) response. This is characterised by a long‐lasting association of the autophagy marker protein LC3 with the PVM, which is not preceded by phosphatidylinositol 3‐phosphate (PI3P)‐labelling. Prior to productive invasion, sporozoites transmigrate several cells and here we describe that a proportion of traversing sporozoites become trapped in a transient traversal vacuole, provoking a host cell response that clearly differs from the PAAR response. These trapped sporozoites provoke PI3P‐labelling of the surrounding vacuolar membrane immediately after cell entry, followed by transient LC3‐labelling and elimination of the parasite by lysosomal acidification. Our data suggest that this PI3P response is not only restricted to sporozoites trapped during transmigration but also affects invaded parasites residing in a compromised vacuole. Thus, host cells can employ a pathway distinct from the previously described PAAR response to efficiently recognise and eliminate Plasmodium parasites.  相似文献   

14.
15.
16.
17.
The early transcribed membrane proteins ETRAMPs belong to a family of small, transmembrane molecules unique to Plasmodium parasite, which share a signal peptide followed by a short lysine-rich stretch, a transmembrane domain and a variable, highly charged C-terminal region. ETRAMPs are usually expressed in a stage-specific manner. In the blood stages they localize to the parasitophorous vacuole membrane and, in described cases, to vesicle-like structures exported to the host erythrocyte cytosol. Two family members of the rodent parasite Plasmodium berghei, uis3 and uis4, localize to secretory organelles of sporozoites and to the parasitophorous membrane vacuole of the liver stages. By the use of specific antibodies and the generation of transgenic lines, we showed that the P. berghei ETRAMP family member SEP2 is abundantly expressed in gametocytes as well as in mosquito and liver stages. In intracellular parasite stages, SEP2 is routed to the parasitophorous vacuole membrane while, in invasive ookinete and sporozoite stages, it localizes to the parasite surface. To date SEP2 is the only ETRAMP protein detected throughout the parasite life cycle. Furthermore, SEP2 is also released during gliding motility of salivary gland sporozoites. A limited number of proteins are known to be involved in this key function and the best characterized, the CSP and TRAP, are both promising transmission-blocking candidates. Our results suggest that ETRAMP members may be viewed as new potential candidates for malaria control.  相似文献   

18.
Macroautophagy/autophagy, a catabolic process by which cytoplasmic materials are degraded and recycled in lysosomes/vacuoles, remains a rapidly expanding research topic with the need for constantly improved methodologies to study each step of this pathway. Recently Lee and colleagues, as well as Stolz et al., independently reported the development of new AIM/LIR-based fluorescent sensors, which mark individual endogenous mammalian Atg8-family (mAtg8) proteins without affecting the autophagic flux. When expressed in cells, each sensor selectively recognizes individual mAtg8 isoforms and distinguishes mammalian MAP1LC3/LC3 proteins from the related GABARAPs. Such selectivity was achieved by using various LC3-interacting regions with high binding affinity to either a subgroup, or a specific, mAtg8 isoform as part of the sensor. Here we discuss the utility of these sensors in autophagy research and highlight their strengths, weaknesses and future directions.  相似文献   

19.
Autophagy is a lysosomal degradative pathway that has diverse physiological functions and plays crucial roles in several viral infections. Here we examine the role of autophagy in the life cycle of JEV, a neurotropic flavivirus. JEV infection leads to induction of autophagy in several cell types. JEV replication was significantly enhanced in neuronal cells where autophagy was rendered dysfunctional by ATG7 depletion, and in Atg5-deficient mouse embryonic fibroblasts (MEFs), resulting in higher viral titers. Autophagy was functional during early stages of infection however it becomes dysfunctional as infection progressed resulting in accumulation of misfolded proteins. Autophagy-deficient cells were highly susceptible to virus-induced cell death. We also observed JEV replication complexes that are marked by nonstructural protein 1 (NS1) and dsRNA colocalized with endogenous LC3 but not with GFP-LC3. Colocalization of NS1 and LC3 was also observed in Atg5 deficient MEFs, which contain only the nonlipidated form of LC3. Viral replication complexes furthermore show association with a marker of the ER-associated degradation (ERAD) pathway, EDEM1 (ER degradation enhancer, mannosidase α-like 1). Our data suggest that virus replication occurs on ERAD-derived EDEM1 and LC3-I-positive structures referred to as EDEMosomes. While silencing of ERAD regulators EDEM1 and SEL1L suppressed JEV replication, LC3 depletion exerted a profound inhibition with significantly reduced RNA levels and virus titers. Our study suggests that while autophagy is primarily antiviral for JEV and might have implications for disease progression and pathogenesis of JEV, nonlipidated LC3 plays an important autophagy independent function in the virus life cycle.  相似文献   

20.
ABSTRACT

The selective clearance of cellular components by macroautophagy (hereafter autophagy) is critical for maintaining cellular homeostasis. In this punctum, we summarize and discuss our recent findings regarding a novel type of selective autophagy that targets centriolar satellites (CS) for degradation, a process we termed doryphagy from the Greek word “doryphoros”, standing for “satellite”. CS are microtubule-associated protein complexes that regulate centrosome composition. We show that CS degradation is mediated through a direct interaction between GABARAPs and an LC3-interacting region (LIR) motif in the CS protein PCM1. Autophagy-deficient systems accumulate large abnormal CS and consequently display centrosome reorganization and abnormal mitoses. Our findings provide a mechanistic link between autophagy deficiency and centrosome abnormalities and exemplify how mammalian Atg8-family proteins (mATG8s) can regulate substrate specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号