共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeAccelerated partial breast irradiation (APBI) is alternative treatment option for patients with early stage breast cancer. The interplay effect on volumetric modulated arc therapy APBI (VMAT-APBI) has not been clarified. This study aimed to evaluate the feasibility of VMAT-APBI for patients with small breasts and investigate the amplitude of respiratory motion during VMAT-APBI delivery that significantly affects dose distribution.MethodsThe VMAT-APBI plans were generated with 28.5 Gy in five fractions. We performed patient-specific quality assurance using Delta4 phantom under static conditions. We also measured point dose and dose distribution using the ionization chamber and radiochromic film under static and moving conditions of 2, 3 and 5 mm. We compared the measured and calculated point doses and dose distributions by dose difference and gamma passing rates.ResultsA total of 20 plans were generated; the dose distributions were consistent with those of previous reports. For all measurements under static conditions, the measured and calculated point doses and dose distributions showed good agreement. The dose differences for chamber measurement were within 3%, regardless of moving conditions. The mean gamma passing rates with 3%/2 mm criteria in the film measurement under static conditions and with 2 mm, 3 mm, and 5 mm of amplitude were 95.0 ± 2.0%, 93.3 ± 3.3%, 92.1 ± 6.2% and 84.8 ± 7.8%, respectively. The difference between 5 mm amplitude and other conditions was statistically significant.ConclusionsRespiratory management should be considered for the risk of unintended dose distribution if the respiratory amplitude is >5 mm. 相似文献
2.
Prabakar Sukumar Sriram Padmanaban Dhanabalan Rajasekaran Muniyappan Kannan Vivekanandan Nagarajan 《Reports of Practical Oncology and Radiotherapy》2012,17(6):324-331
AimIn measuring exit fluences, there are several sources of deviations which include the changes in the entrance fluence, changes in the detector response and patient orientation or geometry. The purpose of this work is to quantify these sources of errors.BackgroundThe use of the volumetric modulated arc therapy treatment with the help of image guidance in radiotherapy results in high accuracy of delivering complex dose distributions while sparing critical organs. The transit dosimetry has the potential of Verifying dose delivery by the linac, Multileaf collimator positional accuracy and the calculation of dose to a patient or phantom.Materials and methodsThe quantification of errors caused by a machine delivery is done by comparing static and arc picket fence test for 30 days. A RapidArc plan, created for the pelvis site was delivered without and with Rando phantom and exit portal images were acquired. The day to day dose variation were analysed by comparing the daily exit dose images during the course of treatment. The gamma criterion used for analysis is 3% dose difference and 3 mm distance to agreement with a threshold of 10% of maximum dose.ResultsThe maximum standard deviation for the static and arc picket fence test fields were 0.19 CU and 1.3 CU, respectively. The delivery of the RapidArc plans without a phantom shows the maximum standard deviation of 1.85 CU and the maximum gamma value of 0.59. The maximum gamma value for the RapidArc plan delivered with the phantom was found to be 1.2. The largest observed fluence deviation during the delivery to patient was 5.7% and the maximum standard deviation was 4.1 CU.ConclusionIt is found from this study that the variation due to patient anatomy and interfraction organ motion is significant. 相似文献
3.
PurposeStudies using split field IMRT to spare dysphagia/aspiration related structures (DARS) have raised concern regarding dose uncertainty at matchline. This study explores the utility of hybrid VMAT in sparing the DARS and assesses matchline dose uncertainty in postoperative oral cavity cancer patients and compares it with VMAT.Methods & materialsTen postoperative oral cavity cancer patients were planned with h-VMAT and VMAT using the same planning CT dataset. PTV and DARS were contoured using standard delineation guidelines. In h-VMAT 80% of the neck dose was planned using AP/PA technique and then VMAT optimization was done for the total PTV by keeping the corresponding AP/PA plan as the base dose. Planning goal for PTV was V95% ≥ 95% and for DARS, adequate sparing. Plans and dose volume histograms were analyzed using dosimetric indices. Absolute point and portal dose measurements were done for h-VMAT plans to verify dose at the matchline.ResultsCoverage in both the techniques was comparable. Significant differences were observed in mean doses to DARS (Larynx: 24.36 ± 2.51 versus 16.88 ± 2.41 Gy; p < 0.0006, Pharyngeal constrictors: 25.16 ± 2.41 versus 21.2 ± 2.1 Gy; p < 0.005, Esophageal inlet: 18.71 ± 2 versus 12.06 ± 0.79 Gy; p < 0.0002) favoring h-VMAT. Total MU in both the techniques was comparable. Average percentage variations in point dose measurements in h-VMAT done at +3.5 and −3.5 positions were (1.47 ± 1.48 and 2.28 ± 1.35%) respectively. Average gamma agreement for portal dose measured was 97.07%.Conclusionh-VMAT achieves better sparing of DARS with no matchline dose uncertainty. Since these patients have swallowing dysfunction post-operatively, attempts should be made to spare these critical structures as much as possible. 相似文献
4.
《Reports of Practical Oncology and Radiotherapy》2020,25(5):703-708
BackgroundWe investigated the change of dose distributions in volumetric modulated arc therapy (VMAT) under baseline drift (BD) during breath holding.Materials and methodsTen VMAT plans recalculated to a static field at a gantry angle of 0° were prepared for measurement with a 2D array device and five original VMAT plans were prepared for measurement with gafchromic films. These measurement approaches were driven by a waveform reproducing breath holding with BD. We considered breath holding times of 15 and 10 s, and BD at four speeds; specifically, BD0 (0 mm/s), BD0.2 (0.2 mm/s), BD0.3 (0.3 mm/s), and BD0.4 (0.4 mm/s). The BD was periodically reproduced from the isocenter along the craniocaudal direction and the shift during breath holding (ShiftBH) ranged 0–6 mm.The dose distribution of BD0.2, BD0.3 and BD0.4 were compared to that of BD0 using gamma analysis with the criterion of 2%/2 mm.ResultsThe mean pass rates of each ShiftBH were 99.8% and 98.9% at 0 mm, 96.8% and 99.4% at 2 mm, 94.9% and 98.6% at 3 mm, 91.5% and 98.4% at 4 mm, 70.8% and 94.1% at 4.5 mm, and 55.0% and 83.6% at 6 mm for the array and film measurements, respectively.ConclusionWe found significant differences in ShiftBH above 4 mm (ρ < 0.05). Hence, it is recommended that breath holding time should be shortened for patients to preserve the reproducibility of dose distributions. 相似文献
5.
PurposeTo quantify relative merit of MU deprived plans against freely optimized plans in terms of plan quality and report changes induced by progressive resolution optimizer algorithm (PRO3) to the dynamic parameters of RapidArc.Materials and methodsTen cases of carcinoma hypopharynx were retrospectively planned in three phases without using MU tool. Replicas of these baseline plans were reoptimized using “Intermediate dose” feature and “MU tool” to reduce MUs by 20%, 35%, and 50%. Overall quality indices for target and OAR, integral dose, dose-volume spread were assessed. All plans were appraised for changes induced in RapidArc dynamic parameters and pre-treatment quality assurance (QA).ResultsWith increasing MU reduction strength (MURS), MU/Gy values reduced, for all phases with an overall range of 8.6–34.7%; mean dose rate decreased among plans of each phase, phase3 plans recorded greater reductions. MURS20% showed good trade-off between MUs and plan quality. Dose-volume spread below 5 Gy was higher for baseline plans while lower between 20 and 35 Gy. Integral dose was lower for MURS0%, not exceeding 1.0%, compared against restrained plans. Mean leaf aperture and control point areas increased systematically, correlated negatively with increasing MURS. Absolute delta dose rate variations were least for MURS0%. MU deprived plans exhibited GAI (>93%), better than MURS0% plans.ConclusionBaseline plans are superior to MU restrained plans. However, MURS20% offers equivalent and acceptable plan quality with mileage of MUs, improved GAI for complex cases. MU tool may be adopted to tailor treatment plans using PRO3. 相似文献
6.
Ciro Franzese Antonella Fogliata Mauro Loi Marco Badalamenti Davide Franceschini Tiziana Comito Luca Cozzi Giacomo Reggiori Stefano Tomatis Marta Scorsetti 《Reports of Practical Oncology and Radiotherapy》2021,26(1):101
BackgroundThe purpose of the study was to evaluate the toxicity and outcome of nasopharyngeal carcinoma patients treated using 3-dimensional conformal radiotherapy (3DCRT) or volumetric modulated arc therapy (VMAT) technique.Materials and methods68 patients treated between 2006 and 2018 were retrospectively analysed. Since 2009 patients received 3DCRT with 50/70 Gy to the elective/boost volumes in 35 fractions; from then, VMAT with simultaneous integrated boost (SIB) with 54.45/69.96 Gy in 33, or 54/66 Gy in 30 fractions. Induction chemotherapy was administered in 74% of the patients, concomitant cisplatinum in 87%. Acute and late toxicity data, progression-free survival PSF and overall survival OS, and toxicity correlations with dose metrics were reported.ResultsWith a median follow-up of 64 months, complete remission at the last evaluation was in 68% of the patients, while 28% and 9% had locoregional relapse and distant disease, respectively. The 5- and 10-year progression free survival (PFS) rates were 62.7 ± 6.5% and 53.2 ± 8.7%, respectively. The 5- and 10-year OS rates were 78.9 ± 5.5% and 61.4 ± 9.2%, respectively. At the multivariate Cox analysis TNM stage (p = 0.02) and concomitant chemotherapy (p = 0.01) resulted significant for PFS, concomitant chemotherapy (p = 0.04) for OS.Improvements in acute toxicity were presented for VMAT patients due to its ability to spare OARs. Odds ratio (OR) for acute salivary toxicity, between VMAT and 3DCRT, was 4.67 (p = 0.02). Dosimetrically, salivary toxicity correlated with mean parotid dose (p = 0.05), dysphagia with laryngeal (p = 0.04) and mean oral cavity (p = 0.06) doses, when dose-volume histograms (DVHs) are corrected for fractionation.ConclusionThis study is a proof of a significant benefit of the VMAT technique compared with 3DCRT in terms of side effects in nasopharynx patients, and adds dosimetric correlations. 相似文献
7.
Rie Nadia Asso Anselmo Mancini Daniel Moore Freitas Palhares Wellington Furtado Pimenta Palhares Neves Junior Gustavo Nader Marta Joo Luis Fernandes da Silva Bibiana Ferreira Gouvea Ramos Rafael Gadia Samir Abdallah Hanna 《Reports of Practical Oncology and Radiotherapy》2022,27(4):593
BackgroundPatients with brain metastases (BM) live longer due to improved diagnosis and oncologic treatments. The association of volumetric modulated arc therapy (VMAT) and image-guided radiation therapy (IGRT) with brain radiosurgery (SRS) allows complex dose distributions and faster treatment delivery to multiple lesions.Materials and methodsThis study is a retrospective analysis of SRS for brain metastasis using VMAT. The primary endpoints were local disease-free survival (LDFS) and overall survival (OS). The secondary outcomes were intracranial disease-free survival (IDFS) and meningeal disease-free survival (MDFS).ResultsThe average number of treated lesions was 5.79 (range: 2–20) per treatment in a total of 113 patients. The mean prescribed dose was 18 Gy (range: 12–24 Gy). The median LDFS was 46 months. The LDFS in 6, 12, and 24 months was for 86%, 79%, and 63%, respectively. Moreover, brain progression occurred in 50 patients. The median overall survival was 47 months. The OS in 75%, 69%, and 61% patients was 6, 12, and 24 months, respectively. IDFS was 6 and 24 months in 35% and 14% patients, respectively. The mean MDFS was 62 months; it was 6 and 24 months for 87% and 83% of patients. Acute severe toxicity was relatively rare. During follow-up, the rates of radionecrosis and neurocognitive impairment were low (10%).ConclusionThe use of VMAT–SRS for multiple BM was feasible, effective, and associated with low treatment-related toxicity rates. Thus, treatment with VMAT is a safe technique to plan to achieve local control without toxicity. 相似文献
8.
PurposeTo find the optimal dose weighting for hybrid volumetric modulated arc therapy (H-VMAT), a combination of conventional 3DCRT and VMAT plans for left sided chest wall and supraclavicular radiation therapy.Methods & materials20 left-sided breast cancer patients who received adjuvant radiotherapy were considered for this study. To find the optimal weighting, 5 H-VMAT plans were generated for each study case by combining different dose proportions of 3DCRT and VMAT plans including: 90% 3DCRT/10% VMAT, 80% 3DCRT/20% VMAT, 70% 3DCRT/30% VMAT, 60% 3DCRT/40% VMAT, 50% 3DCRT/50% VMAT. Further field-in-field, optimal H-VMAT and VMAT alone plans were compared.ResultsAll H-VMAT plans achieved the expected target coverage. A higher conformity index was achieved for 50% 3DCRT/50% VMAT plan, while better homogeneity index was achieved for 80% 3DCRT/20% VMAT plan. Mean and low doses were less in 90% 3DCRT/10% VMAT plan. Compared with other proportions, 80% 3DCRT/20% VMAT and 70% 3DCRT/30% VMAT weighted H-VMAT plans achieved balanced results for PTVs and OARs.ConclusionThe optimal dose mixture for H-VMAT technique is 70% to 80% for 3DCRT and 20% to 30% for VMAT. The optimal H-VMAT achieved balanced results for the PTVs and OARs compared with field-in-field and VMAT alone plans. 相似文献
9.
PurposeThe aim of this study was to investigate the sensitivity of the gamma-index method according to various gamma criteria for volumetric modulated arc therapy (VMAT).MethodsTwenty head and neck (HN) and twenty prostate VMAT plans were retrospectively selected for this study. Both global and local 2D gamma evaluations were performed with criteria of 3%/3 mm, 2%/2 mm, 1%/2 mm and 2%/1 mm. In this study, the global and local gamma-index calculated the differences in doses relative to the maximum dose and the dose at the current measurement point, respectively. Using log files acquired during delivery, the differences in parameters at every control point between the VMAT plans and the log files were acquired. The differences in dose–volumetric parameters between reconstructed VMAT plans using the log files and the original VMAT plans were calculated. The Spearman's rank correlation coefficients (rs) were calculated between the passing rates and those differences.ResultsConsiderable correlations with statistical significances were observed between global 1%/2 mm, local 1%/2 mm and local 2%/1 mm and the MLC position differences (rs = −0.712, −0.628 and −0.581). The numbers of rs values with statistical significance between the passing rates and the changes in dose–volumetric parameters were largest in global 2%/2 mm (n = 16), global 2%/1 mm (n = 15) and local 2%/1 mm (n = 13) criteria.ConclusionLocal gamma-index method with 2%/1 mm generally showed higher sensitivity to detect deviations between a VMAT plan and the delivery of the VMAT plan. 相似文献
10.
PurposeTo evaluate the planning feasibility of dose-escalated total marrow irradiation (TMI) with simultaneous integrated boost (SIB) to the active bone marrow (ABM) using volumetric modulated arc therapy (VMAT), and to assess the impact of using planning organs at risk (OAR) volumes (PRV) accounting for breathing motion in the optimization.MethodsFive patients underwent whole-body CT and thoraco-abdominal 4DCT. A planning target volume (PTV) including all bones and ABM was contoured on each whole-body CT. PRV of selected OAR (liver, heart, kidneys, lungs, spleen, stomach) were determined with 4DCT. Planning consisted of 9–10 full 6 MV photon VMAT arcs. Four plans were created for each patient with 12 Gy prescribed to the PTV, with or without an additional 4 Gy SIB to the ABM. Planning dose constraints were set on the OAR or on the PRV. Planning objective was a PTV Dmean < 110% of the prescribed dose, a PTV V110% < 50%, and OAR Dmean ≤ 50–60%.ResultsPTV Dmean < 110% was accomplished for most plans (n = 18/20), while all achieved V110%<50%. SIB plans succeeded to optimally cover the boost volume (median ABM Dmean = 16.3 Gy) and resulted in similar OAR sparing compared to plans without SIB (median OAR Dmean = 40–54% of the ABM prescribed dose). No statistically significant differences between plans optimized with constraints on OAR or PRV were found.ConclusionsAdding a 4 Gy SIB to the ABM for TMI is feasible with VMAT technique, and results in OAR sparing similar to plans without SIB. Setting dose constraints on PRV does not impair PTV dosimetric parameters. 相似文献
11.
PurposeWhen using volumetric modulated arc therapy (VMAT) for head and neck cancer, setup errors regarding the shoulders can create loss of target coverage or increased organ-at-risk doses. This study created variations of realistic shoulder deformations to understand the associated VMAT dosimetric effects and investigated water-equivalent thickness (WET) differences using in-house software.MethodsTen patients with head and neck cancer with lower neck involvement were retrospectively and randomly enrolled. Their retrospective analysis comprised treatment planning using RayStation 5.0 (RaySearch Laboratories, Stockholm, Sweden), shoulder deformation of 5–15 mm in three-dimensional axes using the ImSimQA package (Oncology Systems Limited, Shrewsbury, Shropshire, UK), and evaluation of the clinical impact of the dose distribution after recalculating the dose distribution using computed tomography images of deformed shoulders and deforming the dose distribution. Additionally, our in-house software program was used to measure WET differences for shoulder deformation.ResultsWET differences were greater in the superoinferior (SI) direction than in the other directions (the WET difference was >20 mm for 15-mm SI deformation). D99%, D98%, and D95% for all clinical target volumes were within 3%. Local dose differences of more than ±10% were found for normal tissues at the level of the shoulder for 15-mm movement in the SI direction.ConclusionsShoulder deformation of >6 mm could cause large dose variations delivered to the targeted tissue at the level of the shoulder. Thus, to ensure delivery of appropriate treatment coverage to the targeted tissue, shoulder deformation should be taken into consideration during the planning stage. 相似文献
12.
Independent monitor unit verification calculation (MUVC) has been recommended by several authors for intensity modulated radiotherapy (IMRT) as a patient specific quality assurance tool. Aim of the present work is to develop an in-house excel spread sheet based MUVC program for volumetric modulated arc therapy (VMAT) using Clarkson's integration technique. Total scatter factor (Sc,p) and tissue maximum ratio (TMR) for circular fields obtained from Treatment planning system (TPS) were used for the calculation. Multileaf collimator (MLC) interleaf leakage, MLC round edge transmission and tongue and groove effect were accounted. MUVC calculation was performed for 58 patients both for patient anatomy and for homogenous cylindrical phantom. Radiological path lengths were used as water equivalent depths (WED) for calculations using patient anatomy. Monitor unit (MU) discrepancies between −2.60% and 0.28% with mean deviation of −0.92% ± 0.75% were obtained for homogenous cylindrical phantom calculations. MUVC for patient anatomy resulted in large variations between −19.02% and 0.67% for 14 plans where isocenter was at a region below −350 HU. But For 44 plans where the isocenter was at a region above −350 HU, variations between −3.44% and 0.48% were obtained with mean deviation of −1.73% ± 1.12%. For VMAT patient specific quality assurance, the independent MUVC algorithm can be used as an easy and quick auxiliary to measurement based verification for plans with isocenter at a region above −350 HU. 相似文献
13.
Shoki Inui Yoshihiro Ueda Shunsuke Ono Shingo Ohira Masaru Isono Yuya Nitta Hikari Ueda Masayoshi Miyazaki Masahiko Koizumi Teruki Teshima 《Reports of Practical Oncology and Radiotherapy》2021,26(2):281
BackgroundThe aim of the study was to evaluate analysis criteria for the identification of the presence of rectal gas during volumetric modulated arc therapy (VMAT) for prostate cancer patients by using electronic portal imaging device (EPID)-based in vivo dosimetry (IVD).Materials and methodsAll measurements were performed by determining the cumulative EPID images in an integrated acquisition mode and analyzed using PerFRACTION commercial software. Systematic setup errors were simulated by moving the anthropomorphic phantom in each translational and rotational direction. The inhomogeneity regions were also simulated by the I’mRT phantom attached to the Quasar phantom. The presence of small and large air cavities (12 and 48 cm3) was controlled by moving the Quasar phantom in several timings during VMAT. Sixteen prostate cancer patients received EPID-based IVD during VMAT.ResultsIn the phantom study, no systematic setup error was detected in the range that can happen in clinical (< 5-mm and < 3 degree). The pass rate of 2% dose difference (DD2%) in small and large air cavities was 98.74% and 79.05%, respectively, in the appearance of the air cavity after irradiation three quarter times. In the clinical study, some fractions caused a sharp decline in the DD2% pass rate. The proportion for DD2% < 90% was 13.4% of all fractions. Rectal gas was confirmed in 11.0% of fractions by acquiring kilo-voltage X-ray images after the treatment.ConclusionsOur results suggest that analysis criteria of 2% dose difference in EPID-based IVD was a suitable method for identification of rectal gas during VMAT for prostate cancer patients. 相似文献
14.
《Reports of Practical Oncology and Radiotherapy》2020,25(5):793-800
Background/AimIn many facilities, intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT) use intensity-modulated beams, formed by a multi-leaf collimator (MLC). In IMRT and VMAT, MLC and linear accelerator errors (both geometric and dose), can significantly affect the doses administered to patients. Therefore, IMRT and VMAT treatment plans must include the use of patient-specific quality assurance (QA) before treatment to confirm dose accuracy.Materials and methodsIn this study, we compared and analyzed the results of dose verification using a multi-dimensional dose verification system Delta4 PT, an ionization chamber dosimeter, and gafchromic film, using data from 52 patients undergoing head and neck VMAT as the test material.ResultBased on the results of the absolute dose verification for the ionization chamber dosimeter and Delta4 PT, taking an axial view, the upper limit of the 95% confidence interval was 3.13%, and the lower limit was −3.67%, indicating good agreement. These results mean that as long as absolute dose verification for the axial view does not deviate from this range, Delta4 PT can be used as an alternative to an ionization chamber dosimeter for absolute dose verification. When we then reviewed dose distribution verification, the pass rate for Delta4 PT was acceptable, and was less varied than that of gafchromic film.ConclusionThis results in that provided the pass rate result for Delta4 PT does not fall below 96%, it can be used as a substitute for gafchromic film in dose distribution verification. These results indicate that patient-specific QA could be simplified. 相似文献
15.
The aim of this study was to evaluate the use of dose difference maps with a convolutional neural network (CNN) to detect multi-leaf collimator (MLC) positional errors in patient-specific quality assurance for volumetric modulated radiation therapy (VMAT). A cylindrical three-dimensional detector (Delta4, ScandiDos, Uppsala, Sweden) was used to measure 161 beams from 104 clinical prostate VMAT plans. For the simulation used error-free plans plus plans with two types of MLC error were introduced: systematic error and random error. A total of 483 dose distributions in a virtual cylindrical phantom were calculated with a treatment planning system. Dose difference maps were created from two planar dose distributions from the measured and calculated dose distributions, and these were used as the input for the CNN, with 375 datasets assigned for training and 108 datasets assigned for testing. The CNN model had three convolution layers and was trained with five-fold cross-validation. The CNN model classified the error types of the plans as “error-free,” “systematic error,” or “random error,” with an overall accuracy of 0.944. The sensitivity values for the “error-free,” “systematic error,” and “random error” classifications were 0.889, 1.000, and 0.944, respectively, and the specificity values were 0.986, 0.986, and 0.944, respectively. This approach was superior to those based on gamma analysis. Using dose difference maps with a CNN model may provide an effective solution for detecting MLC errors for patient-specific VMAT quality assurance. 相似文献
16.
S.A. Syam Kumar Raghavendra Holla Prabakar Sukumar Sriram Padmanaban Nagarajan Vivekanandan 《Reports of Practical Oncology and Radiotherapy》2013,18(2):87-94
Aim
To compare and evaluate the performance of two different volumetric modulated arc therapy delivery techniques.Background
Volumetric modulated arc therapy is a novel technique that has recently been made available for clinical use. Planning and dosimetric comparison study was done for Elekta VMAT and Varian RapidArc for different treatment sites.Materials and methods
Ten patients were selected for the planning comparison study. This includes 2 head and neck, 2 oesophagus, 1 bladder, 3 cervix and 2 rectum cases. Total dose of 50 Gy was given for all the plans. All plans were done for RapidArc using Eclipse and for Elekta VMAT with Monaco treatment planning system. All plans were generated with 6 MV X-rays for both RapidArc and Elekta VMAT. Plans were evaluated based on the ability to meet the dose volume histogram, dose homogeneity index, radiation conformity index, estimated radiation delivery time, integral dose and monitor units needed to deliver the prescribed dose.Results
RapidArc plans achieved the best conformity (CI95% = 1.08 ± 0.07) while Elekta VMAT plans were slightly inferior (CI95% = 1.10 ± 0.05). The in-homogeneity in the PTV was highest with Elekta VMAT with HI equal to 0.12 ± 0.02 Gy when compared to RapidArc with 0.08 ± 0.03. Significant changes were observed between the RapidArc and Elekta VMAT plans in terms of the healthy tissue mean dose and integral dose. Elekta VMAT plans show a reduction in the healthy tissue mean dose (6.92 ± 2.90) Gy when compared to RapidArc (7.83 ± 3.31) Gy. The integral dose is found to be inferior with Elekta VMAT (11.50 ± 6.49) × 104 Gy cm3 when compared to RapidArc (13.11 ± 7.52) × 104 Gy cm3. Both Varian RapidArc and Elekta VMAT respected the planning objective for all organs at risk. Gamma analysis result for the pre-treatment quality assurance shows good agreement between the planned and delivered fluence for 3 mm DTA, 3% DD for all the evaluated points inside the PTV, for both VMAT and RapidArc techniques.Conclusion
The study concludes that a variable gantry speed with variable dose rate is important for efficient arc therapy delivery. RapidArc presents a slight improvement in the OAR sparing with better target coverage when compared to Elekta VMAT. Trivial differences were noted in all the plans for organ at risk but the two techniques provided satisfactory conformal avoidance and conformation. 相似文献17.
PurposeTo study the influence of Multileaf Collimator (MLC) leaf width in radiosurgery treatment planning for Volumetric Modulated Arc Therapy (VMAT) and 3D Dynamic Conformal Arc Therapy (3D-DCA).Material and methods16 patients with solitary brain metastases treated with radiosurgery via the non-coplanar VMAT were replanned for the 3D-DCA. For each planning technique two MLC leaf width sizes were utilized, i.e. 5 mm and 2.5 mm. These treatment plans were compared using dosimetric indices (conformity, gradient and mean dose for brain tissue) and the normal tissue complication probability (NTCP).ResultsAn improvement in planning quality for VMAT was observed versus 3D-DCA for any MLC leaf width, mainly with regards to dose conformity and to a lesser extent regards dose gradient. No significant difference was observed for any of both techniques using smaller leaf width. However, dose gradient was improved in favor of the 2.5 mm MLC for either of both techniques (15% VMAT and 10% 3D-DCA); being noticeable for lesions smaller than 10 cm3. Nonetheless, the NTCP index was not significantly affected by variations in the dose gradient index.ConclusionsThis, our present study, suggests that the use of an MLC leaf width of 2.5 mm via the noncoplanar VMAT and 3D-DCA techniques provides improvement in terms of dose gradient for small volumes, over those results obtained with an MLC leaf width of 5 mm. The 3D-DCA does also benefit from MLC leaf widths of a smaller size, mainly in terms of conformity. 相似文献
18.
Ghulam Murtaza Muhammad Shamshad Munir Ahmed Shahid Mehmood Ehsan Ullah Khan 《Reports of Practical Oncology and Radiotherapy》2022,27(1):76
BackgroundSeveral authors investigated a dosimetric impact of leaf width on radiotherapy plan quality subjectively, and concluded that thinner leaf-width multileaf collimators (MLC) are beneficial because of their better coverage of clinically relevant structures. Study aimed to investigate the dosimetric effect of MLC leaf width on volumetric modulated arc therapy plan quality by objective approach.Materials and methodsTwelve of each prostate and head-and-neck patients were planned for volumetric modulated arc therapy (VMAT) treatments for MLC leaf widths of 4 mm and 10 mm. Three different VMAT schemes single-arc, dual-arc and two combined independent single-arcs were optimized. Dose volume histogram and Isodose distribution were used for quantitative and qualitative comparison of the treatment plan, respectively. Dose-volume-indices of the planning target volume, organs at risk and number of delivered monitor units were compared. The 4 mm leaf width being reference over 10 mm and results were noted as statistically significant if p ≤ 0.05 using student t-test.ResultsAll VMAT schemes for both tumor sites showed a gain in target coverage, similar organs at risk doses and higher monitor units to be delivered, when changing leaf width from 10 mm to 4 mm. The p-values were significant for majority of head-and-neck dose indices.ConclusionThe thinner-leaf MLCs, owing to their better spatial resolution, result in an overall gain for target coverage, while maintaining permissible doses to the organs at risk. 相似文献
19.
20.
BackgroundThe dosimetric characterization of volumetric modulated arc therapy (VMAT)-based total-body irradiation (TBI) in pediatric patients is evaluated.Materials and methodsTwenty-two patients between the ages of 2 and 12 years were enrolled for VMAT-based TBI from 2018 to 2020. Three isocenters were irradiated over three overlapping arcs. While prescribing 90% of the TBI dose to the planning treatment volume (PTV), two fractions (2 Gy each) were delivered each day; hence 12 Gy was delivered in six fractions. During treatment optimization, the mean lung and kidney doses were set not to exceed 7 Gy and 7.5 Gy, respectively. The maximum lens dose was also set to less than 4 Gy. Patient quality assurance was carried out by comparing treatment planning system doses to the 3-dimensional measured doses by the ArcCHECK® detector. The electronic portal imaging device (EPID) gamma indices were also obtained.ResultsThe average mean lung dose was 7.75 ± 0.18 Gy, mean kidney dose 7.63 ± 0.26 Gy, maximum lens dose 4.41 ± 0.39 Gy, and the mean PTV dose 12.69 ± 0.16 Gy. The average PTV heterogeneity index was 1.15 ± 0.03. Average differences in mean kidney dose, mean lung dose, and mean target dose were 2.79% ± 0.88, 0.84% ± 0.45 and 0.93% ± 0.47, respectively; when comparing planned and ArcCHECK® measured doses. Only grade 1–2 radiation toxicities were recorded, based on CTCAE v5.0 scoring criteria.ConclusionsVMAT-TBI was characterized with good PTV coverage, homogeneous dose distribution, planned and measured dose agreement, and low toxicity. 相似文献