首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dieback in temperate forests is understudied, despite this biome is predicted to be increasingly affected by more extreme climate events in a warmer world. To evaluate the potential drivers of dieback we reconstructed changes in radial growth and intrinsic water-use efficiency (iWUE) from stable isotopes in tree rings. Particularly, we compared tree size, radial-growth trends, growth responses to climate (temperature, precipitation, cloudiness, number of foggy days) and drought, and changes in iWUE of declining and non-declining trees showing contrasting canopy dieback and defoliation. This comparison was done in six temperate forests located in northern Spain and based on three broadleaved tree species (Quercus robur, Quercus humilis, Fagus sylvatica). Declining trees presented lower radial-growth rates than their non-declining counterparts and tended to show lower growth variability, but not in all sites. The growth divergence between declining and non-declining trees was significant and lasted more in Q. robur (15–30 years) than in F. sylvatica (5–10 years) sites. Dieback was linked to summer drought and associated atmospheric patterns, but in the wettest Q. robur sites cold spells contributed to the growth decline. In contrast, F. sylvatica was the species most responsive to summer drought in terms of growth reduction followed by Q. humilis which showed coupled changes in growth and iWUE as a function of tree vigour. Low growth rates and higher iWUE characterized declining Q. robur and F. sylvatica trees. However, declining F. sylvatica trees became less water-use efficient close to the dieback onset, which could indicate impending tree death. In temperate forests, dieback and growth decline can be triggered by climate extremes such as dry and cold spells, and amplified by climate warming and rising drought stress.  相似文献   

2.
Northwestern Iberia is characterized for being an Atlantic/Mediterranean transitional area, where the most natural forests contain certain species, typical from either biogeographic region, growing under limiting conditions due to their marginal location. In order to identify the main climatic factors controlling growth, and thus better understand how they impact wood formation processes of the key tree species in these ecosystems, we analyzed tree rings of two somehow contrasting oaks (Quercus robur, Atlantic; and Q. pyrenaica, sub-Mediterranean) at their distribution boundary towards the Mediterranean region. For this, two nearby sites with slightly different regime of water availability were selected for each species. We developed chronologies of radial increment (expressed as latewood width) and functional anatomical traits (size and number of earlywood vessels) for the last decades, and also monitored wood formation along two growing seasons. Our results suggest that the combination of anatomical traits and radial growth constitute a useful tool to understand the behavior of these species in boundary distribution areas. We found some differences between sites, especially for Q. pyrenaica, but the main factors controlling growth were clearly identified at all sites. Earlywood characteristics were mainly related to temperature, whereas latewood width responded to precipitation, regardless of the species. However, vessels of low-elevation Q. robur seemed to be controlled by factors affecting carbohydrate balance, while those of high-elevation Q. pyrenaica were associated to spring conditions for growth resumption. Summer water availability was linked to a wider latewood for both species. In addition, the analysis of xylogenesis carried out at all sites was essential to interpret climate responses by providing evidences for the existence of a cause-effect relationship.  相似文献   

3.
We analysed two groups of Quercus robur trees, growing at nearby plots with different micro-location condition (W-wet and D-dry) in the floodplain Krakovo forest, Slovenia. In the study we compared the growth response of two different tree groups to environmental variables, the potential signal stored in earlywood (EW) structure and the potential difference of the information stored in carbon isotope discrimination of EW and latewood (LW). For that purpose EW and LW widths and carbon isotope discrimination for the period 1970–2008 AD were measured. EW and LW widths were measured on stained microscopic slides and chronologies were standardised using the ARSTAN program. α-cellulose was extracted from pooled EW and LW samples and homogenized samples were further analysed using an elemental analyser and IRMS. We discovered that W oaks grew significantly better over the whole analysed period. The difference between D and W oaks was significant in all analysed variables with the exception of stable carbon isotope discrimination in latewood. In W oaks, latewood widths correlated with summer (June to August) climatic variables, while carbon isotope discrimination was more connected to River Krka flow during the summer. EW discrimination correlated with summer and autumn River Krka flow of the previous year, while latewood discrimination correlated with flow during the current year. In the case of D oaks, the environmental signal appears to be vague, probably due to less favourable growth conditions resulting in markedly reduced increments. Our study revealed important differences in responses to environmental factors between the two oak groups of different physiological conditions that are preconditioned by environmental stress. Environmental information stored in tree-ring features may vary, even within the same forest stand, and largely depends on the micro-environment. Our analysis confirmed our assumptions that separate EW and LW analysis of widths and carbon isotope discrimination provides complementary information in Q. robur dendroecology.  相似文献   

4.
Knowledge of tree growth/climate response relationships is important to dendroecological studies and dendroclimatic reconstructions, particularly in the Southeastern Coastal Plain where few such studies have been attempted. To this end, we developed tree-ring chronologies of total ring width, earlywood width, and latewood width from longleaf pine (Pinus palustris Mill.) at three sites in the Southeastern Coastal Plain to examine the climate–growth relationships for this tree species. The length of these chronologies is unprecedented for southern pine chronologies in the Southeast. We compared the tree-ring chronologies to monthly temperature, precipitation, Palmer drought severity index (PDSI), and Palmer hydrological drought index (PHDI) data from the pertinent climate divisions. We found that PDSI and PHDI have the highest correlation with longleaf pine growth, and the strongest relationships between longleaf pine growth and these variables occur between July and November. Precipitation in the spring and summer was also positively related to growth at all sites. The relationship between temperature and growth was the weakest among all climate variables, but warm summer temperatures had a consistent, negative relationship with longleaf pine growth. The climate signal in the latewood was generally more robust than for total ring width and earlywood width.  相似文献   

5.
The results of comparative analysis of tree-ring anatomical structure in the trunk of Larix gmelinii (Rupr.) Rupr. growing in the forest-tundra ecotone in the north of Middle Siberia in contrasting hydrothermal conditions of permafrost soils are discussed. It is found that the best soil hydrothermal conditions affected the formation of relatively large tracheids in earlywood and latewood during the whole period investigated. Current climate warming has caused a positive trend in annual changes in the cellular characteristics in trees growing in relatively favorable soil conditions and has not caused observable changes in trees growing in adverse conditions. The wood anatomy structure of the water–conducting (earlywood) zone in the tree ring in favorable conditions is determined by the weather of late May and June, and in adverse conditions it is determined by the weather in late April and May.  相似文献   

6.
为评估径级对树木的气候-生长关系的影响,建立太行山南麓低海拔地区栓皮栎全轮、早材、晚材宽度年表,对比两个径级栓皮栎人工林径向生长对气候响应的敏感性差异,使用叠加时代分析揭示干旱事件对不同径级栓皮栎的影响,为气候变化背景下研究区栓皮栎人工林可持续经营提供参考数据。结果表明: 大径级栓皮栎全轮、晚材年表的平均敏感度高于小径级栓皮栎年表,但小径级栓皮栎早材年表的平均敏感度高于大径级栓皮栎早材年表。晚材是树轮气候响应最敏感的组分。两径级栓皮栎标准年表指数对当年气候因子的响应模式相似。小径级栓皮栎全轮、晚材生长对当年6—8月的气候因子更敏感,其早材对生长季之前(1—2月)气候因子更敏感;而大径级栓皮栎早材对去年的气候因子更敏感,有更强的滞后效应。研究区栓皮栎对干旱非常敏感,干旱年份两径级栓皮栎全轮、晚材的径向生长量显著低于上一年,且大径级栓皮栎的减少幅度更高,但干旱后大径级栓皮栎生长恢复程度更高。  相似文献   

7.
Dendroclimatology generally assumes that climate–growth relationships are age and size independent. However, there is evidence that climate response can be unstable across different age/size classes. In addition, the occurrence of some anatomical features, such as intra-annual density fluctuations (IADFs), is age dependent. The present study investigates whether the climate–growth responses and the occurrence of IADFs in an even-aged stand of Pinus pinaster Ait., growing under Mediterranean climate, are also size-dependent. We randomly selected 60 P. pinaster trees falling within two stem diameter classes: small (<27 cm) and large (>35 cm). Tree rings were crossdated, measured and IADFs identified according to their position within the ring. The residual chronologies of both size classes were strongly correlated, suggesting a common signal. In fact, similar growth–climate relationships were observed in large and small trees. The frequency of IADFs was higher in large than in small trees, suggesting that IADFs were more likely to occur in wider rings of fast-growing trees. In both size classes, most of the IADFs were found in latewood. Latewood IADFs were triggered by the combination of dry June, wet September, and warm December, whereas IADFs located at the end of earlywood were triggered by previous winter precipitation and favorable conditions before summer (high precipitation for large trees and lower temperature for small trees). Our results suggest that IADFs can be a mechanism used at the individual level for adaptation to drought in P. pinaster. The climatic signal of IADFs between earlywood and latewood was mediated by stem size suggesting that future tree-ring studies should include trees stratified by size to better estimate the sensitivity of IADFs to climate.  相似文献   

8.
气候变暖背景下杉木年轮密度对气候因子的响应   总被引:1,自引:0,他引:1  
为探讨杉木年轮密度与气候因子的响应关系,采用树木年轮学方法,以60年生杉木种源林为研究对象,测定杉木整轮密度、早材密度、晚材密度、晚材最大密度和早材最小密度,分析在气候变暖条件下主要气候因子(温度、降水、相对湿度)对杉木年轮密度及其生长的影响。结果表明:杉木不同年轮密度指标均受到温度、降水和相对湿度的显著影响。早材密度与当年夏季最高温度、当年5月降水量,最大密度与当年10月、当年秋季降水量,最小密度与前一年秋季降水量、最小相对湿度呈显著负相关。滑动相关分析表明气候因子在短时间尺度上对杉木生长影响的稳定性有显著影响,其中杉木年轮最大密度与当年10月、秋季的平均相对湿度和最小相对湿度,最小密度与当年2、3月的平均相对湿度和前一年秋季的平均相对湿度、最小相对湿度、降水量的负相关关系最为稳定。杉木年轮最小密度对前一年气候要素的响应存在滞后效应,且晚材密度对当年春季的气候要素响应也存在滞后效应。研究结果对开展亚热带针叶树种年轮生态学和年轮气候学研究具有重要参考价值,建议选择武夷山的天然林获取更长年表用于重建古气候。  相似文献   

9.
In this study, we provide a detailed analysis of tree growth and water status in relation to climate of three major species of forest trees in lower regions of Bavaria, Southern Germany: Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and common oak (Quercus robur). Tree-ring chronologies and latewood δ13C were used to derive measures for drought reaction across trees of different dimensions: growth reduction associated with drought years, long-term growth/climate relations and stomatal control on photosynthesis. For Scots pine, growth/climate relations indicated a stronger limitation of radial growth by high summer temperatures and low summer precipitation in smaller trees in contrast to larger trees. This is corroborated by a stronger stomatal control on photosynthesis for smaller pine trees under average conditions. In dry years, however, larger pine trees exhibited stronger growth reductions. For Norway spruce, a significantly stronger correlation of tree-ring width with summer temperatures and summer precipitation was found for larger trees. Additionally, for Norway spruce there is evidence for a change in competition mode from size-asymmetric competition under conditions with sufficient soil water supply to a more size-symmetric competition under dry conditions. Smaller oak trees showed a weaker stomatal control on photosynthesis under both dry and average conditions, which is also reflected by a significantly faster recovery of tree-ring growth after extreme drought events in smaller oak trees. The observed patterns are discussed in the context of the limitation-caused matter partitioning hypothesis and possible species-specific ontogenetic modifications.  相似文献   

10.
The forest-steppe ecotone in southern Siberia is characterized by a strong dependence of tree growth on summer drought, which is expected to increase under ongoing climate change, with potential consequences for regional and global water and carbon cycles. Since climate conditions control tree secondary growth throughout the growing season, it is assumed that climate change will differently impact the formation of particular tree-ring sectors.In this study, we evaluated spatiotemporal trends in Pinus sylvestris L. tree-ring traits: tree-ring (RW), earlywood (EW) and latewood (LW) widths, as well as their climate response in order to understand potential reactions of P. sylvestris radial growth to climate change along a 4900 km longitudinal transect of increasing continentality in southern Siberia.Results indicated an increasing tree radial growth from the West to the East along the transect. Tree-ring parameters were sensitive to drought, showing a temporal delay in the climatic signals of LW (summer) relative to EW (spring). Climate control of tree growth was stronger at the western site, while it was alleviated over time in eastern sites.This study highlighted the wide plasticity of P. sylvestris to thrive within a wide range of climatic conditions, also suggesting that future drought, as predicted by climate change simulations, will potentially impact P. sylvestris growth differently along the studied gradient, being more susceptible at the western sites due to the current growth limitation.  相似文献   

11.
Effects of a gypsy moth attack on the productivity of Larix sibirica on tree-ring width were analyzed in a case study of a mountain site in the western Khentey in the northern Mongolian forest-steppe ecotone. A major aim of the study was to assess whether reduced productivity by gypsy moth herbivory could contribute to fluctuations of the forest edge to the steppe in larch-dominated woodlands. In the year of the infestation, larch trees at the forest edge lost 90% of their needles and latewood formation was strongly reduced. However, earlywood formation was widely completed before the gypsy moth attack and, therefore, total tree-ring width was not below the average of the five years prior to infestation. In the two years following the gypsy moth invasion, annual stem increment was strongly reduced. Trees growing 30–100 m inside the forest showed a much weaker response of tree-ring widths to the gypsy moth infestation consistent with significantly higher defoliation at forest edge than in the forest interior. Old trees exhibited a stronger growth decline than middle-aged trees, indicating higher infestation of dominant, exposed trees, which are thought to be better accessible to the wind-dispersed gypsy moth larvae hatching in the early growing season on the steppe. Under the current climate, occasional growth reductions are thought to be of little effect on the performance of L. sibirica, as fast-growing competitors of other tree species, which are not or hardly affected by gypsy moth, are absent.  相似文献   

12.
13.
The precise demarcation between earlywood and latewood is important for the detailed analysis of intra-annual tree ring features. Different techniques based on visual assessment, wood anatomy analysis and X-ray densitometry have been developed and are currently used for this purpose. Depending on the chosen method, tree species and environmental conditions, the results can significantly vary. Thus, it is important to determine the technique optimal for a particular research. Here, we investigated Norway spruce (Picea abies) tree rings to examine the agreement among the following demarcation methods: (1) direct visual assessment, (2) Mork’s index (anatomical definition of the transition from earlywood to latewood based on cell wall-lumen ratio) and (3) fixed and floating density thresholds applied to intra-ring density profiles. The aim was to modify both the Mork’s criterion and density thresholds on the basis of reference values given by visual identification of earlywood/latewood transition. A total of 231 tree rings were analysed by all methods. Our results showed that the usage of floating threshold (defined for each ring separately based on density profiles) is more reliable in comparison with fixed threshold (the same threshold value used for all tree rings and samples). Statistical analysis revealed the best correspondence between visual identification of earlywood/latewood transition and demarcation based on the standard Mork’s index and the floating density threshold derived as 80 % of maximum latewood density. In terms of Mork’s index calibration, the results showed that to determine latewood cells in Norway spruce trees growing in temperate conditions, it is sufficient to use an index value equal to 0.83. The results are applicable for the studied spruce population growing in a temperate climate. The methodology itself, however, is universal and can help to calibrate criteria for earlywood-latewood demarcation under specific conditions.  相似文献   

14.
Oak decline, a complex process leading to increased mortality of this species, has been observed in Europe for many years. Previous studies suggest that climate conditions, especially drought, may be one of the most important factors that trigger this phenomenon. The paper investigates the radial growth and wood anatomy features of pedunculate oak (Quercus robur) trees of various health status as well as their response to climate conditions. Wood samples including all annual increments were taken at two sites (western and central Poland, 15 trees each). Based on the crown defoliation level, three health groups (healthy, weakened and dead oaks) were distinguished. Cross-sections were prepared with sliding microtome and Cell P image analysis software was used for the measurements. Tree-ring width (TRW), earlywood vessels density (VDen) and non-weighted vessels diameter (VD) were determined and correlated with mean monthly values of temperature, precipitation, vapour pressure, and Palmer Drought Severity Index (PDSI). Radial increment and anatomical parameters were significantly higher for the healthy oaks than for the weakened and the dead trees. TRW showed smaller dependence on climate than analysed anatomical attributes. No obvious pattern of relationship was found between oak radial growth and climate regarding tree health status. Our results revealed that the drought has a weak impact on the process of oak decline on investigated sites in Poland.  相似文献   

15.
Recent land-use changes in intensively managed forests such as Mediterranean coppice stands might profoundly alter their structure and function. We assessed how the abandonment of traditional management practices in coppice stands, which consisted of short cutting-cycles (10–15 years), has caused overaging (stems are usually much older than when they were coppiced) and altered their wood anatomy and hydraulic architecture. We studied the recent changes of wood anatomy, radial growth, and hydraulic architecture in two stands of Quercus pyrenaica, a transitional Mediterranean oak with ring-porous wood forming coppice stands in W–NW Spain. We selected a xeric and a mesic site because of their contrasting climates and disturbance histories. The xeric site experienced an intense defoliation after the severe 1993–1994 summer drought. The mesic site was thinned in late 1994. We studied the temporal variability in width, vessel number and diameter, and predicted the hydraulic conductivities (K h) of earlywood and latewood. In the mesic site, we estimated the vulnerability to xylem cavitation of earlywood vessels. Overaging caused a steep decline in latewood production at a cambial age of 14 years., which was close to the customary cutting cycle of Q. pyrenaica. The diameter distribution of vessels was bimodal, and latewood vessels only accounted for 4% of the K h. Overaging, acting as a predisposing factor in the decline episode, was observed at the xeric site, where most trees did not produce latewood in 1993–1995. At the mesic site, thinned trees formed wider tree-rings, more latewood and multiseriate tree-rings than overaged trees. The growth enhancement remained 8 years after thinning. Most of the hydraulic conductivity in earlywood was lost in a narrow range of potentials, between −2.5 and −3.5 MPa. We have shown how hydraulic conductivity and radial growth are closely related in Q. pyrenaica and how aging modulates this relationship.  相似文献   

16.
Herbivores can alter plant physiology through the induction of abnormal wood formation. Feeding by some insects induces the formation of false rings, a band of thick-walled latewood cells within the earlywood portion of the tree ring that reduces water transport. Hemlock woolly adelgid (Adelges tsugae Annand) and elongate hemlock scale (Fiorinia externa Ferris) are invasive insects that both feed on eastern hemlock [Tsuga canadensis (L.) Carrière]. Adelges tsugae has a greater effect on tree health than F. externa, but the mechanism underlying their differential effect is unknown. We explored the effects of these herbivores by assessing growth ring formation in branches of trees that had been experimentally infested for 4 yr with A. tsugae, F. externa, or neither insect. We measured false ring density, ring growth, and earlywood: latewood ratios in the two most recently deposited growth rings. Branches from A. tsugae-infested trees had 30% more false rings than branches from F. externa-infested trees and 50% more than branches from uninfested trees. In contrast, branches from F. externa-infested trees and control trees did not differ in false ring formation. Radial growth and earlywood: latewood ratios did not differ among treatments. Our results show that two invasive herbivores with piercing-sucking mouth parts have differing effects on false ring formation in eastern hemlock. These false rings may be the product of a systemic plant hypersensitive response to feeding by A. tsugae on hemlock stems. If false rings are responsible for or symptomatic of hemlock water stress, this may provide a potential explanation for the relatively large effect of A. tsugae infestations on tree health.  相似文献   

17.
The two most common oak species in western Europe, Quercus robur and Quercus petraea, display different ecological behaviours, particularly with respect to their responses to drought. The ecophysiological basis of this niche difference is not understood well. Here we test the hypothesis that these two species present distinct water use efficiencies (WUEs), using the carbon isotope discrimination approach. Leaves and 13 dated ring sequences were sampled in 10 pairs of adult trees growing side by side. Carbon isotope composition was measured on cellulose extracts. In addition, relationships between carbon isotope discrimination and wood anatomy were assessed at the tree level. Quercus robur displayed a 1·0‰ larger isotopic discrimination than Q. petraea, and therefore a lower intrinsic WUE (?13%). This interspecific difference of isotopic discrimination was quite stable with time and independent of tree radial growth and climate fluctuations. A strong positive correlation was observed between average tree values of earlywood vessel surface area and 13C isotopic discrimination. This correlation was even higher with 13C of the 1976 dry year (r = 0·86). These observations led to the hypothesis that hydraulic properties of xylem could exert a constraint on leaf gas exchange, resulting in a larger WUE for individuals with smaller vessel cross‐section area.  相似文献   

18.
Pinus nigra Arn. subsp. pallasiana (black pine) is one of the most widely grown tree in Turkey. It is the third most widely distributed tree species after Quercus L. and Pinus brutia Ten. Black pine grows in 20% of all forested areas in Turkey. In this dendroecological study, we identified the most important climate factors affecting radial growth of black pine in western Anatolia and classified its responses to climate. Twenty-eight site chronologies developed by different researchers were used in the analysis. Response functions were calculated for each chronology to identify the effect of climate on radial growth. Hierarchical cluster analysis was used to sort response functions and to classify the chronologies into groups based on climate responses. The individual responses of these chronologies to temperature and precipitation were classified in four main groups. Climatic and phytogeographic differences were the major factors influencing the formation of clusters. The results suggest that the major limiting factor is drought caused by low precipitation, especially in May, in almost all sites. The drought effect is much stronger in the transition region to the steppe, Central Anatolia and Mediterranean Regions than the Black Sea Region. Black pine trees respond positively to higher temperature at the beginning of growing season in almost all areas except in transition region to the steppe.  相似文献   

19.
不同径级油松径向生长对气候的响应   总被引:1,自引:0,他引:1  
建立了黑里河自然保护区油松年轮宽度年表,通过不同径级油松径向生长对逐月气候因子的响应关系,研究了干旱对不同径级油松径向生长的影响。结果表明:两个径级油松的年轮宽度指数达到极显著相关(R=0.943,P<0.01),其中小径级(平均胸径20 cm)油松年表的平均敏感度显著高于大径级(平均胸径43 cm)油松年表(P<0.01)。不同径级油松均与上年9月、当年2月及当年5—6月的降水显著正相关(P<0.05),与当年6月的平均温度显著负相关(P<0.05),此外,小径级油松还与当年7月的降水显著正相关(P<0.05);降水是影响油松生长的主要气候因子。不同径级油松的径向生长量在干旱年份均显著降低(P<0.01)且小径级油松的生长降低量显著高于大径级油松(P<0.01);不同径级油松生长量在干旱发生后1年左右的时间内均恢复正常且小径级油松恢复速度更快。  相似文献   

20.
Trees can adjust xylem anatomical structure related with potential hydraulic functions to cope with climate variability. We therefore need a better understanding of how climate variability constrains wood anatomy and tree radial growth. Pinus tabuliformis dominates natural forests and plantations over the western Qinling Mountains, which is one of the ecologically vulnerable areas in China. Here, we investigated the response of P. tabuliformis tree-ring anatomical structure to climate variability by applying wood anatomy analysis, and evaluated the influences of anatomical traits on potential hydraulic functions and the climate significance of intra-annual density fluctuations (IADFs). We found that with the increasing temperature from spring to summer, the negative effect of temperature on the formation and enlargement of earlywood and transition-wood tracheids was gradually enhanced. However, spring precipitation not only had a direct and positive influence on the formation of earlywood, but also had a delaying impact on the transition-wood cell enlargement. Besides, the smaller earlywood tracheid size of P. tabuliformis could be a substantially characteristic reflecting spring drought. The contribution of lumen diameter on conduit wall reinforcement was dominated in earlywood, while the contribution of cell wall thickness was greater than that of lumen diameter in latewood. The different contributions of anatomical traits on conduit wall reinforcement would further affect the response of potential hydraulic function to climate. IADFs of P. tabuliformis could be a potential indicator to reflect the abnormal summer precipitation events in the western Qinling Mountains. IADFs with strong and weak intensity indicated years with high and low rates of change in mid-summer precipitation, respectively. Future warmer and drier climate in the western Qinling Mountains will likely result in the production of smaller tracheids to ensure hydraulic safety, which means the stronger drought resistant of P. tabuliformis in the future. In this study, we linked the xylem anatomy and potential hydraulics functions with intra-seasonal climate variability in the context of climate warming and drying, and proposed some xylem anatomical indices reflecting potential drought events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号