首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sternocostal and clavicular regions of the pectoralis major are independently harvested to provide shoulder stability, but surgical decision making does not consider the biomechanical consequences that disinsertion of one fiber region over the other has on shoulder function. Differences in material properties between the fiber regions could influence which tissue is more optimal for surgical harvesting. The current study utilized ultrasound shear wave elastography (SWE) to investigate whether the in vivo material properties differ between the fiber regions. Shear wave velocities (SWVs) were collected from the sternocostal and clavicular fiber regions of the pectoralis major from ten healthy young male participants. Participants produced isometric shoulder torques of varying magnitudes (passive, 15%, and 30% MVC) and directions (horizontal and vertical adduction). Four shoulder positions encompassing different vertical abduction and external rotation angles were examined. One-way ANOVAs tested the hypotheses that differences in SWVs during rest existed between the fiber regions as a function of shoulder position, and differences in SWVs during contraction existed as a function of shoulder position and torque direction. In all shoulder positions, the clavicular region exhibited greater SWVs during rest than the sternocostal region (P < 0.001). In shoulder positions that did not include external rotation, the clavicular region exhibited greater SWVs during contraction when producing horizontal adduction torques (P < 0.001), while the sternocostal region exhibited greater SWVs during contraction when producing vertical adduction torques at 30% MVC (P < 0.01). Our results suggest that each fiber region of the pectoralis major provides unique contributions to passive and active shoulder function.  相似文献   

2.
The electromyographic (EMG) activity pattern across the upper trapezius of 22 healthy subjects was investigated during maximal isometric contractions. Eight bipolar surface electrodes with 10 mm distance between adjacent electrode pairs were placed on a line from the clavicle to the scapula. At the region near the clavicle the highest EMG amplitudes were recorded during 90 ° arm abduction. At the more posterior parts the highest amplitudes were found both during arm abduction and shoulder elevation. A double differential recording technique which reduced the EMG cross-talk contribution supported the finding that the upper trapezius was differently activated when the arm posture was changed. The normalized EMG amplitude-force relationship during the shoulder elevation showed a curvilinear relationship on the anterior part of the upper trapezius with a slower increase in EMG amplitude than force at low force. The slope of the curve, at low force, increased gradually in the posterior direction on the upper trapezius. The EMG activity patterns across the upper trapezius indicate a flexibility in motor activation which maybe reflects a functional optimization of the contractions performed by this muscle.  相似文献   

3.
An inability to perform tasks involving reaching is a common problem for stroke patients. Knowledge of normal muscle activation patterns during these tasks is essential to the identification of abnormal patterns in post-stroke hemiplegia. Findings will provide insight into changes in muscle activation patterns associated with recovery of upper limb function.In this study with neurologically intact participants the co-ordination of shoulder and elbow muscle activity during two dimensional reaching tasks is explored. Eight participants undertook nine tracking tasks in which trajectory (orientation and length), duration, speed and resistance to movement were varied. The participants’ forearm was supported using a hinged arm-holder, which constrained their hand to move in a two dimensional plane. EMG signals were recorded from triceps, biceps, anterior deltoid, upper, middle and lower trapezius and pectoralis major.A wide variation in muscle activation patterns, in terms of timing and amplitude, was observed between participants performing the same task. EMG amplitude increased significantly with length, duration and resistance of the task for all muscles except anterior deltoid. Co-activation between biceps and triceps was significantly dependent on both task and trajectory orientation. Activation pattern of pectoralis major was dependent on trajectory. Neither trajectory orientation nor task condition affected the activation pattern of anterior deltoid. Normal ranges of timing of muscle activity during the tasks were identified.  相似文献   

4.
The purpose of this study was to investigate the nerve supply to the clavicular part of the pectoralis major muscle so that the innervation to this part can be maintained in the muscle-preserving pectoralis major island-flap transfer. Although methods have been described that include a limited portion of the muscle while leaving the upper parts undisturbed with an intact motor innervation, reports on anatomical studies of this nerve supply are brief. The distal distribution of the nerves, the spatial relationship to the main vascular pedicle, and the ways to preserve them during surgical procedures remain unclear. Surgically relevant features of the clavicular part of the pectoralis major muscle were studied by dissection. The nerve supply to this part was examined on 11 sides of eight formalin-fixed cadavers. Two fresh cadavers were used for dissection, intraarterial polymer injection, and application of a nerve-preserving surgical technique. In all subjects, a separate nerve innervated the clavicular and upper medial sternocostal portions of the pectoralis major muscle. This nerve arises craniomedial to the main vascular pedicle of the flap and divides into several branches. These branches run in a fascia on the deep surface of the pectoralis major muscle, superficial to the origin and distal course of the vascular pedicle. Most branches to the clavicular part end medial to the coracoid process. The course of the branches to the upper sternocostal part is more medial. Based on their anatomical findings, the authors propose a surgical technique for transfer of the pectoralis major island flap to the head and neck area through a tunnel in the deltopectoral groove, lateral to the origin of the vascular pedicle. Head and neck reconstruction was performed using this technique. The presented method is a muscle-preserving procedure that maintains maximal donor-site function and morphology.  相似文献   

5.
Different procedures have been used for normalization of upper trapezius electromyographic (EMG) amplitudes. This complicates comparisons between studies. The present study aimed at investigating the influence of some commonly used trapezius EMG normalization procedures on the results of ergonomic analyses, as well as the test-retest repeatability of these procedures. EMG activity from the upper trapezius was recorded during an occupational task. The EMG activity was then normalized by seven different normalization procedures. It was shown that at the group level, a unilateral shoulder elevation maximal voluntary electrical (MVE) activation procedure gave 1.2 times higher occupational load estimates than a corresponding bilateral MVE. At the group level, the median load during the occupational task was 1.6 times higher when expressed as %MVC (maximal voluntary contraction) obtained from a power regression of relative force on EMG amplitude than when expressed as %MVE determined from a single maximal shoulder elevation. Normalizations in terms of a submaximal reference voluntary electrical (RVE) activation had similar test-retest repeatability in terms of the coefficient of variation (CV: 11–13%) as normalizations in terms of an MVE (CV: 11–15%), but the power regression procedures had considerably larger CVs (21–36%). The paper provides a basis for comparing previous studies using different normalization methods, as well as a qualitative evaluation of normalization methods for future use.  相似文献   

6.
An inability to perform tasks involving reaching is a common problem for stroke patients. This paper provides an insight into mechanisms associated with recovery of upper limb function by examining how stroke participants’ upper limb muscle activation patterns differ from those of neurologically intact participants, and how they change in response to an intervention.In this study, five chronic stroke participants undertook nine tracking tasks in which trajectory (orientation and length), speed and resistance to movement were varied. During these tasks, EMG signals were recorded from triceps, biceps, anterior deltoid, upper, middle and lower trapezius and pectoralis major. Data collection was performed in sessions both before, and after, an intervention in which participants performed a similar range of tracking tasks with the addition of responsive electrical stimulation applied to their triceps muscle. The intervention consisted of eighteen one hour treatment sessions, with two participants attending an additional seven sessions. During all sessions, each participant’s arm was supported by a hinged arm-holder which constrained their hand to move in a two dimensional plane.Analysis of the pre intervention EMG data showed that timing and amplitude of peak EMG activity for all stroke participants differed from neurologically intact participants. Analysis of post intervention EMG data revealed that statistically significant changes in these quantities had occurred towards those of neurologically intact participants.  相似文献   

7.
This study compared the standing cable press (SCP) and the traditional bench press (BP) to better understand the biomechanical limitations of pushing from a standing position together with the activation amplitudes of trunk and shoulder muscles. A static biomechanical model (4D Watbak) was used to assess the forces that can be pushed with 2 arms in a standing position. Then, 14 recreationally trained men performed 1 repetition maximum (1RM) BP and 1RM single-arm SP exercises while superficial electromyography (EMG) of various shoulder and torso muscles was measured. The 1RM BP performance resulted in an average load (74.2 +/- 17.6 kg) significantly higher than 1RM single-arm SP (26.0 +/- 4.4 kg). In addition, the model predicted that pushing forces from a standing position under ideal mechanical conditions are limited to 40.8% of the subject's body weight. For the 1RM BP, anterior deltoid and pectoralis major were more activated than most of the trunk muscles. In contrast, for the 1RM single-arm SP, the left internal oblique and left latissimus dorsi activities were similar to those of the anterior deltoid and pectoralis major. The EMG amplitudes of pectoralis major and the erector muscles were larger for 1RM BP. Conversely, the activation levels of left abdominal muscles and left latissimus dorsi were higher for 1RM right-arm SP. The BP emphasizes the activation of the shoulder and chest muscles and challenges the capability to develop great shoulder torques. The SCP performance also relies on the strength of shoulder and chest musculature; however, it is whole-body stability and equilibrium together with joint stability that present the major limitation in force generation. Our EMG findings show that SCP performance is limited by the activation and neuromuscular coordination of torso muscles, not maximal muscle activation of the chest and shoulder muscles. This has implications for the utility of these exercise approaches to achieve different training goals.  相似文献   

8.
Electromyographic (EMG) recordings were taken from 14 shoulder muscles (or major parts of them) in a gorilla, a chimpanzee and an orangutan as they stood quadrupedally and tripedally, descended from elevated substrates, crutch-walked, and progressed quadrupedally on inclined and level substrates. In the African apes, low potentials commonly (but not always) occurred in the sternocostal pectoralis major, anterior deltoid, supraspinatus and subscapularis muscles during quadrupedal stance. The quadrupedal orangutan always exhibited low potentials in the pectoralis major muscle and EMG activity commonly occurred in her supraspinatus and subscapularis muscles. Quiescent tripedal stances were not accompanied by striking changes in EMG patterns from those which characterized quadrupedal stances. Per contra, eccentric loadings of the forelimb during descents from elevated substrates generally recruited notable EMG activity in the deltoid, supraspinatus and, to a lesser extent, infraspinatus muscles of the three pongid apes. The pectoralis major and caudal serratus anterior muscles were much more active in Pongo and Pan during these descents. Supportive segments of quadrupedal locomotive cycles were generally accompanied by EMG activity in the pectoralis major, intermediate and posterior deltoid and supraspinatus muscles. The intermediate and posterior deltoid muscles were characteristically active during pre-release of the hand and early swing phase. The cranial trapezius and supraspinatus muscles also may act during early swing phase. We conclude that the pectoralis major and perhaps the supraspinatus and subscapularis might serve regularly as postural muscles during static terrestrial quadrupedalism in pongid apes. The lack of dramatic differences between the EMG patterns exhibited during fist-walking versus knuckle-walking indicates that an evolutionary transformation from a shoulder complex like that of Pongo to ones like Pan or vice versa need not entail major changes in myological features.  相似文献   

9.
The upper trapezius (UT) has been widely studied and related to alterations in clavicular kinematics in subject with shoulder disorders. However, the most common electrode site used to capture UT EMG is between C7 and the acromion, placing the electrodes over the acromial fibers rather than clavicular ones. Therefore, this study aimed to investigate the relationship between clavicular movements (elevation and retraction) and UT EMG recorded from three electrode sites (traditional electrode positioning and two different sites proposed for clavicular fibers evaluation). Furthermore, the position associated with the highest EMG during maximal isometric voluntary contractions (MVIC), for each electrode site, was determined for normalization purposes. EMG was simultaneously captured in the three electrode sites of 20 healthy subjects, during MVIC at five different positions and during shoulder elevation and abduction in scapular plane. Clavicular kinematics was recorded using an electromagnetic tracking system during the dynamic contractions. Shoulder abduction with head rotation and lateral flexion elicited the highest EMG amplitude on the three electrode sites and was used to normalize the signals. A cross-correlation analysis showed high correlations between all electrode sites and clavicular movements. However, the traditional electrode site seems to record more informative signals in healthy subjects.  相似文献   

10.
Surface electromyography (sEMG) is commonly used to estimate muscle demands in occupational tasks. To allow for comparisons, sEMG amplitude is normalized to muscle specific maximum voluntary contractions (MVCs) performed in a standardized set of postures. However, maximal sEMG amplitude in shoulder muscles is highly dependent on arm posture and therefore, normalizing task related muscular activity to standard MVCs may lead to misinterpretation of task specific muscular demands. Therefore, the purpose of this study was to investigate differences in commonly monitored shoulder muscles using normalized sEMG amplitude between maximal exertions at different hand locations and across force exertion directions relative to standard MVCs. sEMG was recorded from the middle deltoid, pectoralis major sternal head, infraspinatus, latissimus dorsi, and upper trapezius. Participants completed standardized muscle-specific MVCs and two maximal exertions in 5 hand locations (low left, low right, high left, high right, and central) in each of the four force directions (push, pull, up, and down). Peak sEMG was analyzed in the direction(s) that elicited the highest signal for each muscle. All muscles differed by location (p < 0.05). Latissimus dorsi had the greatest activation during pulls (32–135% MVC); upper trapezius and middle deltoid while exerting upwards (73–103% and 42–78% MVC, respectively); infraspinatus while pushing (38–79% MVC); and pectoralis major activation was the highest during downwards exertions (48–84% MVC). Normalization of location specific maximal exertions to standard muscle specific MVCs underestimated maximal activity across 90% of the tasks in all shoulder muscles tested, except for latissimus dorsi where amplitudes were overestimated in low right hand location. Normalization of location specific muscle activity to standard muscle specific MVCs often underestimates muscle activity in task performance and is cautioned against if the goal is to accurately estimate muscle demands.  相似文献   

11.
Popular fitness literature suggests that varied hand placements during push-ups may isolate different muscles. Scientific literature, however, offers scant evidence that varied hand placements elicit different muscle responses. This study examined whether different levels of electromyographic (EMG) activity in the pectoralis major and triceps brachii muscles are required to perform push-ups from each of 3 different hand positions: shoulder width base, wide base, and narrow base hand placements. Forty subjects, 11 men and 29 women, performed 1 repetition of each push-up. The EMG activity for subjects' dominant arm pectoralis major and triceps brachii was recorded using surface electrodes. The EMG activity was greater in both muscle groups during push-ups performed from the narrow base hand position compared with the wide base position (p < 0.05). This study suggests that, if a goal is to induce greater muscle activation during exercise, then push-ups should be performed with hands in a narrow base position compared with a wide base position.  相似文献   

12.
This study combined surface electromyography with panoramic ultrasound imaging to investigate whether non-uniform excitation could lead to acute localized variations in cross-sectional area and muscle thickness of the clavicular and sternocostal heads of pectoralis major (PM). Bipolar surface electromyograms (EMGs) were acquired from both PM heads, while 13 men performed four sets of the flat and 45° inclined bench press exercises. Before and immediately after exercise, panoramic ultrasound images were collected transversely to the fibers. Normalized root mean square (RMS) amplitude and variations in the cross-sectional area and muscle thickness were calculated separately for each PM head. For all sets of the inclined bench press, the normalized RMS amplitude was greater for the clavicular head than the sternocostal head (P < 0.001), and the opposite was observed during the flat bench press (P < 0.001). Similarly, while greater increases in cross-sectional area were observed in the clavicular than in the sternocostal head after the inclined bench press (P < 0.001), greater increases were quantified in the sternocostal than in the clavicular head after the flat bench press exercise (P = 0.046). Therefore, our results suggest that the PM regional excitation induced by changes in bench press inclination leads to acute, uneven responses of muscle architecture following the exercise.  相似文献   

13.
The purpose of this study was to compare SEMG activities during axial load exercises on a stable base of support and on a medicine ball (relatively unstable). Twelve healthy male volunteers were tested (x = 23 ± 7y). Surface EMG was recorded from the biceps brachii, anterior deltoid, clavicular portion of pectoralis major, upper trapezius and serratus anterior using surface differential electrodes. All SEMG data are reported as percentage of RMS mean values obtained in maximal voluntary contractions for each muscle studied. A 3-way within factor repeated measures analysis of variance was performed to compare RMS normalized values. The RMS normalized values of the deltoid were always greater during the exercises performed on a medicine ball in relation to those performed on a stable base of support. The trapezius showed greater mean electric activation amplitude values on the wall-press exercise on a medicine ball, and the pectoralis major on the push-up. The serratus and biceps did not show significant differences of electric activation amplitude in relation to both tested bases of support. Independent of the base of support, none of the studied muscles showed significant differences of electric activation amplitude during the bench-press exercise. The results contribute to the identification of the levels of muscular activation amplitude during exercises that are common in clinical practice of rehabilitation of the shoulder and the differences in terms of type of base of support used.  相似文献   

14.
Multitasking, where workers are required to perform multiple physical tasks with various levels of cognitive load is common in today's workplace. Simultaneous physical and mental demands are thought to cause task interference and likely increase muscle activity. To test the interfering effects of multitasking, 16 healthy participants performed hand and shoulder exertions with combinations of four grip conditions (no grip, 30% grip with low precision, 30% grip with high precision, and maximal grip) and three shoulder conditions at 90 degrees abduction (maintaining posture, 40% force-controlled moment, 40% posture-controlled moment), with and without the Stroop test while surface EMG was recorded from eight upper extremity muscles. Both 40% MVC shoulder moments increased extrinsic forearm muscle activity by 2-4% MVE (p<0.01). Grip exertion at 30% MVC reduced anterior and middle deltoid activity by 2% MVE (p<0.01). Exerting a constant force against the transducer (force-controlled) required 3-4% MVE greater middle and posterior deltoid activity (p<0.001) compared to supporting an equivalent inertial load at the same shoulder angle (posture-controlled). Performing the mental task (Stroop test) concurrently with either 40% MVC shoulder moments significantly increased trapezius activity by nearly 2% MVE (p<0.05). Interestingly, the Stroop test also reduced all deltoid activity by 1% MVE (p<0.05). The addition of both the Stroop test and force-control shoulder exertion independently reduced maximal grip force by 7% and 10% MVC, respectively. These results suggest that more complex workplace tasks may act to increase muscle load or interfere with task performance. These small but significant findings may play a role in the development of long-term musculoskeletal disorders in the workplace.  相似文献   

15.
Linear and curvilinear electromyogram (EMG) normalization methods were compared among ten healthy men during a simulated work cycle demanding attention and static holding of the arm (Solitaire test). Maximal voluntary contractions (MVC) and gradually increasing contractions up to 70% of MVC were used for normalization in different arm postures. The test contractions studied included inward and outward rotations, abduction, shoulder elevation, and flexion in different arm positions. The shoulder load moment was calculated for the flexion tests using a simple two-dimensional model. The effect of arm posture on the EMG versus shoulder load moment relationship was studied on the following muscles: supraspinatus, infraspinatus, trapezius (three parts), deltoid (two parts) and pectoralis major. All muscles participated in the MVC tests performed, and its was not possible to suggest a single recommended test for each muscle. Differences in normalized EMG median values ranging up to 30% of MVC were found between linear and curvilinear normalization methods. Short-term repeatability of normalization based on a contraction with gradually increasing force was good. Arm posture affected the relationships between shoulder load moment and EMG activity of all muscles studied. Arm posture did not, however, have a significant effect on the estimated amplitude probability distribution functions during the simulated work task. Therefore, at least for the tasks studied, the principle of normalizing in the middle position of the range of movement was deemed acceptable.  相似文献   

16.
The aim of the current study was to investigate the EMG activity of pectoralis major and latissimus dorsi muscles during the pullover exercise. Eight healthy male volunteers took part in the study. The EMG activity of the pectoralis major and that of the latissimus dorsi of the right side were acquired simultaneously during the pullover exercise with a free-weight barbell during both the concentric and eccentric phases of the movement. After a warm-up, all the subjects were asked to perform the pullover exercise against an external load of 30% of their body weight, during 1 set × 10 repetitions. The criterion adopted to normalize the EMG data was the maximal voluntary isometric activation. The present findings demonstrated that the barbell pullover exercise emphasized the muscle action of the pectoralis major more than that of the latissimus dorsi, and the higher activation depended on the external force lever arm produced.  相似文献   

17.
Firstly, upper trapezius EMG activity patterns were recorded on the dominant side of 6 industrial production workers and on the side operating a computer mouse of 14 computer-aided design (CAD) operators to study differences in acute muscular response related to the repetitiveness of the exposure. The work tasks were performed with median arm movement frequencies ranging from 5 min(-1) to 13 min(-1) and were characterized by work cycle times ranging from less than 30 sec to several days. However, the static and median EMG levels and EMG gap frequencies were similar for all work tasks indicating that shoulder muscle loads may be unaffected by large variations in arm movement frequencies and work cycle times. An exposure variation analyses (EVA) showed that the EMG activity patterns recorded during production work were more repetitive than during CAD work, whereas CAD work was associated with more static muscle activity patterns, both may be associated with a risk of developing musculoskeletal symptoms. Secondly, upper trapezius EMG activity patterns recorded on the mouse side of the CAD operators were compared with those recorded on the non-mouse side to study differences in muscular responses potentially related to the risk of developing shoulder symptoms which were more prevalent on the mouse side. The number of EMG gaps on the mouse side were significantly lower than the values for the upper trapezius on the non-mouse side indicating that more continuous activity was present in the upper trapezius muscle on the mouse side and EVA analyses showed a more repetitive muscle activity pattern on the mouse side. These findings may be of importance to explain differences in the prevalence of shoulder symptoms.  相似文献   

18.
The influence of external factors such as arm posture, hand loading and dynamic exertion on shoulder muscle activity is needed to provide insight into the relationship between internal and external loading of the shoulder joint. Surface electromyography was collected from 8 upper extremity muscles on 16 participants who performed isometric and dynamic shoulder exertions in three shoulder planes (flexion, mid-abduction and abduction) covering four shoulder elevation angles (30°, 60°, 90° and 120°). Shoulder exertions were performed under three hand load conditions: no load, holding a 0.5 kg load and 30% grip. It was found that adding a 0.5 kg load to the hand increased shoulder muscle activity by 4% maximum voluntary excitation (MVE), across all postures and velocities. Performing a simultaneous shoulder exertion and hand grip led to posture specific redistribution of shoulder muscle activity that was consistent for both isometric and dynamic exertions. When gripping, anterior and middle deltoid activity decreased by 2% MVE, while posterior deltoid, infraspinatus and trapezius activity increased by 2% MVE and biceps brachii activity increased by 6% MVE. Increased biceps brachii activity with gripping may be an initiating factor for the changes in shoulder muscle activity. The finding that hand gripping altered muscle activation, and thus the internal loading, of the shoulder may play an important role in shoulder injury development and rehabilitation.  相似文献   

19.
The aim of the study was to investigate whether there was a difference in the electromyographic (EMG) activity of human shoulder muscles between the dominant and nondominant side during movement and to explore whether a possible side-difference depends on the specific task. We compared the EMG activity with surface and intramuscular electrodes in eight muscles of both shoulders in 20 healthy subjects whose hand preference was evaluated using a standard questionnaire. EMG signals were recorded during abduction and external rotation. During abduction, the normalized EMG activity was significantly smaller on the dominant side compared to the nondominant side for all the muscles except for infraspinatus and lower trapezius (P 相似文献   

20.
Muscle specific maximal voluntary isometric contractions (MVIC) are commonly used to elicit reference amplitudes to normalize electromyographic signals (EMG). It has been questioned whether this is appropriate for normalizing EMG from dynamic contractions. This study compares EMG amplitude when shoulder muscle activity from dynamic contractions is normalized to isometric and isokinetic maximal excitation as well as a hybrid approach currently used in our laboratory. Anterior, middle and posterior deltoid, upper and lower trapezius, pectoralis major, latissimus dorsi and infraspinatus were monitored during (1) manually resisted MVICs, and (2) maximum voluntary dynamic concentric contractions (MVDC) on an isokinetic dynamometer. Dynamic contractions were performed (a) at 30°/s about the longitudinal, frontal and sagittal axes of the shoulder, and (b) during manual bi-rotation of a tilted wheel at 120°/s. EMG from the wheel task was normalized to the maximum excitation from (i) the muscle specific MVIC, (ii) from any MVIC (MVICALL), (iii) for any MVDC, (iv) from any exertion (maximum experimental excitation, MEE). Mean EMG from the wheel task was up to 45% greater when normalized to muscle specific isometric contractions (method i) than when normalized to MEE (method iv). Seventy-five percent of MEE’s occurred during MVDCs. This study presents an 20 useful and effective process for obtaining the greatest excitation from the shoulder muscles when normalizing dynamic efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号