首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solid tumour growth is dependent on the development of an adequate blood supply. For years, sprouting angiogenesis has been considered an exclusive mechanism of tumour vascularization. However, over the last years, several other mechanisms have been identified, including vessel-co-option, intussusception, recruitment of endothelial precursor cells (EPCs) and even mechanisms that do not involve endothelial cells, a process called vasculogenic mimicry (VM). The latter describes a mechanism by which highly aggressive tumour cells can form vessel-like structures themselves, by virtue of their high plasticity. VM has been observed in several tumour types and its occurrence is strongly associated with a poor prognosis. This review will focus on signalling molecules and cascades involved in VM. In addition, we will discuss the presence of VM in relation to ongoing cancer research. Finally, we describe the clinical significance of VM regarding anti-angiogenesis treatment modalities.  相似文献   

2.
Vasculogenic mimicry (VM), a newly-defined pattern of tumor blood supply, provides a special passage without endothelial cells and is conspicuously different from angiogenesis and vasculogenesis. The biological features of the tumor cells that form VM remain unknown. Cancer stem cells (CSCs) are believed to be tumor-initiating cells, capable of self-renewal and multipotent differentiation, which resemble normal stem cells in phenotype and function. Recently CSCs have been shown to contribute to VM formation as well as angiogenesis. These findings challenge the previous understanding of the cellular basis of VM formation. In this review, we present evidence for participation of CSCs in VM formation. We also discuss the potential mechanisms and possible interaction of CSCs with various elements in tumor microenvironment niche. Based on the importance of VM in tumor progression, it constitutes a novel therapeutic target for cancer.  相似文献   

3.
目的探讨血管生成拟态(vasculogenic mimicry,VM)与血管内皮生长因子(vascular epithelial growth factor,VEGF)在非小细胞肺癌(non-small cell lung cancer,NSCLC)中的表达及意义。方法收集NSCLC术后标本160例和20例正常肺组织,应用免疫组化法和组织化学法检测NSCLC和正常肺组织中VM和VEGF的表达情况。结果在NSCLC组织和正常肺组织中,VM和VEGF的阳性率分别为36.9%、51.3%和0%、0%,差异有统计学意义;含有VM的NSCLC的VEGF表达高于无VM者(P<0.05),且VM与NSCLC的组织学分级、淋巴结转移及临床分期等有关(P<0.05);多因素分析:PTNM分期、VM、VEGF的表达是影响NSCLC根治术后患者预后的独立因素(P<0.05);VM阳性组与阴性组的5年生存率分别为1.7%和41.6%,差异有统计学意义;VEGF阳性组与阴性组的5年生存率分别为2.4%和52.6%,差异有统计学意义。结论具有VM的NSCLC组织分化低,患者临床预后差;VEGF的表达水平和VM与NSCLC的发展及预后有一定的关系。  相似文献   

4.
Glioblastoma (GBM) is extremely aggressive and essentially incurable. Its malignancy is characterized by vigorous microvascular proliferations. Recent evidence has shown that tumor cells display the ability to drive blood-perfused vasculogenic mimicry (VM), an alternative microvascular circulation independent of endothelial cell angiogenesis. However, molecular mechanisms underlying this vascular pathogenesis are poorly understood. Here, we found that vascular channels of VM in GBM were composed of mural-like tumor cells that strongly express VEGF receptor 2 (Flk-1). To explore a potential role of Flk-1 in the vasculogenesis, we investigated two glioblastoma cell lines U87 and GSDC, both of which express Flk-1 and exhibit a vascular phenotype on Matrigel. Treatment of both cell lines with either Flk-1 gene knockdown or Flk-1 kinase inhibitor SU1498 abrogated Flk-1 activity and impaired vascular function. Furthermore, inhibition of Flk-1 activity suppressed intracellular signaling cascades, including focal adhesion kinase and mitogen-activated protein kinase ERK1/2. In contrast, blockade of VEGF activity by the neutralizing antibody Bevacizumab failed to recapitulate the impact of SU1498, suggesting that Flk-1-mediated VM is independent of VEGF. Xenotransplantation of SCID/Beige mice with U87 cells and GSDCs gave rise to tumors harboring robust mural cell-associated vascular channels. Flk-1 shRNA restrained VM in tumors and subsequently inhibited tumor development. Collectively, all the data demonstrate a central role of Flk-1 in the formation of VM in GBM. This study has shed light on molecular mechanisms mediating tumor aggressiveness and also provided a therapeutic target for patient treatment.  相似文献   

5.
Cancer cells acquire cell-autonomous capacities to undergo limitless proliferation and survival through the activation of oncogenes and inactivation of tumor suppressor genes. Nevertheless, the formation of a clinically relevant tumor requires support from the surrounding normal stroma, also referred to as the tumor microenvironment. Carcinoma-associated fibroblasts, leukocytes, bone marrow-derived cells, blood and lymphatic vascular endothelial cells present within the tumor microenvironment contribute to tumor progression. Recent evidence indicates that the microenvironment provides essential cues to the maintenance of cancer stem cells/cancer initiating cells and to promote the seeding of cancer cells at metastatic sites. Furthermore, inflammatory cells and immunomodulatory mediators present in the tumor microenvironment polarize host immune response toward specific phenotypes impacting tumor progression. A growing number of studies demonstrate a positive correlation between angiogenesis, carcinoma-associated fibroblasts, and inflammatory infiltrating cells and poor outcome, thereby emphasizing the clinical relevance of the tumor microenvironment to aggressive tumor progression. Thus, the dynamic and reciprocal interactions between tumor cells and cells of the tumor microenvironment orchestrate events critical to tumor evolution toward metastasis, and many cellular and molecular elements of the microenvironment are emerging as attractive targets for therapeutic strategies.  相似文献   

6.
目的:探讨转染Canstatin基因对人肝癌HepG-2细胞体外形成血管生成拟态的影响。方法:将Canstatin基因通过脂质体法转染人肝癌HepG-2细胞,行G418筛选获得转基因细胞克隆。用SDS-PAGE电泳检测Canstatin蛋白在转基因细胞培养上清液中的表达;建立HepG-2细胞人工基底膜基质凝胶体外三维细胞培养模型,观察HepG-2细胞能否形成血管生成拟态,并比较转基因和未转基因细胞的管道形成能力。结果:Canstatin在转染人HepG-2细胞中表达并分泌至上清液中,人肝癌HepG-2细胞在体外三维培养条件下能够形成血管生成拟态。Canstatin基因转染HepG-2细胞组的管状结构数量高于空载体组和HepG-2细胞组,转染细胞管道形成能力明显受抑制。结论:人肝癌HepG-2细胞株可形成血管生成拟态,Canstatin能抑制人肝癌细胞株HepG-2体外血管生成拟态形成。  相似文献   

7.
Robust neovascularization and lymphangiogenesis have been found in a variety of aggressive and metastatic tumors. Endothelial sprouting angiogenesis is generally considered to be the major mechanism by which new vasculature forms in tumors. However, increasing evidence shows that tumor vasculature is not solely composed of endothelial cells (ECs). Some tumor cells acquire processes similar to embryonic vasculogenesis and produce new vasculature through vasculogenic mimicry, trans-differentiation of tumor cells into tumor ECs, and tumor cell–EC vascular co-option. In addition, tumor cells secrete various vasculogenic factors that induce sprouting angiogenesis and lymphangiogenesis. Vasculogenic tumor cells actively participate in the formation of vascular cancer stem cell niche and a premetastatic niche. Therefore, tumor cell-mediated neovascularization and lymphangiogenesis are closely associated with tumor progression, cancer metastasis, and poor prognosis. Vasculogenic tumor cells have emerged as key players in tumor neovascularization and lymphangiogenesis and play pivotal roles in tumor progression and cancer metastasis. However, the mechanisms underlying tumor cell-mediated vascularity as they relate to tumor progression and cancer metastasis remain unclear. Increasing data have shown that various intrinsic and extrinsic factors activate oncogenes and vasculogenic genes, enhance vasculogenic signaling pathways, and trigger tumor neovascularization and lymphangiogenesis. Collectively, tumor cells are the instigators of neovascularization. Therefore, targeting vasculogenic tumor cells, genes, and signaling pathways will open new avenues for anti-tumor vasculogenic and metastatic drug discovery. Dual targeting of endothelial sprouting angiogenesis and tumor cell-mediated neovascularization and lymphangiogenesis may overcome current clinical problems with anti-angiogenic therapy, resulting in significantly improved anti-angiogenesis and anti-cancer therapies.  相似文献   

8.
Vasculogenic mimicry (VM) is a brand‐new tumour vascular paradigm independent of angiogenesis that describes the specific capacity of aggressive cancer cells to form vessel‐like networks that provide adequate blood supply for tumour growth. A variety of molecule mechanisms and signal pathways participate in VM induction. Additionally, cancer stem cell and epithelial‐mesenchymal transitions are also shown to be implicated in VM formation. As a unique perfusion way, VM is associated with tumour invasion, metastasis and poor cancer patient prognosis. Due to VM's important effects on tumour progression, more VM‐related strategies are being utilized for anticancer treatment. Here, with regard to the above aspects, we make a review of advanced research on VM in cancer.  相似文献   

9.
Vasculogenic mimicry (VM) results in the formation of an alternative circulatory system that can improve the blood supply to multiple malignant tumors, including hepatocellular carcinoma (HCC). However, the potential mechanisms of RhoC/ROCK in VM have not yet been investigated in HCC. Here, RhoC expression was upregulated in HCC tissues, especially the VM-positive (VM+) group, compared to noncancerous tissues (P < 0.01), and patients with high expression of RhoC had shorter survival times (P < 0.001). The knockdown of RhoC via short hairpin RNA (shRNA) in SK-Hep-1 cells significantly decreased VM formation and cell motility. In contrast, cell motility and VM formation were remarkably enhanced when RhoC was overexpressed in HepG2 cells. To further assess the potential role of ROCK1 and ROCK2 on VM, we stably knocked down ROCK1 or ROCK2 in MHCC97H cells. Compared to ROCK1 shRNA, ROCK2 shRNA could largely affect VM formation, cell motility and the key VM factors, as well as the epithelial-mesenchymal transition (EMT) markers in vitro and in vivo. Moreover, p-ERK, p-MEK, p-FAK, p-paxillin, MT1-MMP and MMP2 levels were clearly altered following the overexpression of RhoC, but ROCK2 shRNA had little effect on the expression of p-FAK, which indicated that RhoC regulates FAK/paxillin signaling, but not through ROCK2. In conclusion, our results show that RhoC/ROCK2 may have a major effect on VM in HCC via ERK/MMPs signaling and might be a potential therapeutic target for the treatment of HCC.  相似文献   

10.
The pathology and physiology of breast cancer(BC),including metastasis,and drug resistance,is driven by multiple signaling pathways in the tumor microenvironment(TME),which hamper antitumor immunity.Recently,long non-coding RNAs have been reported to mediate pathophysiological developments such as metastasis as well as immune suppression within the TME.Given the complex biology of BC,novel personalized therapeutic strategies that address its diverse pathophysiologies are needed to improve clinical outcomes.In this review,we describe the advances in the biology of breast neoplasia,including cellular and molecular biology,heterogeneity,and TME.We review the role of novel molecules such as long non-coding RNAs in the pathophysiology of BC.Finally,we provide an up-to-date overview of anticancer compounds extracted from marine microorganisms,crustaceans,and fishes and their synergistic effects in combination with other anticancer drugs.Marine compounds are a new discipline of research in BC and offer a wide range of anti-cancer effects that could be harnessed to target the various pathways involved in BC development,thus assisting current therapeutic regimens.  相似文献   

11.
Colorectal cancer (CRC) remains the third most prevalent cancer disease and involves a multi-step process in which intestinal cells acquire malignant characteristics. It is well established that the appearance of distal metastasis in CRC patients is the cause of a poor prognosis and treatment failure. Nevertheless, in the last decades, CRC aggressiveness and progression have been attributed to a specific cell population called CRC stem cells (CCSC) with features like tumor initiation capacity, self-renewal capacity, and acquired multidrug resistance. Emerging data highlight the concept of this cell subtype as a plastic entity that has a dynamic status and can be originated from different types of cells through genetic and epigenetic changes. These alterations are modulated by complex and dynamic crosstalk with environmental factors by paracrine signaling. It is known that in the tumor niche, different cell types, structures, and biomolecules coexist and interact with cancer cells favoring cancer growth and development. Together, these components constitute the tumor microenvironment (TME). Most recently, researchers have also deepened the influence of the complex variety of microorganisms that inhabit the intestinal mucosa, collectively known as gut microbiota, on CRC. Both TME and microorganisms participate in inflammatory processes that can drive the initiation and evolution of CRC. Since in the last decade, crucial advances have been made concerning to the synergistic interaction among the TME and gut microorganisms that condition the identity of CCSC, the data exposed in this review could provide valuable insights into the biology of CRC and the development of new targeted therapies.  相似文献   

12.
Fibroblast activation protein (FAP) is a specific serine protease expressed in tumor stroma proven to be a stimulatory factor in the progression of some cancers. The purpose of this study was to investigate the effects of FAP knockdown on tumor growth and the tumor microenvironment. Mice bearing 4T1 subcutaneous tumors were treated with liposome-shRNA complexes targeting FAP. Tumor volumes and weights were monitored, and FAP, collagen, microvessel density (MVD), and apoptosis were measured. Our studies showed that shRNA targeting of FAP in murine breast cancer reduces FAP expression, inhibits tumor growth, promotes collagen accumulation (38%), and suppresses angiogenesis (71.7%), as well as promoting apoptosis (by threefold). We suggest that FAP plays a role in tumor growth and in altering the tumor microenvironment. Targeting FAP may therefore represent a supplementary therapy for breast cancer. [BMB Reports 2013; 46(5): 252-257]  相似文献   

13.
Chemokines are essential mediators of immune cell trafficking. In a tumor microenvironment context, chemotactic cytokines are known to regulate the migration, positioning and interaction of different cell subsets with both anti- and pro-tumor functions. Additionally, chemokines have critical roles regarding non-immune cells, highlighting their importance in tumor growth and progression.CCL18 is a primate-specific chemokine produced by macrophages and dendritic cells. This chemokine presents both constitutive and inducible expression. It is mainly associated with a tolerogenic response and involved in maintaining homeostasis of the immune system under physiological conditions. Recently, CCL18 has been noticed as an important component of the complex chemokine system involved in the biology of tumors. This chemokine induces T regulatory cell differentiation and recruitment to the tumor milieu, with subsequent induction of a pro-tumor (M2-like) macrophage phenotype. CCL18 is also directly involved in cancer cell-invasion, migration, epithelial-to-mesenchymal transition and angiogenesis stimulation, pinpointing an important role in the promotion of cancer progression. Interestingly, this chemokine is highly expressed in tumor tissues, particularly at the invasive front of more advanced stages (e.g. colorectal cancer), and high levels are detected in the serum of patients, correlating with poor prognosis.Despite the promising role of CCL18 as a biomarker and/or therapeutic target to hamper disease progression, its pleiotropic functions in a context of cancer are still poorly explored. The scarce knowledge concerning the receptors for this chemokine, together with the insufficient insight on the downstream signaling pathways, have impaired the selection of this molecule as an immediate target for translational research.In this Review, we will discuss recent findings concerning the role of CCL18 in cancer, integrate recently disclosed molecular mechanisms and compile data from current clinical studies.  相似文献   

14.
This study aimed to identify a novel disease-associated differentially co-expressed mRNA-microRNA (miRNA) that is associated with vasculogenic mimicry (VM) and epithelial-to-mesenchymal transition (EMT) network at different stages of melanoma. By applying weighted gene co-expression network analysis, we constructed a VM+EMT biological network with the available microarray dataset downloaded from a public database. Quantitative real-time PCR, immunohistochemical staining, and CD31-periodic acid solution dual staining were performed to confirm the expression of genes associated with EMT and VM formation in subjects with malignant melanoma (n = 18) and primary melanoma (n = 13) and in healthy subjects (n = 10). Our findings suggested that phosphatidylserine-specific phospholipase A1-alpha (PLA1A) and dermokine (DMKN) genes function as oncogenes that trigger VM and EMT processes during melanomagenesis on interaction with miR-370, miR-563, and miR-770–5p. PLA1A and DMKN genes can be considered potential VM+EMT network-based diagnostic biomarkers for distinguishing between melanoma patients. We postulate that a network with altered PLA1A/miR-563 and DMNK/miR-770–5p/miR-370 may contribute to melanomagenesis by triggering the EMT signaling pathway and VM formation. This study provides a potentially valuable approach for the early diagnosis and prognosis of melanoma progression.  相似文献   

15.
One characteristic of solid tumors such as malignant melanoma is the acidification of the tumor microenvironment. The deregulation of cancer cell metabolism is considered a main cause of extracellular acidosis. Here, cancer cells utilize aerobic glycolysis instead of oxidative phosphorylation even under normoxic conditions, as originally described by Otto Warburg. These metabolic alterations cause enhanced acid production, especially of lactate and carbon dioxide (CO2). The extensive production of acidic metabolites and the enhanced acid export to the extracellular space cause a consistent acidification of the tumor microenvironment, thus promoting the formation of an acid‐resistant tumor cell population with increased invasive and metastatic potential. As melanoma is one of the deadliest and most metastatic forms of cancer, understanding the effects of this extracellular acidosis on human melanoma cells with distinct metastatic properties is important. The aim of this review was to summarize recent studies of the acidification of the tumor microenvironment, focusing on the specific effects of the acidic milieu on melanoma cells and to give a short overview of therapeutic approaches.  相似文献   

16.
17.

肠道菌群在人体物质代谢中起着关键作用,通过复杂的相互作用网络来调节和稳定与宿主之间的共生关系,并且能够影响重大疾病的诊断和治疗。肿瘤微环境(tumor microenvironment,TME)是肿瘤细胞在生长、增殖、转移和凋亡过程中所在的一个微观内环境,研究发现TME对肿瘤的发生发展起着至关重要的作用,参与肿瘤生长、侵袭、转移和免疫逃逸等多个环节。肠道菌群和TME被认为是调节肿瘤疾病进程的关键因素。因此,本文分析了肠道菌群对TME的调节以及两者作用对肿瘤的影响和作用机制,简要总结肠道菌群通过调节TME从而影响肿瘤的发生、发展和免疫治疗,以期为临床提供更优的治疗选择。

  相似文献   

18.
Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is a pan-negative regulator of the epidermal growth factor receptor (EGFR) signaling pathway. The aim of this study was to investigate the underlying mechanism of LRIG1 in the regulation of vasculogenic mimicry (VM) formation in glioma cells. We constructed an enhanced green fluorescent protein plasmid (pEGFP) system, pEGFP-C1-LRIG1, for overexpression of LRIG1, and transfected it into human glioma cell line SHG-44. Under hypoxic conditions induced by CoCl2, we investigated the effects of LRIG1 overexpression on VM formation and VM-dependent malignant behaviors including migration, invasion, and proliferation. Additionally, we explored the effects of LRIG1 on the expression levels of major components of the EGFR/PI3K/AKT pathway as well as E-cadherin and vimentin. We found that LRIG1 overexpression is able to inhibit hypoxia-induced VM formation, migration, invasion, and proliferation. Furthermore, LRIG1 overexpression counteracts hypoxia-induced increase in the expression of phosphorylated EGFR (pEGFR), PI3K (pPI3K), and AKT (pAKT) and reverts hypoxia-induced alteration in E-cadherin and vimentin expression levels. In LRIG1 knockdown SHG-44 cells, however, hypoxia-induced VM formation and alteration in E-cadherin and vimentin expression levels were exacerbated. These results suggest that the inhibitory effects of LRIG1 are most likely mediated by suppression of the EGFR/PI3K/AKT pathway and epithelial-mesenchymal transition (EMT) process. Our findings provide compelling evidence implicating LRIG1 in glioma pathophysiology, suggesting that gene therapy using LRIG1 may serve as a treatment for this disease.  相似文献   

19.
Maturation of macrophages is influenced by the composition of surrounding microenvironment. Expression of CMKLR1, the receptor for chemerin, is potentially associated with the differentiation status of macrophages. In this study, CMKLR1 was determined on peritoneal and tumor-infiltrating macrophages. CMKLR1 expression was found to be associated with the fibroblast-assisted maturation of J744A.1 monocyte/macrophage cells in the co-cultures established to model tumor microenvironment, whereas the presence of tumor cells was able to upregulate CMKLR1 expression independent of macrophage maturation. In addition, macrophages cultured with tumor cells or in tumor cell-conditioned media responded to recombinant chemerin(17-156) peptide and increased the expression of proinflammatory IL-1β, TNF-α and IL-12 p40 cytokines. The native form of chemerin (prochemerin) supplied by fibroblasts did not induce a functional response. These observations may indicate a potential role for chemerin and CMKLR1 in the regulation of inflammatory responses in the tumor microenvironment.  相似文献   

20.
In this paper, we present and investigate a model for solid tumor growth that incorporates features of the tumor microenvironment. Using analysis and nonlinear numerical simulations, we explore the effects of the interaction between the genetic characteristics of the tumor and the tumor microenvironment on the resulting tumor progression and morphology. We find that the range of morphological responses can be placed in three categories that depend primarily upon the tumor microenvironment: tissue invasion via fragmentation due to a hypoxic microenvironment; fingering, invasive growth into nutrient rich, biomechanically unresponsive tissue; and compact growth into nutrient rich, biomechanically responsive tissue. We found that the qualitative behavior of the tumor morphologies was similar across a broad range of parameters that govern the tumor genetic characteristics. Our findings demonstrate the importance of the impact of microenvironment on tumor growth and morphology and have important implications for cancer therapy. In particular, if a treatment impairs nutrient transport in the external tissue (e.g., by anti-angiogenic therapy) increased tumor fragmentation may result, and therapy-induced changes to the biomechanical properties of the tumor or the microenvironment (e.g., anti-invasion therapy) may push the tumor in or out of the invasive fingering regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号