首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serum transferrin (sTf) transports iron in serum and internalizes in cells via receptor mediated endocytosis. Additionally, sTf has been identified as the predominant aluminum carrier in serum. Some questions remain unclear about the exact mechanism for the metal release or whether the aluminum and iron show the same binding mode during the entire process. In the present work, simulation techniques at quantum and atomic levels have been employed in order to gain access into a molecular level understanding of the metal-bound sTf complex, and to describe the binding of Al(III) and Fe(III) ions to sTf. First, hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations were carried out in order to analyze the dynamics of the aluminum-loaded complex, taking into account the different pH conditions in blood and into the cell. Moreover, the complexes formed by transferrin with Al(III) and Fe(III) were optimized with high level density functional theory (DFT)/MM methods. All these results indicate that the interaction mode of Al(III) and Fe(III) with sTf change upon different pH conditions, and that the coordination of Al(III) and Fe(III) is not equivalent during the metal intake, transport and release processes. Our results emphasize the importance of the pH on the metal binding and release mechanism and suggest that Al(III) can follow the iron pathway to get access into cells, although once there, it may show a different binding mode, leading to a different mechanism for its release.  相似文献   

2.
In this contribution we propose a novel method (QUEST) which enables the simulation of diffusive systems through quantum mechanical/molecular mechanical (QM/MM) molecular dynamics. The method is an evolution of boundary based on exchange symmetry theory (BEST), an approach based on imposing a bias potential to hinder exchanges between QM and MM particles. This new method corrects for the main shortcoming of BEST, namely that only static properties could be studied, as the dynamics was disrupted. With Quasi-BEST (QUEST) the dynamics is still preserved, albeit at some additional cost in the computation of energy and forces as they are needed for the exchanged configurations between QM and MM particles. Here we describe the theoretical basis of QUEST, and we present the results on a small toy system.  相似文献   

3.
Due to the higher computational cost relative to pure molecular mechanical (MM) simulations, hybrid quantum mechanical/molecular mechanical (QM/MM) free energy simulations particularly require a careful consideration of balancing computational cost and accuracy. Here, we review several recent developments in free energy methods most relevant to QM/MM simulations and discuss several topics motivated by these developments using simple but informative examples that involve processes in water. For chemical reactions, we highlight the value of invoking enhanced sampling technique (e.g. replica-exchange) in umbrella sampling calculations and the value of including collective environmental variables (e.g. hydration level) in metadynamics simulations; we also illustrate the sensitivity of string calculations, especially free energy along the path, to various parameters in the computation. Alchemical free energy simulations with a specific thermodynamic cycle are used to probe the effect of including the first solvation shell into the QM region when computing solvation free energies. For cases where high-level QM/MM potential functions are needed, we analyse two different approaches: the QM/MM–MFEP method of Yang and co-workers and perturbative correction to low-level QM/MM free energy results. For the examples analysed here, both approaches seem productive although care needs to be exercised when analysing the perturbative corrections.  相似文献   

4.
The aminomethylpyrimidines were investigated as a novel class of DPP-IV inhibitors. In this Letter, the binding mechanisms of how slight change of substitution or position influences the binding affinity of five representative analogs was investigated by molecular dynamics simulation, free energy calculations and energy decomposition analysis. The conserved hydrogen bonds with Glu205 and Glu206 slightly favor the inhibitor binding; the van der Waals interactions, especially the two key contacts with Tyr547 and Tyr666, dominate in the binding free energy and play a crucial role on distinguishing the high active inhibitors from the low ones.  相似文献   

5.
Quantum mechanical/molecular mechanical free-energy simulations were performed to understand the deacylation reaction catalysed by sedolisin (a serine-carboxyl peptidase) and to elucidate the catalytic mechanism and the role of the active-site residues during the process. The results given here demonstrate that Asp170 may act as a general acid/base catalyst for the deacylation reaction. It is also shown that the electrostatic oxyanion hole interactions involving Asp170 may be less effective in transition state stabilisation for the deacylation step in the sedolisin-catalysed reaction compared to the general acid/base mechanism. The proton transfer processes during the enzyme-catalysed process were examined, and their role in the catalysis was discussed.  相似文献   

6.
This work presents new developments of the moving-domain QM/MM (MoD-QM/MM) method for modeling protein electrostatic potentials. The underlying goal of the method is to map the electronic density of a specific protein configuration into a point-charge distribution. Important modifications of the general strategy of the MoD-QM/MM method involve new partitioning and fitting schemes and the incorporation of dynamic effects via a single-step free energy perturbation approach (FEP). Selection of moderately sized QM domains partitioned between and C (from C=O), with incorporation of delocalization of electrons over neighboring domains, results in a marked improvement of the calculated molecular electrostatic potential (MEP). More importantly, we show that the evaluation of the electrostatic potential can be carried out on a dynamic framework by evaluating the free energy difference between a non-polarized MEP and a polarized MEP. A simplified form of the potassium ion channel protein Gramicidin-A from Bacillus brevis is used as the model system for the calculation of MEP. Figure Schematic representation of the Moving Domain QM/MM method  相似文献   

7.
Metal-based drugs can modulate various biological processes and exhibit a rich variety of properties that foster their use in biomedicine and chemical biology. On the way to intracellular targets, ligand exchange and redox reactions can take place, thus making metallodrug speciation in vivo a challenging task. Advances in NMR spectroscopy have made it possible to move from solution to live-cell studies and elucidate the transport of metallodrugs and interactions with macromolecular targets in a physiological setting. In turn, the electronic properties and supramolecular chemistry of metal complexes can be exploited to characterize drug delivery nanosystems by NMR. The recent evolution of in-cell NMR methodology is presented with special emphasis on metal-related processes. Applications to paradigmatic cases of platinum and gold drugs are highlighted.  相似文献   

8.
9.
10.
Caspases are fundamental targets for pharmaceutical interventions in a variety of diseases involving disregulated apoptosis. Here, we present a quantum mechanics/molecular mechanics Car-Parrinello study of key steps of the enzymatic reaction for a representative member of this family, caspase-3. The hydrolysis of the acyl-enzyme complex is described at the density functional (BLYP) level of theory while the protein frame and solvent are treated using the GROMOS96 force field. These calculations show that the attack of the hydrolytic water molecule implies an activation free energy of ca. DeltaF(A) approximately equal 19 +/- 4 kcal/mol in good agreement with experimental data and leads to a previously unrecognized gem-diol intermediate that can readily (DeltaF(A) approximately equal 5 +/- 3 kcal/mol) evolve to the enzyme products. Our findings assist in elucidating the striking difference in catalytic activity between caspases and other structurally well-characterized cysteine proteases (papains and cathepsins) and may help design novel transition-state analog inhibitors.  相似文献   

11.

Background

Living systems are characterized by the dynamic assembly and disassembly of biomolecules. The dynamical ordering mechanism of these biomolecules has been investigated both experimentally and theoretically. The main theoretical approaches include quantum mechanical (QM) calculation, all-atom (AA) modeling, and coarse-grained (CG) modeling. The selected approach depends on the size of the target system (which differs among electrons, atoms, molecules, and molecular assemblies). These hierarchal approaches can be combined with molecular dynamics (MD) simulation and/or integral equation theories for liquids, which cover all size hierarchies.

Scope of review

We review the framework of quantum mechanical/molecular mechanical (QM/MM) calculations, AA MD simulations, CG modeling, and integral equation theories. Applications of these methods to the dynamical ordering of biomolecular systems are also exemplified.

Major conclusions

The QM/MM calculation enables the study of chemical reactions. The AA MD simulation, which omits the QM calculation, can follow longer time-scale phenomena. By reducing the number of degrees of freedom and the computational cost, CG modeling can follow much longer time-scale phenomena than AA modeling. Integral equation theories for liquids elucidate the liquid structure, for example, whether the liquid follows a radial distribution function.

General significance

These theoretical approaches can analyze the dynamic behaviors of biomolecular systems. They also provide useful tools for exploring the dynamic ordering systems of biomolecules, such as self-assembly. This article is part of a Special Issue entitled “Biophysical Exploration of Dynamical Ordering of Biomolecular Systems” edited by Dr. Koichi Kato.  相似文献   

12.
We present a comprehensive analysis of the most likely ground state configuration of the resting state of vanadium dependent chloroperoxidase (VCPO) based on quantum mechanics/molecular mechanics (QM/MM) evaluations of ground state properties, UV-vis spectra and NMR chemical shifts. Within the QM/MM framework, density functional theory (DFT) calculations are used to characterize the resting state of VCPO via time-dependent density functional theory (TD-DFT) calculations of electronic excitation energies and NMR chemical shifts. Comparison with available experimental data allows us to determine the most likely protonation state of VCPO, a state which results in a doubly protonated axial oxygen, a site largely stabilized by hydrogen bonds. We found that the bulk of the protein that is beyond the immediate layer surrounding the cofactor, has an important electrostatic effect on the absorption maximum. Through examination of frontier orbitals, we analyze the nature of two bound water molecules and the extent to which relevant residues in the active site influence the spectroscopy calculations.  相似文献   

13.
14.
We studied the energetics of the closed-ring mechanism of the acid-catalysed dehydration of d-fructose to 5-hydroxymethylfurfural (HMF) by carrying out canonical ensemble free-energy calculations using bias-sampling, hybrid Quantum Mechanics/Molecular Mechanics Molecular Dynamics simulations with explicit water solvent at 363 K. The quantum mechanical calculations are performed at the PM3 theory level. We find that the reaction proceeds via intramolecular proton and hydride transfers. Solvent dynamics effects are analysed, and we show that the activation energy for the hydride transfers is due to re-organization of the polar solvent environment. We also find that in some instances intramolecular proton transfer is facilitated by mediating water, whereas in others the presence of quantum mechanical water has no effect. From a micro-kinetic point of view, we find that the rate-determining step of the reaction involves a hydride transfer prior to the third dehydration step, requiring an activation free energy of 31.8 kcal/mol, and the respective rate is found in good agreement with reported experimental values in zeolites. Thermodynamically, the reaction is exothermic by .  相似文献   

15.
The hydrolysis reaction of guanosine triphosphate (GTP) by p21(ras) (Ras) has been modeled by using the ab initio type quantum mechanical-molecular mechanical simulations. Initial geometry configurations have been prompted by atomic coordinates of the crystal structure (PDBID: 1QRA) corresponding to the prehydrolysis state of Ras in complex with GTP. Multiple searches of minimum energy geometry configurations consistent with the hydrogen bond networks have been performed, resulting in a series of stationary points on the potential energy surface for reaction intermediates and transition states. It is shown that the minimum energy reaction path is consistent with an assumption of a two-step mechanism of GTP hydrolysis. At the first stage, a unified action of the nearest residues of Ras and the nearest water molecules results in a substantial spatial separation of the gamma-phosphate group of GTP from the rest of the molecule (GDP). This phase of hydrolysis process proceeds through the low barrier (16.7 kcal/mol) transition state TS1. At the second stage, the inorganic phosphate is formed in consequence of proton transfers mediated by two water molecules and assisted by the Gln61 residue from Ras. The highest transition state at this segment, TS3, is estimated to have an energy 7.5 kcal/mol above the enzyme-substrate complex. The results of simulations are compared to the previous findings for the GTP hydrolysis in the Ras-GAP (p21(ras)-p120(GAP)) protein complex. Conclusions of the modeling lead to a better understanding of the anticatalytic effect of cancer causing mutation of Gln61 from Ras, which has been debated in recent years.  相似文献   

16.
Lipid-protein interactions play an important direct role in the function of many membrane proteins. We argue they are key players in membrane structure, modulate membrane proteins in more subtle ways than direct binding, and are important for understanding the mechanism of classes of hydrophobic drugs. By directly comparing membrane proteins from different families in the same, complex lipid mixture, we found a unique lipid environment for every protein. Extending this work, we identified both differences and similarities in the lipid environment of GPCRs, dependent on which family they belong to and in some cases their conformational state, with particular emphasis on the distribution of cholesterol. More recently, we have been studying modes of coupling between protein conformation and local membrane properties using model proteins. In more applied approaches, we have used similar methods to investigate specific hypotheses on interactions of lipid and lipid-like molecules with ion channels. We conclude this perspective with some considerations for future work, including a new more sophisticated coarse-grained force field (Martini 3), an interactive visual exploration framework, and opportunities to improve sampling.  相似文献   

17.
Hu H  Elstner M  Hermans J 《Proteins》2003,50(3):451-463
We compare the conformational distributions of Ace-Ala-Nme and Ace-Gly-Nme sampled in long simulations with several molecular mechanics (MM) force fields and with a fast combined quantum mechanics/molecular mechanics (QM/MM) force field, in which the solute's intramolecular energy and forces are calculated with the self-consistent charge density functional tight binding method (SCCDFTB), and the solvent is represented by either one of the well-known SPC and TIP3P models. All MM force fields give two main states for Ace-Ala-Nme, beta and alpha separated by free energy barriers, but the ratio in which these are sampled varies by a factor of 30, from a high in favor of beta of 6 to a low of 1/5. The frequency of transitions between states is particularly low with the amber and charmm force fields, for which the distributions are noticeably narrower, and the energy barriers between states higher. The lower of the two barriers lies between alpha and beta at values of psi near 0 for all MM simulations except for charmm22. The results of the QM/MM simulations vary less with the choice of MM force field; the ratio beta/alpha varies between 1.5 and 2.2, the easy pass lies at psi near 0, and transitions between states are more frequent than for amber and charmm, but less frequent than for cedar. For Ace-Gly-Nme, all force fields locate a diffuse stable region around phi = pi and psi = pi, whereas the amber force field gives two additional densely sampled states near phi = +/-100 degrees and psi = 0, which are also found with the QM/MM force field. For both solutes, the distribution from the QM/MM simulation shows greater similarity with the distribution in high-resolution protein structures than is the case for any of the MM simulations.  相似文献   

18.
Orientational constraints obtained from solid state NMR experiments on anisotropic samples are used here in molecular dynamics (MD) simulations for determining the structure and dynamics of several different membrane-bound molecules. The new MD technique is based on the inclusion of orientation dependent pseudo-forces in the COSMOS-NMR force field. These forces drive molecular rotations and re-orientations in the simulation, such that the motional time-averages of the tensorial NMR properties approach the experimentally measured parameters. The orientational-constraint-driven MD simulations are universally applicable to all NMR interaction tensors, such as chemical shifts, dipolar couplings and quadrupolar interactions. The strategy does not depend on the initial choice of coordinates, and is in principle suitable for any flexible molecule. To test the method on three systems of increasing complexity, we used as constraints some deuterium quadrupolar couplings from the literature on pyrene, cholesterol and an antimicrobial peptide embedded in oriented lipid bilayers. The MD simulations were able to reproduce the NMR parameters within experimental error. The alignment of the three membrane-bound molecules and some aspects of their conformation were thus derived from the NMR data, in good agreement with previous analyses. Furthermore, the new approach yielded for the first time the distribution of segmental orientations with respect to the membrane and the order parameter tensors of all three systems.  相似文献   

19.
Structural data for complexes of hyaluronic acid and 3d metals(II) of the fourth group of the periodic table are lacking. A combined QM/MM method was used to solve the structure of the first coordination sphere around the cobalt(II) ion. Some available experimental data were compared with the results obtained via computation and were found to be in good agreement. Our results open the way for using molecular modeling to solve the structure of other metal(II) hyaluronates.  相似文献   

20.
 d(TpG) reacts with cis-[Pt(NH3)2(H2O)2]2+ in two steps to yield the platinum chelate cis-[Pt(NH3)2{d(TpG)-N3(1),N7(2)}]. In the latter, hindered rotation of the bases leads to an equilibrium between two rotamers interconverting slowly on the NMR time scale. The structure of the two rotameric chelates was studied by means of 1H NMR and molecular modeling techniques. The major and minor rotamers could be assigned unambiguously to the two head-to-head conformational domains which are characterized by syn/anti and anti/anti sugar-base orientations, respectively. Molecular models derived for both rotamers show that the orientations of the bases are mutually quasi-enantiomeric. The interconversion between the two rotamers (k ≈ 1 s–1 at 293 K) is approximately 104 times faster than the analogous rotamer interconversion observed in cis-[Pt(NH3)2{r(CpG)-N3(1),N7(2)}]+ [Girault J-P, Chottard G, Lallemand J-Y, Huguenin F, Chottard J-C (1984) J Am Chem Soc 106 : 7227–7232], suggesting that the steric clash of the exocyclic amino group of the platinum-bound cytosine with the ligands in cis position is more severe than that of the two thymine oxo groups. Received: 23 June 1997 / Accepted: 30 September 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号