首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Isobutanol and other branched-chain higher alcohols (BCHAs) are promising advanced biofuels derived from the degradation of branched-chain amino acids (BCAAs). The yeast Saccharomyces cerevisiae is a particularly attractive host for the production of BCHAs due to its high tolerance to alcohols and prevalent use in the bioethanol industry. Degradation of BCAAs begins with transamination reactions, catalyzed by branched-chain amino acid transaminases (BCATs) located in the mitochondria (Bat1p) and cytosol (Bat2p). However, the roles that these transaminases play in isobutanol production remain poorly understood and obscured by conflicting reports in the literature. In this work, we elucidate the influence of BCATs on isobutanol production in two genetic backgrounds (CEN.PK2-1C and BY4741). In the process, we uncover and characterize two competing isobutanol pathways, which can be manipulated by overexpressing or deleting BAT1 or BAT2, and adding or removing valine from the fermentation media. We show that deletion of BAT1 alone increases isobutanol production by 14.2-fold over wild type strains in media lacking valine, and examine how interactions between valine and the regulatory protein Ilv6p affect isobutanol production. Compartmentalizing the five-gene isobutanol biosynthetic pathway in mitochondria of BAT1 deletion strains results in an additional 2.1-fold increase in isobutanol production in the absence of valine. While valine inhibits isobutanol production, it boosts 2-methyl-1-butanol production. This work clarifies the role of transamination activity in BCHA biosynthesis, and develops valuable strategies and strains for future optimization of isobutanol production.  相似文献   

2.
    
The fermentative production of l-threonine and l-isoleucine with Corynebacterium glutamicum is usually accompanied by the by-production of l-lysine, which shares partial biosynthesis pathway with l-threonine and l-isoleucine. Since the direct precursor for l-lysine synthesis, diaminopimelate, is a component of peptidoglycan and thus essential for cell wall synthesis, reducing l-lysine by-production could be troublesome. Here, a basal strain with eliminated l-lysine production was constructed from the wild type C. glutamicum ATCC13869 by deleting the chromosomal ddh and lysE. Furthermore, the basal strain as well as the ddh single mutant strain was engineered for l-threonine production by over-expressing lysC1, hom1 and thrB, and for l-isoleucine production by over-expressing lysC1, hom1, thrB and ilvA1. Fermentation experiments with the engineered strains showed that (i) deletion of ddh improved l-threonine production by 17%, and additional deletion of lysE further improved l-threonine production by 28%; (ii) deletion of ddh improved l-isoleucine production by 8% and improved cell growth by 21%, whereas additional deletion of lysE had no further influence on both l-isoleucine production and cell growth; (iii) l-lysine by-production was reduced by 95% and 86% in l-threonine and l-isoleucine production, respectively, by deletion of ddh and lysE. This is the first report on improving l-threonine and l-isoleucine production by deleting ddh and lysE in C. glutamicum. The results demonstrate deletion of ddh and lysE as an effective strategy to reduce l-lysine by-production without surrendering the cell growth of C. glutamicum.  相似文献   

3.
    

Background

Tumor formation and spread via the circulatory and lymphatic drainage systems is associated with metabolic reprogramming that often includes increased glycolytic metabolism relative to mitochondrial energy production. However, cells within a tumor are not identical due to genetic change, clonal evolution and layers of epigenetic reprogramming. In addition, cell hierarchy impinges on metabolic status while tumor cell phenotype and metabolic status will be influenced by the local microenvironment including stromal cells, developing blood and lymphatic vessels and innate and adaptive immune cells. Mitochondrial mutations and changes in mitochondrial electron transport contribute to metabolic remodeling in cancer in ways that are poorly understood.

Scope of Review

This review concerns the role of mitochondria, mitochondrial mutations and mitochondrial electron transport function in tumorigenesis and metastasis.

Major Conclusions

It is concluded that mitochondrial electron transport is required for tumor initiation, growth and metastasis. Nevertheless, defects in mitochondrial electron transport that compromise mitochondrial energy metabolism can contribute to tumor formation and spread. These apparently contradictory phenomena can be reconciled by cells in individual tumors in a particular environment adapting dynamically to optimally balance mitochondrial genome changes and bioenergetic status.

General Significance

Tumors are complex evolving biological systems characterized by genetic and adaptive epigenetic changes. Understanding the complexity of these changes in terms of bioenergetics and metabolic changes will permit the development of better combination anticancer therapies. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   

4.
Mitochondrial dysfunction is a prominent feature of Alzheimer’s disease (AD) and this can be contributed by aberrant metabolic enzyme function. But, the mechanism causing this enzymatic impairment is unclear. Amyloid precursor protein (APP) is known to be alternatively spliced to produce three major isoforms in the brain (APP695, APP751, APP770). Both APP770 and APP751 contain the Kunitz Protease Inhibitory (KPI) domain, but the former also contain an extra OX-2 domain. APP695 on the other hand, lacks both domains. In AD, up-regulation of the KPI-containing APP isoforms has been reported. But the functional contribution of this elevation is unclear. In the present study, we have expressed and compared the effect of the non-KPI containing APP695 and the KPI-containing APP751 on mitochondrial function. We found that the KPI-containing APP751 significantly decreased the expression of three major mitochondrial metabolic enzymes; citrate synthase, succinate dehydrogenase and cytochrome c oxidase (COX IV). This reduction lowers the NAD+/NADH ratio, COX IV activity and mitochondrial membrane potential. Overall, this study demonstrated that up-regulation of the KPI-containing APP isoforms is likely to contribute to the impairment of metabolic enzymes and mitochondrial function in AD.  相似文献   

5.
    
  相似文献   

6.
    
Utilization of Candida glabrata overproducing pyruvate is a promising strategy for high-level acetoin production. Based on the known regulatory and metabolic information, acetaldehyde and thiamine were fed to identify the key nodes of carboligase activity reaction (CAR) pathway and provide a direction for engineering C. glabrata. Accordingly, alcohol dehydrogenase, acetaldehyde dehydrogenase, pyruvate decarboxylase, and butanediol dehydrogenase were selected to be manipulated for strengthening the CAR pathway. Following the rational metabolic engineering, the engineered strain exhibited increased acetoin biosynthesis (2.24 g/L). In addition, through in silico simulation and redox balance analysis, NADH was identified as the key factor restricting higher acetoin production. Correspondingly, after introduction of NADH oxidase, the final acetoin production was further increased to 7.33 g/L. By combining the rational metabolic engineering and cofactor engineering, the acetoin-producing C. glabrata was improved stepwise, opening a novel pathway for rational development of microorganisms for bioproduction.  相似文献   

7.
代谢工程在核黄素生产上的应用   总被引:2,自引:0,他引:2  
核黄素(维生素B2)为天然水溶性的B族维生素,是维持机体代谢所必须的营养物质。目前核黄素的工业化生产主要有微生物发酵法和化学半合成法两种,其中微生物发酵法以生产工艺简单、原料廉价、环境友好以及资源可再生等优点而倍受世界核黄素生产商的青睐。代谢工程是近二十年来发展起来的新型学科,主要利用分子生物学技术对细胞进行遗传修饰,从而改进产物生成或细胞特性。为进一步提高核黄素产量,通过代谢工程手段构建出了核黄素高产菌株,其中尤以枯草芽孢杆菌最为成功。要得到较高的核黄素产率,必须保证碳架、能量等价物以及氧化还原辅(酶)因子在细胞代谢过程中处于适当的比率。以枯草芽孢杆菌进行核黄素生产为例,主要从增强碳源和能源利用效率、增强核黄素生物合成途径代谢流以及解除核黄素生物合成过程中的反馈调节方面综述了代谢工程在指导核黄素生产方面的应用,并讨论了其未来的发展方向。  相似文献   

8.

Background

Over the last years, several methods for the phenotype simulation of microorganisms, under specified genetic and environmental conditions have been proposed, in the context of Metabolic Engineering (ME). These methods provided insight on the functioning of microbial metabolism and played a key role in the design of genetic modifications that can lead to strains of industrial interest. On the other hand, in the context of Systems Biology research, biological network visualization has reinforced its role as a core tool in understanding biological processes. However, it has been scarcely used to foster ME related methods, in spite of the acknowledged potential.

Results

In this work, an open-source software that aims to fill the gap between ME and metabolic network visualization is proposed, in the form of a plugin to the OptFlux ME platform. The framework is based on an abstract layer, where the network is represented as a bipartite graph containing minimal information about the underlying entities and their desired relative placement. The framework provides input/output support for networks specified in standard formats, such as XGMML, SBGN or SBML, providing a connection to genome-scale metabolic models. An user-interface makes it possible to edit, manipulate and query nodes in the network, providing tools to visualize diverse effects, including visual filters and aspect changing (e.g. colors, shapes and sizes). These tools are particularly interesting for ME, since they allow overlaying phenotype simulation results or elementary flux modes over the networks.

Conclusions

The framework and its source code are freely available, together with documentation and other resources, being illustrated with well documented case studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0420-0) contains supplementary material, which is available to authorized users.  相似文献   

9.
There are a growing number of proteins which are reported to reside in multiple compartments within the eukaryotic cell. However, lack of appropriate methods limits our knowledge on the true extent of this phenomenon. In this study, we demonstrate a novel application of beta-galactosidase alpha-complementation to study dual distribution of proteins in yeast cells. Using a simple colony color phenotype, we show that alpha-complementation depends on co-compartmentalization of alpha and omega fragments and exploit this to probe dual localization of proteins between the cytosol and mitochondria in yeast. The quality of our assay was assessed by analysis of the known dual targeted enzyme fumarase and several mutant derivatives, which are exclusively localized to one or the other of these subcellular compartments. Addition of the alpha fragment did not abolish the enzymatic activity of the tagged proteins nor did it affect their localization. By examining 10 yeast gene products for distribution between the cytosol and the mitochondria, we demonstrate the potential of alpha-complementation to screen the mitochondrial proteome for dual distribution. Our data indicate the distribution of two uncharacterized proteins--Bna3 and Nif3--between the cytosol and the mitochondria.  相似文献   

10.
紫草宁形成相关的基因克隆及其代谢工程   总被引:3,自引:0,他引:3  
紫草是我国重要的中草药材 ,其中紫草宁是主要的药用成分。目前 ,组织培养技术已经能够工业化生产紫草宁药物。近年来 ,人们运用分子生物学方法和技术 ,从紫草培养细胞中分离和鉴定的一些与紫草宁形成相关的基因克隆 ,并且开展了紫草宁代谢工程的研究。综述了这两方面的主要研究进展 ,并对其后续的基础和应用研究进行了展望。  相似文献   

11.
    
《Process Biochemistry》2014,49(1):25-32
The compound 1,2,4-butanetriol (BT) is a valuable chemical used in the production of plasticizers, polymers, cationic lipids and other medical applications, and is conventionally produced via hydrogenation of malate. In this report, BT is biosynthesized by an engineered Escherichia coli from d-xylose. The pathway: d-xylose  d-xylonate  2-keto-3-deoxy-d-xylonate  3,4-dihydroxybutanal  BT, was constructed in E. coli by recruiting a xylose dehydrogenase and a keto acid decarboxylase from Caulobacter crescentus and Pseudomonas putida, respectively. Authentic BT was detected from cultures of the engineered strain. Further improvement on the strain was performed by blocking the native d-xylose and d-xylonate metabolic pathways which involves disruption of xylAB, yjhH and yagE genes in the host chromosome. The final construct produced 0.88 g L−1 BT from 10 g L−1 d-xylose with a molar yield of 12.82%. By far, this is the first report on the direct production of BT from d-xylose by a single microbial host. This may serve as a starting point for further metabolic engineering works to increase the titer of BT toward industrial scale viability.  相似文献   

12.
    
As an important biological methyl group donor, S-adenosyl-l-methionine is used as nutritional supplement or drug for various diseases, but bacterial strains that can efficiently produce S-adenosyl-l-methionine are not available. In this study, Corynebacterium glutamicum strain HW104 which can accumulate S-adenosyl-l-methionine was constructed from C. glutamicum ATCC13032 by deleting four genes thrB, metB, mcbR and Ncgl2640, and six genes metK, vgb, lysCm, homm, metX and metY were overexpressed in HW104 in different combinations, forming strains HW104/pJYW-4-metK-vgb, HW104/pJYW-4-SAM2C-vgb, HW104/pJYW-4-metK-vgb-metYX, and HW104/pJYW-4-metK-vgb-metYX-homm-lysCm. Fermentation experiments showed that HW104/pJYW-4-metK-vgb produced more S-adenosyl-l-methionine than other strains, and the yield achieved 196.7 mg/L (12.15 mg/g DCW) after 48 h. The results demonstrate the potential application of C. glutamicum for production of S-adenosyl-l-methionine without addition of l-methionine.  相似文献   

13.
It remains unclear how α-ketoisocaproate (KIC) and leucine are metabolized to stimulate insulin secretion. Mitochondrial BCATm (branched-chain aminotransferase) catalyzes reversible transamination of leucine and α-ketoglutarate to KIC and glutamate, the first step of leucine catabolism. We investigated the biochemical mechanisms of KIC and leucine-stimulated insulin secretion (KICSIS and LSIS, respectively) using BCATm−/− mice. In static incubation, BCATm disruption abolished insulin secretion by KIC, d,l-α-keto-β-methylvalerate, and α-ketocaproate without altering stimulation by glucose, leucine, or α-ketoglutarate. Similarly, during pancreas perfusions in BCATm−/− mice, glucose and arginine stimulated insulin release, whereas KICSIS was largely abolished. During islet perifusions, KIC and 2 mm glutamine caused robust dose-dependent insulin secretion in BCATm+/+ not BCATm−/− islets, whereas LSIS was unaffected. Consistently, in contrast to BCATm+/+ islets, the increases of the ATP concentration and NADPH/NADP+ ratio in response to KIC were largely blunted in BCATm−/− islets. Compared with nontreated islets, the combination of KIC/glutamine (10/2 mm) did not influence α-ketoglutarate concentrations but caused 120 and 33% increases in malate in BCATm+/+ and BCATm−/− islets, respectively. Although leucine oxidation and KIC transamination were blocked in BCATm−/− islets, KIC oxidation was unaltered. These data indicate that KICSIS requires transamination of KIC and glutamate to leucine and α-ketoglutarate, respectively. LSIS does not require leucine catabolism and may be through leucine activation of glutamate dehydrogenase. Thus, KICSIS and LSIS occur by enhancing the metabolism of glutamine/glutamate to α-ketoglutarate, which, in turn, is metabolized to produce the intracellular signals such as ATP and NADPH for insulin secretion.  相似文献   

14.
奎尼酸生物合成的代谢工程   总被引:1,自引:1,他引:1  
奎尼酸及其衍生物氢醌和苯醌等是一类重要的化工原料,可作为一些化学合成制剂和药物中间原料,且在食品和化学工业中有着广泛的应用。目前奎尼酸的制备方法有植物提取法、化学合成法、酶工程法和微生物发酵法,其中微生物发酵法是近年发展起来的一种十分经济有效的方法。在介绍奎尼酸的制备方法的基础上重点综述了应用代谢工程在生物合成奎尼酸基因工程菌的改造中的研究进展,其中涉及奎尼酸生物合成途径中相关基因及其酶的调控、中心代谢途径的改造和修饰等,并探讨了将来的发展前景。  相似文献   

15.
Protein secretion in yeast is generally associated with a burden to cellular metabolism. To investigate this metabolic burden in Schizosaccharomyces pombe, we constructed a set of strains secreting the model protein maltase in different amounts. We quantified the influence of protein secretion on the metabolism applying 13C-based metabolic flux analysis in chemostat cultures. Analysis of the macromolecular biomass composition revealed an increase in cellular lipid content at elevated levels of protein secretion and we observed altered metabolic fluxes in the pentose phosphate pathway, the TCA cycle, and around the pyruvate node including mitochondrial NADPH supply. Supplementing acetate to glucose or glycerol minimal media was found to improve protein secretion, accompanied by an increased cellular lipid content and carbon flux through the TCA cycle as well as increased mitochondrial NADPH production. Thus, systematic metabolic analyses can assist in identifying factors limiting protein secretion and in deriving strategies to overcome these limitations.  相似文献   

16.
以生物合成为基础的代谢工程和组合生物合成   总被引:9,自引:0,他引:9  
代谢工程和组合生物合成在筛选和发展新型药物方面日益成为生物、化学和医药界关注的重点。基于聚酮和聚肽类天然产物的独特化学结构和良好生物活性,研究它们的生物合成机制,将为合理化遗传修饰生物合成途径获得结构类似物提供遗传和生物化学的基础,实现利用现代生物学和化学的技术手段在微生物体内进行药物开发的目的。  相似文献   

17.
In addition to its role as a component of the mitochondrial respiratory chain and our only lipid-soluble antioxidant synthesized endogenously, in recent years coenzyme Q (CoQ) has been found to have an increasing number of other important functions required for normal metabolic processes. A number of genetic mutations that reduce CoQ biosynthesis are associated with serious functional disturbances that can be eliminated by dietary administration of this lipid, making CoQ deficiencies the only mitochondrial diseases which can be successfully treated at present. In connection with certain other diseases associated with excessive oxidative stress, the level of CoQ is elevated as a protective response. Aging, certain experimental conditions and several human diseases reduce this level, resulting in serious metabolic disturbances. Since dietary uptake of this lipid is limited, up-regulation of its biosynthetic pathway is of considerable clinical interest. One approach for this purpose is administration of epoxidated all-trans polyisoprenoids, which enhance both CoQ biosynthesis and levels in experimental systems.  相似文献   

18.
生物转化-从全细胞催化到代谢工程   总被引:2,自引:0,他引:2  
与传统的化学合成方法相比,利用生物的手段转化生产活性化合物及其衍生物无疑具有更大的吸引力。随着用于生物转化微生物种类的增多,生物转化的应用领域不断得到扩大。生物转化的发展经历了野生型全细胞催化,基因工程微生物全细胞反应,以及利用系统分析和代谢工程进行全局性调控等几个阶段。以下对这一发展趋势及相关研究的最新进展作一简要综述。  相似文献   

19.
Abstract Extracts of Zymomonas mobilis in the presence of NADPH converted tritium-labelled farnesyl diphosphate (FPP) into squalene, resulting from the activity of squalene synthase, as well as diploptene and diplopterol, derived from further squalene cyclisation. An unidentified isoprenoid representing up to 70% of the conversion products of FPP and different from presqualene alcohol was also formed, even in the absence of NADPH. Addition of squalestatin 1, an inhibitor of squalene synthase, blocked biosynthesis from FPP of the three former triterpenes, in accordance with the role of squalene synthase in their formation, as well as that of the unknown compound.  相似文献   

20.
As a biorefinery platform host, Escherichia coli has been used extensively to produce metabolites of commercial interest. Integration of foreign DNA onto the bacterial genome allows for stable expression overcoming the need for plasmid expression and its associated instability. Despite the development of numerous tools and genome editing technologies, the question of where to incorporate a synthetic pathway remains unanswered. To address this issue, we studied the genomic expression in E. coli and linked it not only to 26 rationally selected genomic locations, but also to the gene direction in relation to the DNA replication fork, to the carbon and nitrogen source, to DNA folding and supercoiling, and to metabolic burden. To enable these experiments, we have designed a fluorescent expression cassette to eliminate specific local effects on gene expression. Overall it can be concluded that although the expression range obtained by changing the genomic location of a pathway is small compared to the range typically seen in promoter-RBS libraries, the effect of culture medium, environmental stress and metabolic burden can be substantial. The characterization of multiple effects on genomic expression, and the associated libraries of well-characterized strains, will only stimulate and improve the creation of stable production hosts fit for industrial settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号