首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Corynebacterium glutamicum with the ability to simultaneously utilize glucose/pentose mixed sugars was metabolically engineered to overproduce shikimate, a valuable hydroaromatic compound used as a starting material for the synthesis of the anti-influenza drug oseltamivir. To achieve this, the shikimate kinase and other potential metabolic activities for the consumption of shikimate and its precursor dehydroshikimate were inactivated. Carbon flux toward shikimate synthesis was enhanced by overexpression of genes for the shikimate pathway and the non-oxidative pentose phosphate pathway. Subsequently, to improve the availability of the key aromatics precursor phosphoenolpyruvate (PEP) toward shikimate synthesis, the PEP: sugar phosphotransferase system (PTS) was inactivated and an endogenous myo-inositol transporter IolT1 and glucokinases were overexpressed. Unexpectedly, the resultant non-PTS strain accumulated 1,3-dihydroxyacetone (DHA) and glycerol as major byproducts. This observation and metabolome analysis identified glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-catalyzed reaction as a limiting step in glycolysis. Consistently, overexpression of GAPDH significantly stimulated both glucose consumption and shikimate production. Blockage of the DHA synthesis further improved shikimate yield. We applied an aerobic, growth-arrested and high-density cell reaction to the shikimate production by the resulting strain and notably achieved the highest shikimate titer (141 g/l) and a yield (51% (mol/mol)) from glucose reported to date after 48 h in minimal medium lacking nutrients required for cell growth. Moreover, comparable shikimate productivity could be attained through simultaneous utilization of glucose, xylose, and arabinose, enabling efficient shikimate production from lignocellulosic feedstocks. These findings demonstrate that C. glutamicum has significant potential for the production of shikimate and derived aromatic compounds.  相似文献   

2.
3.
Squalene epoxidase catalyzes the formation of 2,3-oxidosqualene from squalene and in plants is the last enzyme common to all biosynthetic pathways leading to an array of triterpene derivatives like phytosterols, brassinosteroid phytohormones or saponins. In this work, we present a squalene epoxidase gene (NSSQE1) from the triterpene saponin producing plant Nigella sativa. The gene product showed a high degree of homology to functional squalene epoxidases (SQEs) from Arabidopsis thaliana and was able to complement SQE deficient yeast that harboured a knockout mutation in the underlying erg1 gene. Moreover, the expression of the NSSQE1 gene in ERG1 wild type yeast revealed that NSSQE1 conferred resistance towards terbinafine, an inhibitor of fungal SQEs. The latter suggested that a terbinafine-dependent NSSQE1 selection marker system can be developed for yeast. The gene NSSQE1 was ubiquitously expressed in all plant tissues analysed, including roots where no triterpene saponins are produced. Therefore, we argue that NSSQE1 is a housekeeping gene for triterpene metabolism in Nigella sativa. Similar to triterpene saponins, NSSQE1 was up-regulated by methyl jasmonate in leaves and should also be functionally involved in saponin biosynthesis in Nigella sativa.  相似文献   

4.
Engineering microbes to produce terpenes from renewable feedstock is a promising alternative to traditional production approaches. Generally, terpenes are not readily secreted by microbial cells, and their distribution within cells is usually obscure and often a restricting factor for the overproduction of terpenes due to the storage limitation. Here, we determined that squalene overproduced in the cytoplasm of Saccharomyces cerevisiae was distributed in a form similar to oil droplets. Interestingly, these suspected oil droplets were confirmed to be inflated peroxisomes that were swollen along with the production of squalene, indicating that peroxisomes in S. cerevisiae are dynamic depots for the storage of squalene. In view of this, harnessing peroxisomes as subcellular compartments for squalene synthesis was performed, achieving a 138-fold improvement in squalene titer (1312.82 mg/L) relative to the parent strain, suggesting that the peroxisome of S. cerevisiae is an efficient subcellular factory for the synthesis of terpenes. By dual modulation of cytoplasmic and peroxisomal engineering, the squalene titer was further improved to 1698.02 mg/L. After optimizing a two-stage fed-batch fermentation method, the squalene titer reached 11.00 g/L, the highest ever reported. This provides new insight into the synthesis and storage of squalene in peroxisomes and reveals the potential of harnessing peroxisomes to overproduce terpenes in S. cerevisiae through dual cytoplasmic-peroxisomal engineering.  相似文献   

5.
代谢工程在核黄素生产上的应用   总被引:2,自引:0,他引:2  
核黄素(维生素B2)为天然水溶性的B族维生素,是维持机体代谢所必须的营养物质。目前核黄素的工业化生产主要有微生物发酵法和化学半合成法两种,其中微生物发酵法以生产工艺简单、原料廉价、环境友好以及资源可再生等优点而倍受世界核黄素生产商的青睐。代谢工程是近二十年来发展起来的新型学科,主要利用分子生物学技术对细胞进行遗传修饰,从而改进产物生成或细胞特性。为进一步提高核黄素产量,通过代谢工程手段构建出了核黄素高产菌株,其中尤以枯草芽孢杆菌最为成功。要得到较高的核黄素产率,必须保证碳架、能量等价物以及氧化还原辅(酶)因子在细胞代谢过程中处于适当的比率。以枯草芽孢杆菌进行核黄素生产为例,主要从增强碳源和能源利用效率、增强核黄素生物合成途径代谢流以及解除核黄素生物合成过程中的反馈调节方面综述了代谢工程在指导核黄素生产方面的应用,并讨论了其未来的发展方向。  相似文献   

6.
The thermophilic anaerobe Thermoanaerobacterium saccharolyticum JW/SL-YS485 was investigated as a host for n-butanol production. A systematic approach was taken to demonstrate functionality of heterologous components of the clostridial n-butanol pathway via gene expression and enzymatic activity assays in this organism. Subsequently, integration of the entire pathway in the wild-type strain resulted in n-butanol production of 0.85 g/L from 10 g/L xylose, corresponding to 21% of the theoretical maximum yield. We were unable to integrate the n-butanol pathway in strains lacking the ability to produce acetate, despite the theoretical overall redox neutrality of n-butanol formation. However, integration of the n-butanol pathway in lactate deficient strains resulted in n-butanol production of 1.05 g/L from 10 g/L xylose, corresponding to 26% of the theoretical maximum.  相似文献   

7.
8.
9.
Manipulation of monoterpene synthases to maximize flux towards targeted products from GPP (geranyl diphosphate) is the main challenge for heterologous monoterpene overproduction, in addition to cell toxicity from compounds themselves. In our study, by manipulation of the key enzymes geraniol synthase (GES) and farnesyl diphosphate synthase (Erg20), geraniol (a valuable acyclic monoterpene alcohol) overproduction was achieved in Saccharomyces cerevisiae with truncated 3-hydroxy-3-methylglutaryl-coenzyme reductase (tHMGR) and isopentenyl diphosphate isomerase (IDI1) overexpressed. The expressions of all above engineered genes were under the control of Gal promoter for alleviating product toxicity. Geraniol production varied from trace amount to 43.19 mg/L (CrGES, GES from Catharanthus roseus) by screening of nine GESs from diverse species. Further through protein structure analysis and site-directed mutation in CrGES, it was firstly demonstrated that among the high-conserved amino acid residues located in active pocket, Y436 and D501 with strong affinity to diphosphate function group, were critical for the dephosphorylation (the core step for geraniol formation). Moreover, the truncation position of the transit peptide from the N-terminus of CrGES was found to influence protein expression and activity significantly, obtaining a titer of 191.61 mg/L geraniol in strain with CrGES truncated at S43 (t3CrGES). Furthermore, directed by surface electrostatics distribution of t3CrGES and Erg20WW (Erg20F96W-N127W), co-expression of the reverse fusion of Erg20ww/t3CrGES and another copy of Erg20WW promoted the geraniol titer to 523.96 mg/L at shakes flask level, due to enhancing GPP accessibility led by protein interaction of t3CrGES-Erg20WW and the free Erg20WW. Eventually, a highest reported titer of 1.68 g/L geraniol in eukaryote cells was achieved in 2.0 L fed-batch fermentation under carbon restriction strategy. Our research opens large opportunities for other microbial production of monoterpenes. It also sets a good reference for desired compounds overproduction in microorganisms in terms of manipulation of key enzymes by protein engineering and metabolic engineering.  相似文献   

10.
本文对代谢工程的发展状况从研究方法,在医药、农业及环保中应用等几方面做了概括地介绍;从宿主的选择,加速限速反应,改变代谢流和生产程序的优化几方面较为详细地评述了代谢工程在苯丙氨酸基因工程菌构建方面的应用,并对代谢工程的未来发展进行了展望。  相似文献   

11.
啤酒酵母代谢工程研究进展   总被引:1,自引:0,他引:1  
啤酒工业上应用的啤酒酵母菌株在生产中都会存在着某些方面的缺陷。通过分析啤酒酵母某些代谢产物的代谢途径,寻找改变其代谢流量的方法,然后用分子生物学手段对其代谢流量加以改变,来调节啤酒酵母某些产物的代谢水平已经成为啤酒酵母育种的新方式。对酵母的底物利用、可操作性、控制有害副产物的产量及改善啤酒风味等方面的研究成果进行了综述。  相似文献   

12.
Summary The mitochondrial nucleoid is a compact structure composed of DNA and protein. By fluorescence microscopy, decondensation of the nucleoids was observed when yeast and tobacco mitochondria were osmotically lysed and subjected to an electric field. Structures stained with ethidium bromide were seen moving toward either the anode or the cathode. Since the movement of deproteinized DNA is toward the anode, the structures moving toward the cathode represent DNA-protein complexes with a net positive charge. Nucleoid decondensation and unfolding of the DNA probably resulted from the removal of weakly bound proteins; yet high-affinity basic proteins were evidently retained yielding cationic DNA-protein structures. Some of the positively charged structures were observed to break, presumably at single-stranded DNA regions, releasing negatively charged particles. The DNA-protein structures were complex branching forms larger than the unit genome, suggesting that multigenomic, concatemeric DNA is present within the mitochondria.Abbreviations DAPI 4,6-diamidino-2-phenylindole - EtBr ethidium bromide - HMG high-mobility group - mt-genome mitochondrial genome - mt-nucleoid mitochondrial nucleoid - PFGE pulsed-field gel electrophoresis - pt-nucleoid plastid nucleoid - ssDNA single-stranded DNA  相似文献   

13.
The yeast Torulopsis glabrata CCTCC M202019, which is used for industrial pyruvate production, was chosen to explore the suitability of engineering this multi-vitamin auxotrophic yeast for increased malate production. Various metabolic engineering strategies were used to manipulate carbon flux from pyruvate to malate: (i) overexpression of pyruvate carboxylase and malate dehydrogenase; (ii) identification of the bottleneck in malate production by model iNX804; (iii) simultaneous overexpression of genes RoPYC, RoMDH and SpMAE1. Using these strategies, 8.5 g L–1 malate was accumulated in the engineered strain T.G-PMS, which was about 10-fold greater than that of the control strain T.G-26. The results presented here suggest that T. glabrata CCTCC M202019 is a promising candidate for industrial malate production.  相似文献   

14.
This review discusses metabolic engineering research with an emphasis on evolutionary (whole cell and protein) engineering, which is an inverse metabolic engineering approach. For each section on metabolic, inverse metabolic and evolutionary engineering research, a general review of the major global studies in the literature is made and research examples from Turkey are given and discussed. It is expected that with the rapid development in systems biology and the novel powerful analytical technologies to identify the genetic basis of cellular phenotypes, metabolic and evolutionary engineering research will become widespread and increasingly important in Turkey, following global scientific trends.  相似文献   

15.
Microbial production of chemicals and materials from renewable carbon sources is becoming increasingly important to help establish sustainable chemical industry. In this paper, we review current status of metabolic engineering for the bio-based production of linear and saturated dicarboxylic acids and diamines, important platform chemicals used in various industrial applications, especially as monomers for polymer synthesis. Strategies for the bio-based production of various dicarboxylic acids having different carbon numbers including malonic acid (C3), succinic acid (C4), glutaric acid (C5), adipic acid (C6), pimelic acid (C7), suberic acid (C8), azelaic acid (C9), sebacic acid (C10), undecanedioic acid (C11), dodecanedioic acid (C12), brassylic acid (C13), tetradecanedioic acid (C14), and pentadecanedioic acid (C15) are reviewed. Also, strategies for the bio-based production of diamines of different carbon numbers including 1,3-diaminopropane (C3), putrescine (1,4-diaminobutane; C4), cadaverine (1,5-diaminopentane; C5), 1,6-diaminohexane (C6), 1,8-diaminoctane (C8), 1,10-diaminodecane (C10), 1,12-diaminododecane (C12), and 1,14-diaminotetradecane (C14) are revisited. Finally, future challenges are discussed towards more efficient production and commercialization of bio-based dicarboxylic acids and diamines.  相似文献   

16.
异黄酮是一类具有C-6/C-3/C-6骨架的二次代谢产物,具有抗氧化和抗肿瘤活性。异黄酮与黄酮类物质具有相似的苯丙烷生物合成途径。天然的绝大部分异黄酮分布在豆科植物中,目前在大豆中已经发现了超过12个异黄酮(苷)。大豆异黄酮的生物合成主要涉及三个关键的酶查尔酮合酶(CHS)、查尔酮异构酶(CHI)和异黄酮合酶(IFS)。总结了大豆异黄酮的提取分离方法和生物合成途径,着重综述了CHI、CHS、IFS生物学特征和功能及异黄酮的代谢工程研究。  相似文献   

17.
Ginsenosides are the primary bioactive components of ginseng, which is a popular medicinal herb and exhibits diverse pharmacological activities. Protopanaxadiol is the aglycon of several dammarane-type ginsenosides, which also has anticancer activity. For microbial production of protopanaxadiol, dammarenediol-II synthase and protopanaxadiol synthase genes of Panax ginseng, together with a NADPH-cytochrome P450 reductase gene of Arabidopsis thaliana, were introduced into Saccharomyces cerevisiae, resulting in production of 0.05 mg/g DCW protopanaxadiol. Increasing squalene and 2,3-oxidosqualene supplies through overexpressing truncated 3-hydroxyl-3-methylglutaryl-CoA reductase, farnesyl diphosphate synthase, squalene synthase and 2,3-oxidosqualene synthase genes, together with increasing protopanaxadiol synthase activity through codon optimization, led to 262-fold increase of protopanaxadiol production. Finally, using two-phase extractive fermentation resulted in production of 8.40 mg/g DCW protopanaxadiol (1189 mg/L), together with 10.94 mg/g DCW dammarenediol-II (1548 mg/L). The yeast strains engineered in this work can serve as the basis for creating an alternative way for production of ginsenosides in place of extraction from plant sources.  相似文献   

18.
微生物代谢工程原理与应用   总被引:1,自引:0,他引:1  
代谢工程是利用分子生物学原理系统分析细胞代谢网络,并通过DNA重组技术和应用分析生物学相关的遗传学手段对细胞进行有精确目标的基因操作,改变微生物原有的代谢或调节系统,实现目的产物代谢活性的提高。代谢工程综合了生物化学、化学工程、数学分析等多学科内容,是当前国内外学者研究热点之一。论述了微生物代谢工程的理论基础及其应用进展和前景。  相似文献   

19.
L-乳酸是一种重要的有机化合物,具有广泛的应用价值。微生物发酵法生产是当前L-乳酸的主要来源,但受限于精确的发酵条件、菌体产物耐受能力低及底物要求高等因素,导致L-乳酸供给不足且价格偏高。鉴于酿酒酵母利用廉价底物生产有价值物质方面的诸多优势,并随着分子生物学技术的发展,利用代谢工程改造酿酒酵母本身固有的代谢网络,使其高产L-乳酸已成为当前研究的热点。从L-乳酸的异源生产、关键途径改造及菌体生长能力恢复三个方面归纳了关于代谢工程改造酿酒酵母生产L-乳酸的研究进展。最后,指出了酿酒酵母异源生产L-乳酸存在的不足和今后研究的方向。  相似文献   

20.
Very-long-chain polyunsaturated fatty acids (VLCPUFAs) have demonstrated health benefits. Currently, the main sources for these fatty acids are oils from fish and microbes. However, shrinking fish populations and the high cost of microbial oil extraction are making the economic sustainability of these sources questionable. Metabolic engineering of oilseed crops could provide a novel and sustainable source of VLCPUFAs. Recently, genes encoding desaturases and elongases from microbes have been identified and successfully expressed in oilseed plants. However, the levels of VLCPUFAs produced in transgenic plants expressing these genes are still much lower than those found in native microbes. This review assesses the recent progress and future perspectives in the metabolic engineering of PUFAs in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号