首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantitative dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides estimates of physiologically relevant parameters related to tissue blood flow, vascular permeability, and tissue volume fractions which can then be used for prognostic and diagnostic reasons. However, standard techniques for DCE-MRI analysis ignore intra-voxel diffusion, which may play an important role in contrast agent distribution and voxel signal intensity and, thus, will affect quantification of the aforementioned parameters. To investigate the effect of intra-voxel diffusion on quantitative DCE-MRI, we developed a finite element model of contrast enhancement at the voxel level. For diffusion in the range of that expected for gadolinium chelates in tissue (i.e., 1×10−4 to 4×10−4 mm2/s), parameterization errors range from −58% to 12% for Ktrans, −9% to 8% for ve, and −60% to 213% for vp over the range of Ktrans, ve, vp, and temporal resolutions investigated. Thus the results show that diffusion has a significant effect on parameterization using standard techniques.  相似文献   

2.
PurposeTo investigate the biophysical meaning of Diffusion Kurtosis Imaging (DKI) parameters via correlations with the perfusion parameters obtained from a long Dynamic Contrast Enhanced MRI scan, in head and neck (HN) cancer.MethodsTwenty two patients with newly diagnosed HN tumor were included in the present retrospective study. Some patients had multiple lesions, therefore a total of 26 lesions were analyzed. DKI was acquired using 5b values at 0, 500, 1000,1500 and 2000 s/mm2. DCE-MRI was obtained with 130 dynamic volumes, with a temporal resolution of 5 s, to achieve a long scan time (>10 min). The apparent diffusion coefficient Dapp and apparent diffusional kurtosis Kapp were calculated voxel-by-voxel, removing the point at b value = 0 to eliminate possible perfusion effects on the parameter estimations. The transfer constants Ktrans and Kep, ve, and the histogram-based entropy (En) and interquartile range (IQR) of each DCE-MRI parameter were quantified. Correlations between all variables were investigated by the Spearman’s Rho correlation test.ResultsModerate relationships emerged between Dapp and Kep (Rho =  − 0.510, p = 0.009), and between Dapp and ve (Rho = 0.418, p = 0.038). En(Kep) was significantly related to Kapp (Rho = 0.407, p = 0.043), while IQR(Kep) showed an inverse association with Dapp (Rho = -0.422, p = 0.035).ConclusionsA weak to intermediate correlation was found between DKI parameters and both Kep and ve. The kurtosis was associated to the intratumoral heterogeneity and complexity of the capillary permeability, expressed by En(Kep).  相似文献   

3.
Pharmacokinetic analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) time-course data allows estimation of quantitative parameters such as Ktrans (rate constant for plasma/interstitium contrast agent transfer), ve (extravascular extracellular volume fraction), and vp (plasma volume fraction). A plethora of factors in DCE-MRI data acquisition and analysis can affect accuracy and precision of these parameters and, consequently, the utility of quantitative DCE-MRI for assessing therapy response. In this multicenter data analysis challenge, DCE-MRI data acquired at one center from 10 patients with breast cancer before and after the first cycle of neoadjuvant chemotherapy were shared and processed with 12 software tools based on the Tofts model (TM), extended TM, and Shutter-Speed model. Inputs of tumor region of interest definition, pre-contrast T1, and arterial input function were controlled to focus on the variations in parameter value and response prediction capability caused by differences in models and associated algorithms. Considerable parameter variations were observed with the within-subject coefficient of variation (wCV) values for Ktrans and vp being as high as 0.59 and 0.82, respectively. Parameter agreement improved when only algorithms based on the same model were compared, e.g., the Ktrans intraclass correlation coefficient increased to as high as 0.84. Agreement in parameter percentage change was much better than that in absolute parameter value, e.g., the pairwise concordance correlation coefficient improved from 0.047 (for Ktrans) to 0.92 (for Ktrans percentage change) in comparing two TM algorithms. Nearly all algorithms provided good to excellent (univariate logistic regression c-statistic value ranging from 0.8 to 1.0) early prediction of therapy response using the metrics of mean tumor Ktrans and kep (= Ktrans/ve, intravasation rate constant) after the first therapy cycle and the corresponding percentage changes. The results suggest that the interalgorithm parameter variations are largely systematic, which are not likely to significantly affect the utility of DCE-MRI for assessment of therapy response.  相似文献   

4.
The purpose of this study is to investigate the ability of multivariate analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted MRI (DW-MRI) parametric maps, obtained early in the course of therapy, to predict which patients will achieve pathologic complete response (pCR) at the time of surgery. Thirty-three patients underwent DCE-MRI (to estimate Ktrans, ve, kep, and vp) and DW-MRI [to estimate the apparent diffusion coefficient (ADC)] at baseline (t1) and after the first cycle of neoadjuvant chemotherapy (t2). Four analyses were performed and evaluated using receiver-operating characteristic (ROC) analysis to test their ability to predict pCR. First, a region of interest (ROI) level analysis input the mean Ktrans, ve, kep, vp, and ADC into the logistic model. Second, a voxel-based analysis was performed in which a longitudinal registration algorithm aligned serial parameters to a common space for each patient. The voxels with an increase in kep, Ktrans, and vp or a decrease in ADC or ve were then detected and input into the regression model. In the third analysis, both the ROI and voxel level data were included in the regression model. In the fourth analysis, the ROI and voxel level data were combined with selected clinical data in the regression model. The overfitting-corrected area under the ROC curve (AUC) with 95% confidence intervals (CIs) was then calculated to evaluate the performance of the four analyses. The combination of kep, ADC ROI, and voxel level data achieved the best AUC (95% CI) of 0.87 (0.77–0.98).  相似文献   

5.
Poor disease-free and overall survival rates in locally advanced cervical cancer are associated with a tumor micro-environment characterized by extensive hypoxia, interstitial hypertension, and high lactate concentrations. The potential of gadolinium diethylenetriamine pentaacetic acid-based dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in assessing the microenvironment and microenvironment-associated aggressiveness of cervical carcinomas was investigated in this preclinical study. CK-160 and TS-415 cervical carcinoma xenografts were used as tumor models. DCE-MRI was carried out at 1.5 T, and parametric images of Ktrans and ve were produced by pharmacokinetic analysis of the DCE-MRI series. Pimonidazole was used as a marker of hypoxia. A Millar catheter was used to measure tumor interstitial fluid pressure (IFP). The concentrations of glucose, adenosine triphosphate (ATP), and lactate were measured by induced metabolic bioluminescence imaging. High incidence of lymph node metastases was associated with high hypoxic fraction and high lactate concentration in CK-160 tumors and with high IFP and high lactate concentration in TS-415 tumors. Low Ktrans was associated with high hypoxic fraction, low glucose concentration, and high lactate concentration in tumors of both lines and with high incidence of metastases in CK-160 tumors. Associations between ve and microenvironmental parameters or metastatic propensity were not detected in any of the tumor lines. Taken together, this preclinical study suggests that Ktrans is a potentially useful biomarker for poor outcome of treatment in advanced cervical carcinoma. The possibility that Ktrans may be used to identify patients with cervical cancer who are likely to benefit from particularly aggressive treatment merits thorough clinical investigations.  相似文献   

6.
The purpose of this research was to test whether dynamic contrast enhanced MRI could assess the effect of green tea on the angiogenic properties of transplanted rodent tumors. Copenhagen rats bearing AT6.1 prostate tumors inoculated in the hind limbs were randomly assigned to cages in which they were allowed to only drink either plain water (control group) or water containing green tea extract (treated group). Assignments were made after a baseline MRI experiment (week 0) was performed on each rat at 4.7 T. All the rats were subsequently imaged at day 7 (week 1) and day 14 (week 2) to follow tumor growth and vascular development. The two-compartment pharmacokinetic model was used to analyze the dynamic contrast Gd-DTPA enhanced MRI data on a pixel-by-pixel basis over the tumor area to obtain the volume transfer constant (Ktrans) and extravascular extracellular space (ve). An identity Chi-squared test showed that the distributions of averaged histograms (n = 6) of Ktrans and ve were significantly different from week 0 to both weeks 1 and 2 (p < 0.001) in both the control and the treated rats due to increasing areas of tumor necrosis. However, the tumor growth rate was statistically indistinguishable between control and treated rats. There was no significant difference in the distributions of Ktrans and ve between control and treated rats. The results showed that no effects of green tea on tumor micro-vasculature were measurable by dynamic Gd-DTPA enhanced MRI.  相似文献   

7.
We report longitudinal diffusion-weighted magnetic resonance imaging (DW-MRI) and dynamic contrast enhanced (DCE)-MRI (7 T) studies designed to identify functional changes, prior to volume changes, in trastuzumab-sensitive and resistant HER2 + breast cancer xenografts. Athymic mice (N = 33) were subcutaneously implanted with trastuzumab-sensitive (BT474) or trastuzumab-resistant (HR6) breast cancer cells. Tumor-bearing animals were distributed into four groups: BT474 treated and control, HR6 treated and control. DW- and DCE-MRI were conducted at baseline, day 1, and day 4; trastuzumab (10 mg/kg) or saline was administered at baseline and day 3. Animals were sacrificed on day 4 and tumors resected for histology. Voxel-based DW- and DCE-MRI analyses were performed to generate parametric maps of ADC, Ktrans, and ve. On day 1, no differences in tumor size were observed between any of the groups. On day 4, significant differences in tumor size were observed between treated vs. control BT474, treated BT474 vs. treated HR6, and treated vs. control HR6 (P < .0001). On day 1, ve was significantly higher in the BT474 treated group compared to BT474 control (P = .002) and HR6 treated (P = .004). On day 4, ve and Ktrans were significantly higher in the treated BT474 tumors compared to BT474 controls (P = .0007, P = .02, respectively). A significant decrease in Ki67 staining reinforced response in the BT474 treated group compared to BT474 controls (P = .02). This work demonstrated that quantitative MRI biomarkers have the sensitivity to differentiate treatment response in HER2 + tumors prior to changes in tumor size.  相似文献   

8.
The purpose of this study was to evaluate the sensitivity of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), diffusion-weighted (DW)-MRI, in vivo MR spectroscopy (MRS), and ex vivo high-resolution magic angle spinning (HR MAS) MRS for the detection of early treatment effects after docetaxel administration. Docetaxel is an antitumor agent that leads to mitotic arrest, apoptosis, and mitotic catastrophe cell death. Gene expression analysis was performed to detect altered regulation in gene expression pathways related to docetaxel treatment effects. Histopathology was used as a measure of alterations in apoptosis and proliferation due to docetaxel. Experiments were performed using MCF7 mouse xenografts, randomized into a docetaxel (30 mg/kg) treatment group and a control group given saline. MRI/MRS was performed 1 day before treatment and 1, 3, and 6 days after treatment. Parametric images of the extracellular extravascular volume fraction (ve) transfer constant (Ktrans) and the apparent diffusion coefficient (ADC) were calculated from the DCE-MRI and DW-MRI data. Biopsies were analyzed by HR MAS MRS, and histopathology and gene expression profiles were determined (Illumina). A significant increase in the ADC 3 and 6 days after treatment and a significant decrease in total choline and a higher ve were found in treated tumors 6 days after treatment. No significant difference was found in the Ktrans between the two groups. Our results show that docetaxel induces apoptosis and decreases proliferation in MCF7 xenografts. Further, these phenomena can be monitored by in vivo MRS, DW-MRI, and gene expression.  相似文献   

9.

Objective

To demonstrate the feasibility of simultaneous acquisition of 18F-FDG-PET, diffusion-weighted imaging (DWI) and T1-weighted dynamic contrast-enhanced MRI (T1w-DCE) in an integrated simultaneous PET/MRI in patients with head and neck squamous cell cancer (HNSCC) and to investigate possible correlations between these parameters.

Methods

17 patients that had given informed consent (15 male, 2 female) with biopsy-proven HNSCC underwent simultaneous 18F-FDG-PET/MRI including DWI and T1w-DCE. SUVmax, SUVmean, ADCmean, ADCmin and K trans, k ep and v e were measured for each tumour and correlated using Spearman’s ρ.

Results

Significant correlations were observed between SUVmean and K trans (ρ = 0.43; p ≤ 0.05); SUVmean and k ep (ρ = 0.44; p ≤ 0.05); K trans and k ep (ρ = 0.53; p ≤ 0.05); and between k ep and v e (ρ = -0.74; p ≤ 0.01). There was a trend towards statistical significance when correlating SUVmax and ADCmin (ρ = -0.35; p = 0.08); SUVmax and K trans (ρ = 0.37; p = 0.07); SUVmax and k ep (ρ = 0.39; p = 0.06); and ADCmean and v e (ρ = 0.4; p = 0.06).

Conclusion

Simultaneous 18F-FDG-PET/MRI including DWI and T1w-DCE in patients with HNSCC is feasible and allows depiction of complex interactions between glucose metabolism, microcirculatory parameters and cellular density.  相似文献   

10.

Purpose

To investigate the utility of dynamic contrast-enhanced MRI (DCE-MRI) with Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) for detecting liver fibrosis induced by carbon tetrachloride (CCl4) in rats.

Methods

This study was approved by the institutional animal care and use committee. Liver fibrosis in rats was induced by intraperitoneal injection of 1 mL/kg 50% CCl4 twice a week for 4-13 weeks. Control rats were injected with saline. Liver fibrosis was graded using the Metaviar score: no fibrosis (F0), mild fibrosis (F1-F2) and advanced fibrosis (F3-F4). DCE-MRI with Gd-EOB-DTPA was performed for all rats. Ktrans, Kep, Ve and iAUC of the liver parenchyma were measured. Relative enhancement (RE) value of the liver was calculated on T1-weighted images at 15, 20 and 25 min after Gd-EOB-DTPA administration.

Results

Thirty-five rats were included: no fibrosis (n=13), mild fibrosis (n=11) and advanced fibrosis (n=11). Ktrans and iAUC values were highest in advanced fibrosis group and lowest in no fibrosis group (P<0.05). The area under the receiver operating characteristic curve (AUROC) for fibrosis (stages F1 and greater) were 0.773 and 0.882 for Ktrans and iAUC, respectively. AUROC for advanced fibrosis were 0.835 and 0.867 for Ktrans and iAUC, respectively. Kep and RE values were not able to differentiate fibrosis stages (all P>0.05).

Conclusion

Ktrans and iAUC obtained from DCE-MRI with Gd-EOB-DTPA are useful for the detection and staging of rat liver fibrosis induced by CCl4.  相似文献   

11.

Purpose

Increased microvascularization of the abdominal aortic aneurysm (AAA) vessel wall has been related to AAA progression and rupture. The aim of this study was to compare the suitability of three pharmacokinetic models to describe AAA vessel wall enhancement using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).

Materials and Methods

Patients with AAA underwent DCE-MRI at 1.5 Tesla. The volume transfer constant (Ktrans), which reflects microvascular flow, permeability and surface area, was calculated by fitting the blood and aneurysm vessel wall gadolinium concentration curves. The relative fit errors, parameter uncertainties and parameter reproducibilities for the Patlak, Tofts and Extended Tofts model were compared to find the most suitable model. Scan-rescan reproducibility was assessed using the interclass correlation coefficient and coefficient of variation (CV). Further, the relationship between Ktrans and AAA size was investigated.

Results

DCE-MRI examinations from thirty-nine patients (mean age±SD: 72±6 years; M/F: 35/4) with an mean AAA maximal diameter of 49±6 mm could be included for pharmacokinetic analysis. Relative fit uncertainties for Ktrans based on the Patlak model (17%) were significantly lower compared to the Tofts (37%) and Extended Tofts model (42%) (p<0.001). Ktrans scan-rescan reproducibility for the Patlak model (ICC = 0.61 and CV = 22%) was comparable with the Tofts (ICC = 0.61, CV = 23%) and Extended Tofts model (ICC = 0.76, CV = 22%). Ktrans was positively correlated with maximal AAA diameter (Spearman’s ρ = 0.38, p = 0.02) using the Patlak model.

Conclusion

Using the presented imaging protocol, the Patlak model is most suited to describe DCE-MRI data of the AAA vessel wall with good Ktrans scan-rescan reproducibility.  相似文献   

12.

Objectives

Glucose metabolism, perfusion, and water diffusion may have a relationship or affect each other in the same tumor. The understanding of their relationship could expand the knowledge of tumor characteristics and contribute to the field of oncologic imaging. The purpose of this study was to evaluate the relationships between metabolism, vasculature and cellularity of advanced hepatocellular carcinoma (HCC), using multimodality imaging such as 18F-FDG positron emission tomography (PET), dynamic contrast enhanced (DCE)-MRI, and diffusion weighted imaging(DWI).

Materials and Methods

Twenty-one patients with advanced HCC underwent 18F-FDG PET, DCE-MRI, and DWI before treatment. Maximum standard uptake values (SUVmax) from 18F-FDG-PET, variables of the volume transfer constant (Ktrans) from DCE-MRI and apparent diffusion coefficient (ADC) from DWI were obtained for the tumor and their relationships were examined by Spearman’s correlation analysis. The influence of portal vein thrombosis on SUVmax and variables of Ktrans and ADC was evaluated by Mann-Whitney test.

Results

SUVmax showed significant negative correlation with Ktrans max (ρ = −0.622, p = 0.002). However, variables of ADC showed no relationship with variables of Ktrans or SUVmax (p>0.05). Whether portal vein thrombosis was present or not did not influence the SUV max and variables of ADC and Ktrans (p>0.05).

Conclusion

In this study, SUV was shown to be correlated with Ktrans in advanced HCCs; the higher the glucose metabolism a tumor had, the lower the perfusion it had, which might help in guiding target therapy.  相似文献   

13.

Background and Purpose

It is important to identify patients with head and neck squamous cell carcinoma (SCC) who fail to respond to chemoradiotherapy so that they can undergo post-treatment salvage surgery while the disease is still operable. This study aimed to determine the diagnostic performance of dynamic contrast enhanced (DCE)-MRI using a pharmacokinetic model for pre-treatment predictive imaging, as well as post-treatment diagnosis, of residual SCC at primary and nodal sites in the head and neck.

Material and Methods

Forty-nine patients with 83 SCC sites (primary and/or nodal) underwent pre-treatment DCE-MRI, and 43 patients underwent post-treatment DCE-MRI, of which 33 SCC sites had a residual mass amenable to analysis. Pre-treatment, post-treatment and % change in the mean Ktrans, kep, ve and AUGC were obtained from SCC sites. Logistic regression was used to correlate DCE parameters at each SCC site with treatment response at the same site, based on clinical outcome at that site at a minimum of two years.

Results

None of the pre-treatment DCE-MRI parameters showed significant correlations with SCC site failure (SF) (29/83 sites) or site control (SC) (54/83 sites). Post-treatment residual masses with SF (14/33) had significantly higher kep (p = 0.05), higher AUGC (p = 0.02), and lower % reduction in AUGC (p = 0.02), than residual masses with SC (19/33), with the % change in AUGC remaining significant on multivariate analysis.

Conclusion

Pre-treatment DCE-MRI did not predict which SCC sites would fail treatment, but post-treatment DCE-MRI showed potential for identifying residual masses that had failed treatment.  相似文献   

14.
ObjectiveThe aim of this study was to characterize response to photodynamic therapy (PDT) in a mouse cancer model using a multi-parametric quantitative MRI protocol and to identify MR parameters as potential biomarkers for early assessment of treatment outcome.MethodsCT26.WT colon carcinoma tumors were grown subcutaneously in the hind limb of BALB/c mice. Therapy consisted of intravenous injection of the photosensitizer Bremachlorin, followed by 10 min laser illumination (200 mW/cm2) of the tumor 6 h post injection. MRI at 7 T was performed at baseline, directly after PDT, as well as at 24 h, and 72 h. Tumor relaxation time constants (T1 and T2) and apparent diffusion coefficient (ADC) were quantified at each time point. Additionally, Gd-DOTA dynamic contrast-enhanced (DCE) MRI was performed to estimate transfer constants (Ktrans) and volume fractions of the extravascular extracellular space (ve) using standard Tofts-Kermode tracer kinetic modeling. At the end of the experiment, tumor viability was characterized by histology using NADH-diaphorase staining.ResultsThe therapy induced extensive cell death in the tumor and resulted in significant reduction in tumor growth, as compared to untreated controls. Tumor T1 and T2 relaxation times remained unchanged up to 24 h, but decreased at 72 h after treatment. Tumor ADC values significantly increased at 24 h and 72 h. DCE-MRI derived tracer kinetic parameters displayed an early response to the treatment. Directly after PDT complete vascular shutdown was observed in large parts of the tumors and reduced uptake (decreased Ktrans) in remaining tumor tissue. At 24 h, contrast uptake in most tumors was essentially absent. Out of 5 animals that were monitored for 2 weeks after treatment, 3 had tumor recurrence, in locations that showed strong contrast uptake at 72 h.ConclusionDCE-MRI is an effective tool for visualization of vascular effects directly after PDT. Endogenous contrast parameters T1, T2, and ADC, measured at 24 to 72 h after PDT, are also potential biomarkers for evaluation of therapy outcome.  相似文献   

15.
BACKGROUND: Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) can characterize perfusion and vascularization of tissues. DCE MRI parameters can differentiate between malignant and benign lesions and predict tumor grading. The purpose of this study was to correlate DCE MRI findings and various histopathological parameters in head and neck squamous cell carcinoma (HNSCC). PATIENTS AND METHODS: Sixteen patients with histologically proven HNSCC (11 cases primary tumors and in 5 patients with local tumor recurrence) were included in the study. DCE imaging was performed in all cases and the following parameters were estimated: Ktrans, Ve, Kep, and iAUC. The tumor proliferation index was estimated on Ki 67 antigen stained specimens. Microvessel density parameters (stained vessel area, total vessel area, number of vessels, and mean vessel diameter) were estimated on CD31 antigen stained specimens. Spearman''s non-parametric rank sum correlation coefficients were calculated between DCE and different histopathological parameters. RESULTS: The mean values of DCE perfusion parameters were as follows: Ktrans 0.189 ± 0.056 min−1, Kep 0.390 ± 0.160 min−1, Ve 0.548 ± 0.119%, and iAUC 22.40 ± 12.57. Significant correlations were observed between Kep and stained vessel areas (r = 0.51, P = .041) and total vessel areas (r = 0.5118, P = .043); between Ve and mean vessel diameter (r = −0.59, P = .017). Cell count had a tendency to correlate with Ve (r = −0.48, P = .058). In an analysis of the primary HNSCC only, a significant inverse correlation between Ktrans and KI 67 was identified (r = −0.62, P = .041). Our analysis showed significant correlations between DCE parameters and histopathological findings in HNSCC.Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) has been reported as a technique which is able to characterize perfusion and vascularization of tissues [1], [2]. It has been shown that DCE MRI can be helpful to differentiate between malignant and benign lesions [1]. For example, Yuan et al. reported that lung cancer had a larger volume transfer constant (Ktrans) and a lower volume of the extravascular extracellular leakage space (Ve) in comparison to benign lesions [3]. Similar results were reported by Li et al. for breast lesions [4]. Furthermore, according to Cho et al., DCE MRI parameters can be used to distinguish prostatic cancer from benign changes [5]. Moreover, DCE MRI parameters can also predict tumor grading. As reported previously, Ktrans correlated well with Gleason score in prostatic cancer [5], [6]. According to other reports, Ktrans and Ve correlated with glioma grade [7], [8].DCE MRI parameters were also associated with prognosis in several malignancies [9], [10]. Koo et al. showed that breast cancers with higher Ktrans or lower Ve had poor prognostic factors and were often of the triple-negative subtype [10].According to the literature, DCE MRI parameters can predict response to therapy in different tumors. For instance, some authors mentioned that low pretreatment Ktrans in regional lymph node metastases in head and neck cancer was associated with a poor response to concurrent chemoradiation therapy [11].Furthermore, Andersen et al. showed that DCE MR parameters obtained prior to chemoradiotherapy predicted survival of patients with cervical cancer [12].Presumably, DCE MRI parameters may be based on tissue composition, such as cellularity and vascular density. However, in this regard there are contradictory data in the literature. While some studies identified significant correlations between DCE MRI and histopathological parameters, others did not [13], [14], [15], [16].The purpose of this study was to correlate DCE MRI findings and various histopathological parameters in head and neck squamous cell carcinoma (HNSCC).  相似文献   

16.
An aldo-keto reductase gene (klakr) from Kluyveromyces lactis XP1461 was cloned and heterologously expressed in Escherichia coli. The aldo-keto reductase KlAKR was purified and found to be NADH-dependent with a molecular weight of approximately 36 kDa. It is active and stable at 30 °C and pH 7.0. The maximal reaction rate (vmax), apparent Michaelis–Menten constant (Km) for NADH and t-butyl 6-cyano-(5R)-hydroxy-3-oxohexanoate (1a) and catalytic number (kcat) were calculated as 7.63 U mg−1, 0.204 mM, 4.42 mM and 697.4 min−1, respectively. Moreover, the KlAKR has broad substrate specificity to a range of aldehydes, ketones and keto-esters, producing chiral alcohol with e.e. or d.e. >99% for the majority of test substrates.  相似文献   

17.
ObjectiveTo investigate the intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI) as a potential valuable marker to monitor the therapy responses of VX2 to radiofrequency ablation (RF Ablation).MethodsThe institutional animal care and use committee approved this study. In 10 VX2 tumor–bearing rabbits, IVIM-DWI examinations were performed with a 3.0T imaging unit by using 16 b values from 0 to 800 sec/mm2. The true diffusion coefficient (D), pseudodiffusion coefficient (D*) and perfusion fraction (f) of tumors were compared between before and instantly after RF Ablation treatment. The differences of D, D* and f and conventional perfusion parameters (from perfusion CT and dynamic enhanced magnetic resonance imaging, DCE-MRI) in the coagulation necrosis area, residual unablated area, untreated area, and normal control had been calculated by compared t- test. The correlation between f or D* with perfusion weighted CT including blood flow, BF (milliliter per 100 mL/min), blood volume, BV (milliliter per 100 mL/min), and capillary permeability–surface area, PMB (as a fraction) or from DCE-MRI: transfer constant (Ktrans), extra-vascular extra-cellular volume fraction (Ve) and reflux constant (Kep) values had been analyzed by region-of-interest (ROI) methods to calculate Pearson’s correlation coefficients.ResultsIn the ablated necrosis areas, f and D* significantly decreased and D significantly increased, compared with residual unblazed areas or untreated control groups and normal control groups (P < 0.001). The IVIM-DWI derived f parameters showed significant increases in the residual unablated tumor area. There was no significant correlations between f or D* and conventional perfusion parameters.ConclusionsThe IVIM-DW derived f, D and D* parameters have the potential to indicate therapy response immediately after RF Ablation treatment, while no significant correlations with classical tumor perfusion metrics were derived from DCE-MRI and perfusion-CT measurements.  相似文献   

18.
A novel series of 2-thiocarbamoyl-2,3,4,5,6,7-hexahydro-1H-indazole and 2-substituted thiocarbamoyl-3,3a,4,5,6,7-hexahydro-2H-indazoles derivatives were synthesized and investigated for the ability to inhibit the activity of the A and B isoforms of monoamine oxidase (MAO). The target molecules were identified on the basis of satisfactory analytical and spectra data (IR, 1H NMR, 13C NMR, 2D NMR, DEPT, EI-MASS techniques and elemental analysis). Synthesized compounds showed high activity against both the MAO-A (compounds 1d, 1e, 2c, 2d, 2e) and the MAO-B (compounds 1a, 1b, 1c, 2a, 2b) isoforms. In the discussion of the results, the influence of the structure on the biological activity of the prepared compounds was delineated. It was suggested that non-substituted and N-methyl/ethyl bearing compounds (except 2c) increased the inhibitory effect and selectivity toward MAO-B. The rest of the compounds, carrying N-allyl and N-phenyl, appeared to select the MAO-A isoform. The inhibition profile was found to be competitive and reversible for all compounds. A series of experimentally tested (1a2e) compounds was docked computationally to the active site of the MAO-A and MAO-B isoenzyme. The autodock 4.01 program was employed to perform automated molecular docking. In order to see the detailed interactions of the docked poses of the model inhibitors compounds 1a, 1d, 1e and 2e were chosen because of their ability to reversibly inhibit the MAO-B and MAO-A and the availability of experimental inhibition data. The differences in the intermolecular hydrophobic and H-bonding of ligands to the active site of each MAO isoform were correlated to their biological data. Observation of the docked positions of these ligands revealed interactions with many residues previously reported to have an effect on the inhibition of the enzyme. Excellent to good correlations between the calculated and experimental Ki values were obtained. In the docking of the MAO-A complex, the trans configuration of compound 1e made various very close interactions with the residues lining the active site cavity these interactions were much better than those of the other compounds tested in this study. This tight binding observation may be responsible for the nanomolar inhibition of form of MAOA. However, it binds slightly weaker (experimental Ki = 1.23 μM) to MAO-B than to MAO-A (experimental Ki = 4.22 nM).  相似文献   

19.
Nerve and muscle action potential repolarization are produced and modulated by the regulated expression and activity of several types of voltage-gated K+ (Kv) channels. Here, we show that sialylated N-glycans uniquely impact gating of a mammalian Shaker family Kv channel isoform, Kv1.5, but have no effect on gating of a second Shaker isoform, Kv1.4. Each isoform contains one potential N-glycosylation site located along the S1-S2 linker; immunoblot analyses verified that Kv1.4 and Kv1.5 were N-glycosylated. The conductance-voltage (G-V) relationships and channel activation rates for two glycosylation-site deficient Kv1.5 mutants, Kv1.5N290Q and Kv1.5S292A, and for wild-type Kv1.5 expressed under conditions of reduced sialylation, were each shifted linearly by a depolarizing ∼ 18 mV compared to wild-type Kv1.5 activation. External divalent cation screening experiments suggested that Kv1.5 sialic acids contribute to an external surface potential that modulates Kv1.5 activation. Channel availability was unaffected by changes in Kv1.5 glycosylation or sialylation. The data indicate that sialic acid residues attached to N-glycans act through electrostatic mechanisms to modulate Kv1.5 activation. The sialic acids fully account for effects of N-glycans on Kv1.5 gating. Conversely, Kv1.4 gating was unaffected by changes in channel sialylation or following mutagenesis to remove the N-glycosylation site. Each phenomenon is unique for Kv1 channel isoforms, indicating that sialylated N-glycans modulate gating of homologous Kv1 channels through isoform-specific mechanisms. Such modulation is relevant to changes in action potential repolarization that occur as ion channel expression and glycosylation are regulated.  相似文献   

20.
Voltage-gated Ca2+ channels (VGCCs) are recognized for their superb ability for the preferred passage of Ca2+ over any other more abundant cation present in the physiological saline. Most of our knowledge about the mechanisms of selective Ca2+ permeation through VGCCs was derived from the studies on native and recombinant L-type representatives. However, the specifics of the selectivity and permeation of known recombinant T-type Ca2+-channel α1 subunits, Cav3.1, Cav3.2 and Cav3.3, are still poorly defined. In the present study we provide comparative analysis of the selectivity and permeation Cav3.1, Cav3.2, and Cav3.3 functionally expressed in Xenopus oocytes. Our data show that all Cav3 channels select Ca2+ over Na+ by affinity. Cav3.1 and Cav3.2 discriminate Ca2+, Sr2+ and Ba2+ based on the ion's effects on the open channel probability, whilst Cav3.3 discriminates based on the ion's intrapore binding affinity. All Cav3s were characterized by much smaller difference in the KD values for Na+ current blockade by Ca2+ (KD1 ∼ 6 μM) and for Ca2+ current saturation (KD2 ∼ 2 mM) as compared to L-type channels. This enabled them to carry notable mixed Na+/Ca2+ current at close to physiological Ca2+ concentrations, which was the strongest for Cav3.3, smaller for Cav3.2 and the smallest for Cav3.1. In addition to intrapore Ca2+ binding site(s) Cav3.2, but not Cav3.1 and Cav3.3, is likely to possess an extracellular Ca2+ binding site that controls channel permeation. Our results provide novel functional tests for identifying subunits responsible for T-type Ca2+ current in native cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号