首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeTo perform a detailed evaluation of dose calculation accuracy and clinical feasibility of Mobius3D. Of particular importance, multileaf collimator (MLC) modeling accuracy in the Mobius3D dose calculation algorithm was investigated.MethodsMobius3D was fully commissioned by following the vendor-suggested procedures, including dosimetric leaf gap (DLG) optimization. The DLG optimization determined an optimal DLG correction factor which minimized the average difference between calculated and measured doses for 13 patient volumetric-modulated arc therapy (VMAT) plans. Two sets of step-and-shoot plans were created to examine MLC and off-axis open fields modeling accuracy of the Mobius3D dose calculation algorithm: MLC test set and off-axis open field test set. The test plans were delivered to MapCHECK for the MLC tests and an ionization chamber for the off-axis open field test, and these measured doses were compared to Mobius3D-calculated doses.ResultsThe mean difference between the calculated and measured doses across the 13 VMAT plans was 0.6% with an optimal DLG correction factor of 1.0. The mean percentage of pixels passing gamma from a 3%/1 mm gamma analysis for the MLC test set was 43.5% across the MLC tests. For the off-axis open field tests, the Mobius3D-calculated dose for 1.5 cm square field was −4.6% lower than the chamber-measured dose.ConclusionsIt was demonstrated that Mobius3D has dose calculation uncertainties for small fields and MLC tongue-and-groove design is not adequately taken into consideration in Mobius3D. Careful consideration of DLG correction factor, which affects the resulting dose distributions, is required when commissioning Mobius3D for patient-specific QA.  相似文献   

2.
PurposeTo provide practical guidelines for Mobius3D commissioning based on experiences of commissioning/clinical implementation of Mobius3D and MobiusFX as patient-specific quality assurance tools on multiple linear accelerators.MethodsThe vendor-suggested Mobius3D commissioning procedures, including beam model adjustment and dosimetric leaf gap (DLG) optimization, were performed for 6 MV X-ray beams of six Elekta linear accelerators. For the beam model adjustment, beam data, such as the percentage depth dose, off-axis ratio (OAR), and output factor (OF), were measured using a water phantom and compared to the vendor-provided reference values. DLG optimization was performed to determine an optimal DLG correction factor to minimize the mean difference between Mobius3D-calculated and measured doses for multiple volumetric modulated arc therapy (VMAT) plans. Small-field VMAT plans, in which Mobius3D has dose calculate uncertainties, were initially included in the DLG optimization, but excluded later.ResultsThe measured beam data were consistent across the six linear accelerators. Relatively large differences between the reference and measured values were observed for the OAR at large off-axis distances (>5 cm) and for the OF for small fields (<3 × 3 cm2). The optimal DLG correction factor was 0.6 ± 0.3 (range: 0.3–1.0) with small-field plans and 0.2 ± 0.2 (0.0–0.5) without them.ConclusionsA reasonable agreement was found between the vendor-provided reference and measured beam models. DLG optimization results were dependent on the selection of the VMAT plans, requiring careful attention to the known dose calculation uncertainties of Mobius3D when determining a DLG correction factor.  相似文献   

3.
PurposeThe quality assurance (QA) procedures in particle therapy centers with active beam scanning make extensive use of films, which do not provide immediate results. The purpose of this work is to verify whether the 2D MatriXX detector by IBA Dosimetry has enough sensitivity to replace films in some of the measurements.MethodsMatriXX is a commercial detector composed of 32 × 32 parallel plate ionization chambers designed for pre-treatment dose verification in conventional radiation therapy. The detector and GAFCHROMIC® films were exposed simultaneously to a 131.44 MeV proton and a 221.45 MeV/u carbon-ion therapeutic beam at the CNAO therapy center of Pavia – Italy, and the results were analyzed and compared.ResultsThe sensitivity MatriXX on the beam position, beam width and field flatness was investigated. For the first two quantities, a method for correcting systematic uncertainties, dependent on the beam size, was developed allowing to achieve a position resolution equal to 230 μm for carbon ions and less than 100 μm for protons. The beam size and the field flatness measured using MatriXX were compared with the same quantities measured with the irradiated film, showing a good agreement.ConclusionsThe results indicate that a 2D detector such as MatriXX can be used to measure several parameters of a scanned ion beam quickly and precisely and suggest that the QA would benefit from a new protocol where the MatriXX detector is added to the existing systems.  相似文献   

4.
AimTo evaluate the success of a patient-specific intensity modulated radiation therapy (IMRT) quality assurance (QA) practice for prostate cancer patients across multiple institutions using a questionnaire survey.BackgroundThe IMRT QA practice involves different methods of dose distribution verification and analysis at different institutions.Materials and MethodsTwo full-arc volumetric modulated arc therapy (VMAT) plan and 7 fixed-gantry IMRT plan with DMLC were used for patient specific QA across 22 institutions. The same computed tomography image and structure set were used for all plans. Each institution recalculated the dose distribution with fixed monitor units and without any modification. Single-point dose measurement with a cylindrical ionization chamber and dose distribution verification with a multi-detector or radiochromic film were performed, according to the QA process at each institution.ResultsTwenty-two institutions performed the patient-specific IMRT QA verifications. With a single-point dose measurement at the isocenter, the average difference between the calculated and measured doses was 0.5 ± 1.9%. For the comparison of dose distributions, 18 institutions used a two or three-dimensional array detector, while the others used Gafchromic film. In the γ test with dose difference/distance-to-agreement criteria of 3%?3 mm and 2%?2 mm with a 30% dose threshold, the median gamma pass rates were 99.3% (range: 41.7%–100.0%) and 96.4% (range: 29.4%–100.0%), respectively.ConclusionThis survey was an informative trial to understand the verification status of patient-specific IMRT QA measurements for prostate cancer. In most institutions, the point dose measurement and dose distribution differences met the desired criteria.  相似文献   

5.
AimThe aim of this study is to commission and validate Dolphin-Compass dosimetry as a patient-specific Quality Assurance (QA) device.BackgroundThe advancement of radiation therapy in terms of highly conformal delivery techniques demands a novel method of patient-specific QA. Dolphin-Compass system is a dosimetry solution capable of doing different QA in radiation therapy.Materials and methodsDolphin, air-vented ionization detector array mounted on Versa-HD Linear Accelerator (LINAC) was used for measurements. The Compass is a dose computation algorithm which requires modelling of LINAC head similar to other Treatment Planning Systems (TPS). The dosimetry system was commissioned after measuring the required beam data. The validation was performed by comparison of treatment plans generated in Monaco TPS against the measurement data. Different types of simple, complex, static and dynamic radiation fields and highly conformal treatment plans of patients were used in this study.ResultsFor all field sizes, point doses obtained from Dolphin-Compass dosimetry were in good agreement with the corresponding TPS calculated values in most of the regions, except the penumbra, outside field and at build-up depth. The results of gamma passing rates of measurements by using different Multi-leaf Collimator patterns and Intensity Modulated Radiation Therapy fluence were also found to be in good correlation with the corresponding TPS values.ConclusionsThe commissioning and validation of dosimetry was performed with the help of various fields, MLC patterns and complex treatment plans. The present study also evaluated the efficiency of the 3D dosimetry system for the QA of complex treatment plans.  相似文献   

6.
PurposeIntraoperative radiation therapy (IORT) using electron beam is commonly done by mobile dedicated linacs that have a variable range of electron energies. This paper focuses on the evaluation of the EBT2 film response in the green and red colour channels for IORT quality assurance (QA).MethodsThe calibration of the EBT2 films was done in two ranges; 0–8 Gy for machine QA by red channel and 8–24 Gy for patient-specific QA by green channel analysis. Irradiation of calibration films and relative dosimetries were performed in a water phantom. To evaluate the accuracy of the film response in relative dosimetry, gamma analysis was used to compare the results of the Monte Carlo simulation and ionometric dosimetry. Ten patients with early stage breast cancer were selected for in-vivo dosimetry using the green channel of the EBT2 film.ResultsThe calibration curves were obtained by linear fitting of the green channel and a third-order polynomial function in the red channel (R2 = 0.99). The total dose uncertainty was up to 4.2% and 4.7% for the red and green channels, respectively. There was a good agreement between the relative dosimetries of films by the red channel, Monte Carlo simulations and ionometric values. The mean dose difference of the in-vivo dosimetry by green channel of this film and the expected values was about 1.98% ± 0.75.ConclusionThe results of this study showed that EBT2 film can be considered as an appropriate tool for machine and patient-specific QA in IORT.  相似文献   

7.
PurposeTo evaluate the flat-panel detector quenching effect and clinical usability of a flat-panel based compact QA device for PBS daily constancy measurements.Materials & MethodThe QA device, named Sphinx Compact, is composed of a 20x20 cm2 flat-panel imager mounted on a portable frame with removable plastic modules for constancy checks of proton energy (100 MeV, 150 MeV, 200 MeV), Spread-Out-Bragg-Peak (SOBP) profile, and machine output. The potential quenching effect of the flat-panel detector was evaluated. Daily PBS QA tests of X-ray/proton isocenter coincidence, the constancy of proton spot position and sigma as well as the energy of pristine proton beam, and the flatness of SOBP proton beam through the 'transformed' profile were performed and analyzed. Furthermore, the sensitivity of detecting energy changes of pristine proton beam was also evaluated.ResultsThe quenching effect was observed at depths near the pristine peak regions. The flat-panel measured range of the distal 80% is within 0.9 mm to the defined ranges of the delivered proton beams. X-ray/proton isocenter coincidence tests demonstrated maximum mismatch of 0.3 mm between the two isocenters. The device can detect 0.1 mm change of spot position and 0.1 MeV energy changes of pristine proton beams. The measured transformed SOBP beam profile through the wedge module rendered as flat.ConclusionsEven though the flat-panel detector exhibited quenching effect at the Bragg peak region, the proton range can still be accurately measured. The device can fulfill the requirements of the daily QA tests recommended by the AAPM TG224 Report.  相似文献   

8.
9.
BackgroundThere is limited data on error detectability for step-and-shoot intensity modulated radiotherapy (sIMRT) plans, despite significant work on dynamic methods. However, sIMRT treatments have an ongoing role in clinical practice. This study aimed to evaluate variations in the sensitivity of three patient-specific quality assurance (QA) devices to systematic delivery errors in sIMRT plans.Materials and methodsFour clinical sIMRT plans (prostate and head and neck) were edited to introduce errors in: Multi-Leaf Collimator (MLC) position (increasing field size, leaf pairs offset (1–3 mm) in opposite directions; and field shift, all leaves offset (1–3 mm) in one direction); collimator rotation (1–3 degrees) and gantry rotation (0.5–2 degrees). The total dose for each plan was measured using an ArcCHECK diode array. Each field, excluding those with gantry offsets, was also measured using an Electronic Portal Imager and a MatriXX Evolution 2D ionisation chamber array. 132 plans (858 fields) were delivered, producing 572 measured dose distributions. Measured doses were compared to calculated doses for the no-error plan using Gamma analysis with 3%/3 mm, 3%/2 mm, and 2%/2 mm criteria (1716 analyses).ResultsGenerally, pass rates decreased with increasing errors and/or stricter gamma criteria. Pass rate variations with detector and plan type were also observed. For a 3%/3 mm gamma criteria, none of the devices could reliably detect 1 mm MLC position errors or 1 degree collimator rotation errors.ConclusionsThis work has highlighted the need to adapt QA based on treatment plan type and the need for detector specific assessment criteria to detect clinically significant errors.  相似文献   

10.
BackgroundWith full access to both helical tomotherapy (HT) and volumetric modulated arc therapy (VMAT), we compared locally advanced non-small cell lung cancer (LA-NSCLC) treatment plans and verified the plans using patient-specific pretreatment quality assurance (PSQA).Materials and methodsFor each of the seventeen patients included in the study, two treatment plans (i.e. HT and VMAT) were created. Optimized plans were evaluated following the ICRU 83 criteria. Planned quality indexes and dosimetric parameters were compared. Lastly, all plans were subjected to PSQA assessment by determining the gamma passing rate (GPR).ResultsAll dosimetry results obtained from the planning target volume passed the ICRU 83 criteria. With regard to similar homogeneity indices, VMAT produced better conformity number values than HT (0.78 vs. 0.64), but differences in the values were insignificant. Furthermore, VMAT was associated with a significantly shorter mean treatment time (1.91 minutes vs. 6.66 minutes). For PSQA assessment, both techniques resulted in adequate GPR values (> 90% at the 3%/3 mm criteria).ConclusionBoth HT and VMAT techniques led to the generation of clinically satisfactory and reliable radiotherapy plans. However, the VMAT plan was associated with a non-significantly better degree of conformity and a significantly shorter treatment time. Thus, VMAT was determined to be a better choice for LA-NSCLC.  相似文献   

11.
Background/AimIn many facilities, intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT) use intensity-modulated beams, formed by a multi-leaf collimator (MLC). In IMRT and VMAT, MLC and linear accelerator errors (both geometric and dose), can significantly affect the doses administered to patients. Therefore, IMRT and VMAT treatment plans must include the use of patient-specific quality assurance (QA) before treatment to confirm dose accuracy.Materials and methodsIn this study, we compared and analyzed the results of dose verification using a multi-dimensional dose verification system Delta4 PT, an ionization chamber dosimeter, and gafchromic film, using data from 52 patients undergoing head and neck VMAT as the test material.ResultBased on the results of the absolute dose verification for the ionization chamber dosimeter and Delta4 PT, taking an axial view, the upper limit of the 95% confidence interval was 3.13%, and the lower limit was −3.67%, indicating good agreement. These results mean that as long as absolute dose verification for the axial view does not deviate from this range, Delta4 PT can be used as an alternative to an ionization chamber dosimeter for absolute dose verification. When we then reviewed dose distribution verification, the pass rate for Delta4 PT was acceptable, and was less varied than that of gafchromic film.ConclusionThis results in that provided the pass rate result for Delta4 PT does not fall below 96%, it can be used as a substitute for gafchromic film in dose distribution verification. These results indicate that patient-specific QA could be simplified.  相似文献   

12.

Aim

The aim of this study is to evaluate performance of ArcCHECK diode array detector for the volumetric modulated arc therapy (VMAT) patient specific quality assurance (QA). VMAT patient specific QA results were correlated with ion chamber measurement. Dose response of the ArcCHECK detector was studied.

Background

VMAT delivery technique improves the dose distribution. It is complex in nature and requires proper QA before its clinical implementation. ArcCHECK is a novel three dimensional dosimetry system.

Materials and methods

Twelve retrospective VMAT plans were calculated on ArcCHECK phantom. Point dose and dose map were measured simultaneously with ion chamber (IC-15) and ArcCHECK diode array detector, respectively. These measurements were compared with their respective TPS calculated values.

Results

The ion chamber measurements are in good agreement with TPS calculated doses. Mean difference between them is 0.50% with standard deviation of 0.51%. Concordance correlation coefficient (CCC) obtained for ion chamber measurements is 0.9996. These results demonstrate a strong correlation between the absolute dose predicted by our TPS and the measured dose. The CCC between ArcCHECK doses and TPS predictions on the CAX was found to be 0.9978. In gamma analysis of dose map, the mean passing rate was 98.53% for 3% dose difference and 3 mm distance to agreement.

Conclusions

The VMAT patient specific QA with an ion chamber and ArcCHECK phantom are consistent with the TPS calculated dose. Statistically good agreement was observed between ArcCHECK measured and TPS calculated. Hence, it can be used for routine VMAT QA.  相似文献   

13.
PurposeThis work investigated effects of implementing the Delta4 Discover diode transmission detector into the clinical workflow.MethodsPDD and profile scans were completed with and without the Discover for a number of photon beam energies. Transmission factors were determined for all beam energies and included in Eclipse TPS to account for the attenuation of the Discover. A variety of IMRT plans were delivered to a Delta4 Phantom+ with and without the Discover to evaluate the Discover’s effects on IMRT QA. An imaging QA phantom was used to assess the detector’s effects on MV image quality. OSLDs placed on the Phantom+ were used to determine the detector’s effects on superficial dose.ResultsThe largest effect on PDDs after dmax was 0.5%. The largest change in beam profile symmetry and flatness was 0.2% and 0.1%, respectively. An average difference in gamma passing rates (2%/2 mm) of 0.2% was observed between plans that did not include the Discover in the measurement and calculation to plans that did include the Discover in the measurement and calculation. The Discover did not significantly change the MV image quality, and the largest observed increase in the relative superficial dose when the Discover was present was 1%.ConclusionsThe effects the Discover has on the linac beam were found to be minimal. The device can be implemented into the clinic without the need to alter the TPS beam modeling, other than accounting for the device’s attenuation. However, a careful workflow review to implement the Discover should be completed.  相似文献   

14.
IntroductionPencil beam scanning technique used at CNAO requires beam characteristics to be carefully assessed and periodically checked to guarantee patient safety. This study aimed at characterizing the Lynx® detector (IBA Dosimetry) for commissioning and periodic quality assurance (QA) for proton and carbon ion beams, as compared to EBT3 films, currently used for QA checks.Methods and materialsThe Lynx® is a 2-D high-resolution dosimetry system consisting of a scintillating screen coupled with a CCD camera, in a compact light-tight box. The scintillator was preliminarily characterized in terms of short-term stability, linearity with number of particles, image quality and response dependence on iris setting and beam current; Lynx® was then systematically tested against EBT3 films. The detector response dependence on radiation LET was also assessed.ResultsPreliminary results have shown that Lynx is suitable to be used for commissioning and QA checks for proton and carbon ion scanning beams; the cross-check with EBT3 films showed a good agreement between the two detectors, for both single spot and scanned field measurements. The strong LET dependence of the scintillator due to quenching effect makes Lynx® suitable only for relative 2-D dosimetry measurements.ConclusionLynx® appears as a promising tool for commissioning and periodic QA checks for both protons and carbon ion beams. This detector can be used as an alternative of EBT3 films, allowing real-time measurements and analysis, with a significant time sparing.  相似文献   

15.
The aim of this paper is to evaluate clinically relevant quality assurance (QA) tests for RapidArc prostate patients. 26 plans were verified by the COMPASS system that provides an independent angle response and a reconstruction of dose distribution in patient CT model. Plan data were imported from treatment planning system via DICOM. The fluencies, measured by a 2D detector, were used by COMPASS to forward calculate dose in CT patients and reconstruct dose-volume-histogram (DVH). The gamma analysis was performed, using both the criteria 3%-3-mm and 2%-2 mm, for the whole grid patient and the per-structure volume. A DVH-based analysis was accomplished for target and organs-at-risk (OAR). The correlation between gamma passing rates and DVH discrepancies was performed using Pearson's test. Sensitivity, specificity and accuracy of whole and per-structure gamma method were calculated.No significant DVH deviation was observed for target and OAR. Weak correlation between gamma passing rates and dosimetric deviations was observed, all significant r-values were negative. The whole gamma method shows lack of sensitivity to detect dosimetric deviations >5%. Instead, a better balance between sensitivity and specificity was obtained employing per structure gamma both with 3%-3 mm and 2%-2 mm criteria.Because of the poor correlation between DVH goals and gamma passing rates, we encourage the DVH-based gamma passing rates, when it is possible. At least, a gamma method specific for structure was strongly suggested.  相似文献   

16.
PurposeTo conduct patient-specific geometric and dosimetric quality assurance (QA) for the Dynamic WaveArc (DWA) using logfiles and ArcCHECK (Sun Nuclear Inc., Melbourne, FL, USA).MethodsTwenty DWA plans, 10 for pituitary adenoma and 10 for prostate cancer, were created using RayStation version 4.7 (RaySearch Laboratories, Stockholm, Sweden). Root mean square errors (RMSEs) between the actual and planned values in the logfiles were evaluated. Next, the dose distributions were reconstructed based on the logfiles. The differences between dose-volumetric parameters in the reconstructed plans and those in the original plans were calculated. Finally, dose distributions were assessed using ArcCHECK. In addition, the reconstructed dose distributions were compared with planned ones.ResultsThe means of RMSEs for the gantry, O-ring, MLC position, and MU for all plans were 0.2°, 0.1°, 0.1 mm, and 0.4 MU, respectively. Absolute means of the change in PTV D99% were 0.4 ± 0.4% and 0.1 ± 0.1% points between the original and reconstructed plans for pituitary adenoma and prostate cancer, respectively. The mean of the gamma passing rate (3%/3 mm) between the measured and planned dose distributions was 97.7%. In addition, that between the reconstructed and planned dose distributions was 99.6%.ConclusionsWe have demonstrated that the geometric accuracy and gamma passing rates were within AAPM 119 and 142 criteria during DWA. Dose differences in the dose-volumetric parameters using the logfile-based dose reconstruction method were also clinically acceptable in DWA.  相似文献   

17.
BackgroundThe usage of advanced radiotherapy techniques requires validation of a previously calculated dose with the precise delivery with a linear accelerator. This study aimed to review and evaluate new verification methods of dose distribution. Moreover, our purpose was to define an internal protocol of acceptance for in-vivo measurements of dose distribution.Materials and methodsThis study included 43 treatment plans of prostate cancer calculated using the Monte Carlo algorithm. All plans were delivered using the Volumetric Modulated Arc Therapy (VMAT) technique of advanced radiotherapy by the linear accelerator Elekta VersaHD. The dose distribution was verified using: MatriXX, iViewDose, and in-vivo measurements. The verification also included recalculation of fluence maps of quality assurance plans in another independent algorithm.ResultsThe acceptance criterion of 95% points of dose in agreement was found for pre-treatment verification using MatriXX; the average γ value was 99.09 ± 0.93 (SD) and 99.64 ± 0.35 (SD) for recalculation in the Collapse Cone algorithm. Moreover, using the second algorithm in the verification process showed a positive correlation ρ = 0.58, p < 0.001. However, verification using iViewDose in a phantom and in-vivo did not meet this γ-pass rate.ConclusionsEvaluation of gamma values for in-vivo measurements utilizing iViewDose software was helpful to establish an internal dosimetry protocol for prostate cancer treatments. We assumed value at a minimum of 50% points of the dose in agreement with the 3%/3 mm criterion as an acceptable compliance level. The recalculated dose distribution of QA plans in regard to the Collapse Cone algorithm in the other treatment planning system can be used as a pre-treatment verification method used by a medical physicist in their daily work. The effectiveness of use in iViewDose software, as a pre-treatment tool, is still debatable, unlike the MatriXX device.  相似文献   

18.
PurposeQuality assurance (QA) phantoms for testing different image quality parameters in computed tomography (CT) are commercially available. Such phantoms are also used as reference for acceptance in the specifications of CT-scanners. The aim of this study was to analyze the characteristics of the most commonly used QA phantom in CT: Catphan 500/504/600.MethodsNine different phantoms were scanned on the same day, on one CT-scanner with the same parameter settings. Interphantom variations in CT-number values, image uniformity and low contrast resolution were evaluated for the phantoms. Comparisons between manual image analysis and results obtained from the automatic evaluation software QAlite were performed.ResultsSome interphantom variations were observed in the low contrast resolution and the CT-number modules of the phantoms. Depending on the chosen regulatory framework, the variations in CT-numbers can be interpreted as substantial. The homogenous modules were found more invariable. However, the automatic image analysis software QAlite measures image uniformity differently than recommended in international standards, and will not necessarily give results in agreement with these standards.ConclusionsIt is important to consider the interphantom variations in relation to ones framework, and to be aware of which phantom is used to study CT-numbers and low contrast resolution for a specific scanner. Comparisons with predicted values from manual and acceptance values should be performed with care and consideration. If automatic software-based evaluations are to be used, users should be aware that large differences can exist for the image uniformity testing.  相似文献   

19.
PurposeWe developed an x-ray-opaque-marker (XOM) system with inserted fiducial markers for patient-specific quality assurance (QA) in CyberKnife (Accuray) and a general-purpose linear accelerator (linac). The XOM system can be easily inserted or removed from the existing patient-specific QA phantom. Our study aimed to assess the utility of the XOM system by evaluating the recognition accuracy of the phantom position error and estimating the dose perturbation around a marker.MethodsThe recognition accuracy of the phantom position error was evaluated by comparing the known error values of the phantom position with the values measured by matching the images with target locating system (TLS; Accuray) and on-board imager (OBI; Varian). The dose perturbation was evaluated for 6 and 10 MV single-photon beams through experimental measurements and Monte Carlo simulations.ResultsThe root mean squares (RMSs) of the residual position errors for the recognition accuracy evaluation in translations were 0.07 mm with TLS and 0.30 mm with OBI, and those in rotations were 0.13° with TLS and 0.15° with OBI. The dose perturbation was observed within 1.5 mm for 6 MV and 2.0 mm for 10 MV from the marker.ConclusionsSufficient recognition accuracy of the phantom position error was achieved using our system. It is unnecessary to consider the dose perturbation in actual patient-specific QA. We concluded that the XOM system can be utilized to ensure quantitative and accurate phantom positioning in patient-specific QA with CyberKnife and a general-purpose linac.  相似文献   

20.
ObjectiveTo investigate the dosimetric behaviour, influence on photon beam fluence and error detection capability of Delta4 Discover transmission detector.MethodsThe transmission detector (TRD) was characterized on a TrueBeam linear accelerator with 6 MV beams. Linearity, reproducibility and dose rate dependence were investigated. The effect on photon beam fluence was evaluated in terms of beam profiles, percentage depth dose, transmission factor and surface dose for different open field sizes. The transmission factor of the 10x10 cm2 field was entered in the TPS’s configuration and its correct use in the dose calculation was verified recalculating 17 clinical IMRT/VMAT plans. Surface dose was measured for 20 IMRT fields. The capability to detect different delivery errors was investigated evaluating dose gamma index, MLC gamma index and leaf position of 15 manually modified VMAT plans.ResultsTRD showed a linear dependence on MU. No dose rate dependence was observed. Short-term and long-term reproducibility were within 0.1% and 0.5%. The presence of the TRD did not significantly affect PDDs and profiles. The transmission factor of the 10x10 cm2 field size was 0.985 and 0.983, for FF and FFF beams respectively. The 17 recalculated plans met our clinical gamma-index passing rate, confirming the correct use of the transmission factor by the TPS. The surface dose differences for the open fields increase for shorter SSDs and greater field size. Differences in surface dose for the IMRT beams were less than 2%. Output variation ≥2%, collimator angle variations within 0.3°, gantry angle errors of 1°, jaw tracking and leaf position errors were detected.ConclusionsDelta4 Discover shows good linearity and reproducibility, is not dependent on dose rate and does not affect beam quality and dose profiles. It is also capable to detect dosimetric and geometric errors and therefore it is suitable for monitoring VMAT delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号