首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于支持向量机的蛋白质同源寡聚体分类研究   总被引:14,自引:1,他引:13  
基于支持向量机和贝叶斯方法,从蛋白质一级序列出发对蛋白质同源二聚体、同源三聚体、同源四聚体、同源六聚体进行分类研究,结果表明:基于支持向量机, 采用“一对多”和“一对一”策略, 其分类总精度分别为77.36%和93.43%, 分别比基于贝叶斯协方差判别法的分类总精度50.64%提高26.72和42.79个百分点.从而说明支持向量机可用于蛋白质同源寡聚体分类,且是一种非常有效的方法.对于多类蛋白质同源寡聚体分类,基于相同的机器学习方法(如支持向量机),采用“一对一”策略比“一对多”效果好.同时亦表明蛋白质同源寡聚体一级序列包含四级结构信息.  相似文献   

2.
蛋白质是有机生命体内不可或缺的化合物,在生命活动中发挥着多种重要作用,了解蛋白质的功能有助于医学和药物研发等领域的研究。此外,酶在绿色合成中的应用一直备受人们关注,但是由于酶的种类和功能多种多样,获取特定功能酶的成本高昂,限制了其进一步的应用。目前,蛋白质的具体功能主要通过实验表征确定,该方法实验工作繁琐且耗时耗力,同时,随着生物信息学和测序技术的高速发展,已测序得到的蛋白质序列数量远大于功能获得注释的序列数量,高效预测蛋白质功能变得至关重要。随着计算机技术的蓬勃发展,由数据驱动的机器学习方法已成为应对这些挑战的有效解决方案。本文对蛋白质功能及其注释方法以及机器学习的发展历程和操作流程进行了概述,聚焦于机器学习在酶功能预测领域的应用,对未来人工智能辅助蛋白质功能高效研究的发展方向提出了展望。  相似文献   

3.

Background  

Prediction of disulfide bridges from protein sequences is useful for characterizing structural and functional properties of proteins. Several methods based on different machine learning algorithms have been applied to solve this problem and public domain prediction services exist. These methods are however still potentially subject to significant improvements both in terms of prediction accuracy and overall architectural complexity.  相似文献   

4.
5.
Identification and Classification of G-protein coupled receptors (GPCRs) using protein sequences is an important computational challenge, given that experimental screening of thousands of ligands is an expensive proposition. There are two distinct but complementary approaches to GPCR classification --machine learning and sequence motif analysis. Machine learning methodologies typically suffer from problems of class imbalance and lack of multi-class classification. Many sequence motif methods, meanwhile, are too dependent on the similarity of the primary sequence alignments. It is desirable to have a motif discovery and application methodology that is not strongly dependent on primary sequence similarity. It should also overcome limitations of machine learning. We propose and evaluate the effectiveness of a simple methodology that uses a reduced protein functional alphabet representation, where similar functional residues have similar symbols. Regular expression motifs can then be obtained by ClustalW based multiple sequence alignment, using an identity matrix. Since evolutionary matrices like BLOSUM, PAM are not used, this method can be useful for any set of sequences that do not necessarily share a common ancestry. Reduced alphabet motifs can accurately classify known GPCR proteins and the results are comparable to PRINTS and PROSITE. For well known GPCR proteins from SWISSPROT, there were no false negatives and only a few false positives. This methodology covers most currently known classes of GPCRs, even if there are very few representative sequences. It also predicts more than one class for certain sequences, thus overcoming the limitation of machine learning methods. We also annotated, 695 orphan receptors, and 121 were identified as belonging to Family A. A simple JavaScript based web interface has been developed to predict GPCR families and subfamilies (www.insilico-consulting.com/gpcrmotif.html).  相似文献   

6.
Protein function prediction with high-throughput data   总被引:1,自引:0,他引:1  
Zhao XM  Chen L  Aihara K 《Amino acids》2008,35(3):517-530
  相似文献   

7.
Machine and deep learning approaches can leverage the increasingly available massive datasets of protein sequences, structures, and mutational effects to predict variants with improved fitness. Many different approaches are being developed, but systematic benchmarking studies indicate that even though the specifics of the machine learning algorithms matter, the more important constraint comes from the data availability and quality utilized during training. In cases where little experimental data are available, unsupervised and self-supervised pre-training with generic protein datasets can still perform well after subsequent refinement via hybrid or transfer learning approaches. Overall, recent progress in this field has been staggering, and machine learning approaches will likely play a major role in future breakthroughs in protein biochemistry and engineering.  相似文献   

8.
细胞外基质蛋白质在细胞的一系列生物过程中发挥着重要作用,它的异常调节会导致很多重大疾病。理论细胞外基质蛋白质参考数据是实现细胞外基质蛋白质高效鉴定的基础,研究者们已经基于机器学习的方法开发出一系列的细胞外基质蛋白质预测工具。文中首先阐述了基于机器学习模型构建细胞外基质蛋白质预测工具的基本流程,之后以工具为单位总结了已有细胞外基质蛋白质预测工具的研究成果,最后提出了细胞外基质蛋白质预测工具目前面临的问题和可能的优化方法。  相似文献   

9.
有关蛋白质功能的研究是解析生命奥秘的基础,机器学习技术在该领域已有广泛应用。利用支持向量机(support vectormachine,SVM)方法,构建一个预测蛋白质功能位点的通用平台。该平台先提取非同源蛋白质序列,再对这些序列进行特征编码(包括序列的基本信息、物化特征、结构信息及序列保守性特征等),以编码好的样本作为训练数据,利用SVM进行训练,得到敏感性、特异性、Matthew相关系数、准确率及ROC曲线等评价指标,反复测试,得到评价指标最优的SVM模型后,便可以用来预测蛋白质序列上的功能位点。该平台除了应用在预测蛋白质功能位点之外,还可以应用于疾病相关单核苷酸多态性(SNP)预测分析、预测蛋白质结构域分析、生物分子间的相互作用等。  相似文献   

10.
11.

Background  

Efficient and accurate prediction of protein function from sequence is one of the standing problems in Biology. The generalised use of sequence alignments for inferring function promotes the propagation of errors, and there are limits to its applicability. Several machine learning methods have been applied to predict protein function, but they lose much of the information encoded by protein sequences because they need to transform them to obtain data of fixed length.  相似文献   

12.
13.
Most algorithms for protein secondary structure prediction are based on machine learning techniques, e.g. neural networks. Good architectures and learning methods have improved the performance continuously. The introduction of profile methods, e.g. PSI-BLAST, has been a major breakthrough in increasing the prediction accuracy to close to 80%. In this paper, a brute-force algorithm is proposed and the reliability of each prediction is estimated by a z-score based on local sequence clustering. This algorithm is intended to perform well for those secondary structures in a protein whose formation is mainly dominated by the neighboring sequences and short-range interactions. A reliability z-score has been defined to estimate the goodness of a putative cluster found for a query sequence in a database. The database for prediction was constructed by experimentally determined, non-redundant protein structures with <25% sequence homology, a list maintained by PDBSELECT. Our test results have shown that this new algorithm, belonging to what is known as nearest neighbor methods, performed very well within the expectation of previous methods and that the reliability z-score as defined was correlated with the reliability of prediction. This led to the possibility of making very accurate predictions for a few selected residues in a protein with an accuracy measure of Q3 > 80%. The further development of this algorithm, and a nucleation mechanism for protein folding are suggested.  相似文献   

14.
随着质谱技术的进步以及生物信息学与统计学算法的发展,以疾病研究为主要目的之一的人类蛋白质组计划正快速推进。蛋白质生物标志物在疾病早期诊断和临床治疗等方面有着非常重要的意义,其发现策略和方法的研究已成为一个重要的热点领域。特征选择与机器学习对于解决蛋白质组数据"高维度"及"稀疏性"问题有较好的效果,因而逐渐被广泛地应用于发现蛋白质生物标志物的研究中。文中主要阐述蛋白质生物标志物的发现策略以及其中特征选择与机器学习方法的原理、应用实例和适用范围,并讨论深度学习方法在本领域的应用前景及局限性,以期为相关研究提供参考。  相似文献   

15.
The placing of novel or new-in-the-context proteins on the market, appearing in genetically modified foods, certain bio-pharmaceuticals and some household products leads to human exposure to proteins that may elicit allergic responses. Accurate methods to detect allergens are therefore necessary to ensure consumer/patient safety. We demonstrate that it is possible to reach a new level of accuracy in computational detection of allergenic proteins by presenting a novel detector, Detection based on Filtered Length-adjusted Allergen Peptides (DFLAP). The DFLAP algorithm extracts variable length allergen sequence fragments and employs modern machine learning techniques in the form of a support vector machine. In particular, this new detector shows hitherto unmatched specificity when challenged to the Swiss-Prot repository without appreciable loss of sensitivity. DFLAP is also the first reported detector that successfully discriminates between allergens and non-allergens occurring in protein families known to hold both categories. Allergenicity assessment for specific protein sequences of interest using DFLAP is possible via ulfh@slv.se.  相似文献   

16.
17.
Given sufficient large protein families, and using a global statistical inference approach, it is possible to obtain sufficient accuracy in protein residue contact predictions to predict the structure of many proteins. However, these approaches do not consider the fact that the contacts in a protein are neither randomly, nor independently distributed, but actually follow precise rules governed by the structure of the protein and thus are interdependent. Here, we present PconsC2, a novel method that uses a deep learning approach to identify protein-like contact patterns to improve contact predictions. A substantial enhancement can be seen for all contacts independently on the number of aligned sequences, residue separation or secondary structure type, but is largest for β-sheet containing proteins. In addition to being superior to earlier methods based on statistical inferences, in comparison to state of the art methods using machine learning, PconsC2 is superior for families with more than 100 effective sequence homologs. The improved contact prediction enables improved structure prediction.  相似文献   

18.
Due to Ca2+‐dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet‐lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet‐lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large‐margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM‐binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome‐wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif‐based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub‐sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels .  相似文献   

19.

Background  

The number of protein sequences deriving from genome sequencing projects is outpacing our knowledge about the function of these proteins. With the gap between experimentally characterized and uncharacterized proteins continuing to widen, it is necessary to develop new computational methods and tools for functional prediction. Knowledge of catalytic sites provides a valuable insight into protein function. Although many computational methods have been developed to predict catalytic residues and active sites, their accuracy remains low, with a significant number of false positives. In this paper, we present a novel method for the prediction of catalytic sites, using a carefully selected, supervised machine learning algorithm coupled with an optimal discriminative set of protein sequence conservation and structural properties.  相似文献   

20.
Bolstered by recent methodological and hardware advances, deep learning has increasingly been applied to biological problems and structural proteomics. Such approaches have achieved remarkable improvements over traditional machine learning methods in tasks ranging from protein contact map prediction to protein folding, prediction of protein–protein interaction interfaces, and characterization of protein–drug binding pockets. In particular, emergence of ab initio protein structure prediction methods including AlphaFold2 has revolutionized protein structural modeling. From a protein function perspective, numerous deep learning methods have facilitated deconvolution of the exact amino acid residues and protein surface regions responsible for binding other proteins or small molecule drugs. In this review, we provide a comprehensive overview of recent deep learning methods applied in structural proteomics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号