首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In recent years, a growing interest has been shown in the implementation of software dedicated to the skin dose calculation, since the Fluoroscopically Guided Interventions are expanding in various medical areas. In this regard, a review article recently published by Malchair et al. (2020) is of great importance as it provides the reader with useful references to the software currently available to estimate the patient's skin dose. Despite the usefulness of collecting and summarizing in one paper the different software solutions, a few critical issues have emerged related to some parameters and configurations used in the estimation; additional details concerning patient’s size and position can be added to the information cited by the authors, giving greater robustness to the software calculation. Furthermore, software results cited in the benchmarking without reference cause a lack of solid information. Our suggestion is to adopt the given criteria to evaluate every available software solutions thus helping the eventual user to analyse the tool before adopting it.  相似文献   

3.
4.
PurposeValidate the skin dose software within the radiation dose index monitoring system NEXO[DOSE]® (Bracco Injeneering S.A., Lausanne, Switzerland). It provides the skin dose distribution in interventional radiology (IR) procedures.MethodsTo determine the skin dose distribution and the Peak Skin Dose (PSD) in IR procedures, the software uses exposure and geometrical parameters taken from the radiation dose structured report and additional information specific to each angiographic system. To test the accuracy of the software, GafChromic® XR-RV3 films, wrapped under a cylindrical PMMA phantom, were irradiated with different setups. Calculations and films results are compared in terms of absolute dose and geometric accuracy, using two angiographic systems (Philips Integris Allura FD20, Siemens AXIOM-ArtisZeego).ResultsCalculated and film measured PSD values agree with an average difference of 7% ± 5%. The discrepancies in dose evaluation increase up to 33% in lower dose regions, because the algorithm does not consider the out-of-field scatter contribution of the neighboring fields, which is more significant in these areas. Regarding the geometric accuracy, the differences between the simulated dose spatial distributions and the measured ones are<3 mm (4%) in simple tests and 5 mm (5%) in setups closer to clinical practice. Moreover, similar results are obtained for the two studied angiographic system vendors.ConclusionsNEXO[DOSE]® provides an accurate skin dose distribution and PSD estimate. It will allow faster and more accurate monitoring of patient follow-up in the future.  相似文献   

5.
This paper presents the results of a parametric study on the occupational exposure in interventional radiology to explore the influence of various variables on the staff doses. These variables include the angiography beam settings: x-ray peak voltage (kVp), added copper filtration, field diameter, beam projection and source to detector distance. The study was performed using Monte-Carlo simulations with MCNPX for more than 5600 combinations of parameters that account for different clinical situations. Additionally, the analysis of the results was performed using both multiple and random forest regression to build a predictive model and to quantify the importance of each variable when the variables simultaneously change. Primary and secondary projections were found to have the most effect on the scatter fraction that reaches the operator followed by the effect of changing the x-ray beam quality. The effect of changing the source to image intensifier distance had the lowest effect.  相似文献   

6.
7.
8.
9.
10.
PurposeInstitutional (local) Diagnostic Reference Levels for Cerebral Angiography (CA), Percutaneous Transhepatic Cholangiography (PTC), Transarterial Chemoembolization (TACE) and Percutaneous Transhepatic Biliary Drainage (PTBD) are reported in this study.Materials and methodsData for air kerma-area product (PKA), air kerma at the patient entrance reference point (Ka,r), fluoroscopy time (FT) and number of images (NI) as well as estimates of Peak Skin Dose (PSD) were collected for 142 patients. Therapeutic procedure complexity was also evaluated, in an attempt to incorporate it into the DRL analysis.ResultsLocal PKA DRL values were 70, 34, 189 and 54 Gy.cm2 for CA, PTC, TACE and PTBD respectively. The corresponding DRL values for Ka,r were 494, 194, 1186 and 400 mGy, for FT they were 9.2, 14.2, 27.5 and 22.9 min, for the NI they were 844, 32, 602 and 13 and for PSD they were 254, 256, 1598 and 540 mGy respectively. PKA for medium complexity PTBD procedures was 2.5 times higher than for simple procedures. For TACE, the corresponding ratio was 1.6. PSD was estimated to be roughly 50% of recorded Ka,r for procedures in the head/neck region and 10% higher than recorded Ka,r for procedures in the body region. In only 5 cases the 2 Gy dose alarm threshold for skin deterministic effects was exceeded.ConclusionProcedure complexity can differentiate DRLs in Interventional Radiology procedures. PSD could be deduced with reasonable accuracy from values of Ka,r that are reported in every angiography system.  相似文献   

11.
12.
Interventional radiology and hemodynamic procedures have rapidly grown in number in the past decade, increasing the importance of personnel dosimetry not only for patients but also for medical staff. The optimization of the absorbed dose during operations is one of the goals that fostered the development of real-time dosimetric systems. Indeed, introducing proper procedure optimization, like correlating dose rate measurements with medical staff position inside the operating room, the absorbed dose could be reduced. Real-time dose measurements would greatly facilitate this task through real-time monitoring and automatic data recording. Besides real-time dose monitoring could allow automatic data recording. In this work, we will describe the calibration and validation of a wireless real-time prototype dosimeter based on a new sensor device (CMOS imager). The validation measurement campaign in clinical conditions has demonstrated the prototype capability of measuring dose-rates with a frequency in the range of few Hz, and an uncertainty smaller than 10%.  相似文献   

13.
In the period 2013–2016 the National Centre of Radiobiology and Radiation Protection (NCRRP) at the Ministry of Health of Bulgaria has developed a web based platform for performing national patient dose surveys and establishing Diagnostic Reference Levels (DRLs). It is accessible via internet browser, allowing the users to submit data remotely. Electronic questionnaires, specific for radiography, fluoroscopy, image guided interventional procedures, mammography and CT, were provided. Short and clear manuals were added to guide users and minimise human errors. The web-based data collection platform is functional and is currently being used for performing the third national dose survey in Bulgaria, launched in 2016. Data analysis is facilitated due to the standardisation of collected data and their storing. Using the platform, the participating facilities can establish their typical dose levels based on the median value, and compare them to DRLs. A disadvantage of the platform is the need to enter data manually, but it is opened for future upgrades for automatic data harvesting and analysis. Various practical approaches were used to overcome the lack of qualified human resources and insufficient understanding of the DRL and dose tracking concept and to motivate facilities to submit data.  相似文献   

14.
15.
16.
PurposeThe aim of the present study was to determine the efficiency of six methods for calculate the effective dose (E) that is received by health professionals during vascular interventional procedures.MethodsWe evaluated the efficiency of six methods that are currently used to estimate professionals’ E, based on national and international recommendations for interventional radiology. Equivalent doses on the head, neck, chest, abdomen, feet, and hands of seven professionals were monitored during 50 vascular interventional radiology procedures. Professionals’ E was calculated for each procedure according to six methods that are commonly employed internationally. To determine the best method, a more efficient E calculation method was used to determine the reference value (reference E) for comparison.ResultsThe highest equivalent dose were found for the hands (0.34 ± 0.93 mSv). The two methods that are described by Brazilian regulations overestimated E by approximately 100% and 200%. The more efficient method was the one that is recommended by the United States National Council on Radiological Protection and Measurements (NCRP). The mean and median differences of this method relative to reference E were close to 0%, and its standard deviation was the lowest among the six methods.ConclusionsThe present study showed that the most precise method was the one that is recommended by the NCRP, which uses two dosimeters (one over and one under protective aprons). The use of methods that employ at least two dosimeters are more efficient and provide better information regarding estimates of E and doses for shielded and unshielded regions.  相似文献   

17.
18.
There is currently no effective real-time patient dosimeter available for use in interventional radiology (IR). We conducted a feasibility study in a clinical setting to investigate the use of the new dosimeter using photoluminescence sensors during procedures. Reference dosimeters were set at almost the same position of the prototype dosimeter sensors.We found excellent correlations between the reference measurements and those of the prototype dosimeter (r2 = 0.950). The sensor of the new dosimeter does not interfere with the IR procedure. The new dosimeter will be an effective tool for the real-time measurement of patient skin doses during IR.  相似文献   

19.
PurposeInterventional radiology techniques cause radiation exposure both to patient and personnel. The radiation dose to the operator is usually measured with dosimeters located at specific points above or below the lead aprons. The aim of this study is to develop and validate two fast Monte Carlo (MC) codes for radiation transport in order to improve the assessment of individual doses in interventional radiology. The proposed methodology reduces the number of required dosemeters and provides immediate dose results.MethodsTwo fast MC simulation codes, PENELOPE/penEasyIR and MCGPU-IR, have been developed. Both codes have been validated by comparing fast MC calculations with the multipurpose PENELOPE MC code and with measurements during a realistic interventional procedure.ResultsThe new codes were tested with a computation time of about 120 s to estimate operator doses while a standard simulation needs several days to obtain similar uncertainties. When compared with the standard calculation in simple set-ups, MCGPU-IR tends to underestimate doses (up to 5%), while PENELOPE/penEasyIR overestimates them (up to 18%). When comparing both fast MC codes with experimental values in realistic set-ups, differences are within 25%. These differences are within accepted uncertainties in individual monitoring.ConclusionThe study highlights the fact that computational dosimetry based on the use of fast MC codes can provide good estimates of the personal dose equivalent and overcome some of the limitations of occupational monitoring in interventional radiology. Notably, MCGPU-IR calculates both organ doses and effective dose, providing a better estimate of radiation risk.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号