首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Irradiation of whole blood and blood components before transfusion is currently the only accepted method to prevent Transfusion-Associated Graft-Versus-Host-Disease (TA-GVHD). However, choosing the appropriate technique to determine the dosimetric parameters associated with blood irradiation remains an issue. We propose a dosimetric system based on the standard Fricke Xylenol Gel (FXG) dosimeter and an appropriate phantom. The modified dosimeter was previously calibrated using a 60Co teletherapy unit and its validation was accomplished with a 137Cs blood irradiator. An ionization chamber, standard FXG, radiochromic film and thermoluminescent dosimeters (TLDs) were used as reference dosimeters to determine the dose response and dose rate of the 60Co unit. The dose distributions in a blood irradiator were determined with the modified FXG, the radiochromic film, and measurements by TLD dosimeters. A linear response for absorbed doses up to 54 Gy was obtained with our system. Additionally, the dose rate uncertainties carried out with gel dosimetry were lower than 5% and differences lower than 4% were noted when the absorbed dose responses were compared with ionization chamber, film and TLDs.  相似文献   

2.
PurposeThe purpose of this study was to; (1) investigate employing a novel position-sensitive mega-size polycarbonate (MSPC) dosimeter for photoneutron (PN) depth, profile and dose equivalent distributions studies in a multilayer polyethylene phantom in a Siemens ONCOR accelerator, and (2) develop depth dose equivalent distribution matrix data at different depths and positions of the phantom for patient PN dose equivalent determination and in particular for PN secondary cancer risk estimation.MethodsPosition-sensitive MSPC dosimeters were successfully exposed at 9 different depths of the phantom in a 10 × 10 cm2 X-ray field. The dosimeters were processed in mega-size electrochemical chambers at optimum conditions. Each MSPC dosimeter was placed at a known phantom depth for PN depth dose equivalents and profiles on transverse, longitudinal and diagonal axes and isodose equivalent distribution studies in and out of the X-ray beam.ResultsPN dose equivalent distributions at any depth showed the highest value at the beam central axis and decreases as the distance increases. PN dose equivalent at any position studied in the axes has a maximum value on the phantom surface which decreases as depth increases due to flux reduction by multi-elastic scattering interactions.ConclusionsExtensive PN dose equivalent matrix data at different depths and positions in the phantom were determined. The position-sensitive MSPC dosimeters proved to be highly efficient for PN depth, profile and isodose equivalent distribution studies. The extensive data obtained highly assists for determining PN dose equivalent of a patient undergoing high-energy X-ray therapy and for PN secondary cancer risk estimation.  相似文献   

3.
The ferrous sulphate-benzoic acid-xylenol orange (FBX) chemical dosimeter, due to its aqueous form can measure average volume doses and hence may overcome the limitations of point dosimetry. The present study was undertaken to validate the use of FBX dosimeter for rectum and bladder dose measurement during intracavitary brachytherapy (ICBT) and transperineal interstitial brachytherapy (TIB). We filled cylindrical polypropylene tubes (PT) and Foley balloons (FB) with FBX solution and used them as substitutes for rectum and bladder dose measurements respectively. A water phantom was fabricated with provision to place the Fletcher-type ICBT and MUPIT template applicators, and FBX filled PT and FB within the phantom. The phantom was then CT scanned for treatment planning and subsequent irradiation. Our results show that the average difference between DVH derived dose value and FBX measured dose is 3.5% (PT) and 13.7% (FB) for ICBT, and 9% (PT) and 9.9% (FB) for TIB. We believe that the FBX system should be able to provide accuracy and precision sufficient for routine quality assurance purposes. The advantage of the FBX system is its water equivalent composition, average volume dose measuring capability, and energy and temperature independent response as compared to TLD or semiconductor dosimeters. However, detailed studies will be needed with regards to its safety before actual in-vivo dose measurements are possible with the FBX dosimeter.  相似文献   

4.
PurposeTo provide a 3D dosimetric evaluation of a commercial portal dosimetry system using 2D/3D detectors under ideal conditions using VMAT.MethodsA 2D ion chamber array, radiochromic film and gel dosimeter were utilised to provide a dosimetric evaluation of transit phantom and pre-treatment ‘fluence’ EPID back-projected dose distributions for a standard VMAT plan. In-house 2D and 3D gamma methods compared pass statistics relative to each dosimeter and TPS dose distributions.ResultsFluence mode and transit EPID dose distributions back-projected onto phantom geometry produced 2D gamma pass rates in excess of 97% relative to other tested detectors and exported TPS dose planes when a 3%, 3 mm global gamma criterion was applied. Use of a gel dosimeter within a glass vial allowed comparison of measured 3D dose distributions versus EPID 3D dose and TPS calculated distributions. 3D gamma comparisons between modalities at 3%, 3 mm gave pass rates in excess of 92%. Use of fluence mode was indicative of transit results under ideal conditions with slightly reduced dose definition.Conclusions3D EPID back projected dose distributions were validated against detectors in both 2D and 3D. Cross validation of transit dose delivered to a patient is limited due to reasons of practicality and the tests presented are recommended as a guideline for 3D EPID dosimetry commissioning; allowing direct comparison between detector, TPS, fluence and transit modes. The results indicate achievable gamma scores for a complex VMAT plan in a homogenous phantom geometry and contributes to growing experience of 3D EPID dosimetry.  相似文献   

5.
PurposeAt our institute, a transit back-projection algorithm is used clinically to reconstruct in vivo patient and in phantom 3D dose distributions using EPID measurements behind a patient or a polystyrene slab phantom, respectively. In this study, an extension to this algorithm is presented whereby in air EPID measurements are used in combination with CT data to reconstruct ‘virtual’ 3D dose distributions. By combining virtual and in vivo patient verification data for the same treatment, patient-related errors can be separated from machine, planning and model errors.Methods and materialsThe virtual back-projection algorithm is described and verified against the transit algorithm with measurements made behind a slab phantom, against dose measurements made with an ionization chamber and with the OCTAVIUS 4D system, as well as against TPS patient data. Virtual and in vivo patient dose verification results are also compared.ResultsVirtual dose reconstructions agree within 1% with ionization chamber measurements. The average γ-pass rate values (3% global dose/3 mm) in the 3D dose comparison with the OCTAVIUS 4D system and the TPS patient data are 98.5 ± 1.9%(1SD) and 97.1 ± 2.9%(1SD), respectively. For virtual patient dose reconstructions, the differences with the TPS in median dose to the PTV remain within 4%.ConclusionsVirtual patient dose reconstruction makes pre-treatment verification based on deviations of DVH parameters feasible and eliminates the need for phantom positioning and re-planning. Virtual patient dose reconstructions have additional value in the inspection of in vivo deviations, particularly in situations where CBCT data is not available (or not conclusive).  相似文献   

6.
PurposeA new polymer gel dosimeter recipe was investigated that may be more suitable for widespread applications than polyacrylamide gel dosimeters, since the extremely toxic acrylamide has been replaced with the less harmful monomer 2-Acrylamido 2-Methyl Propane Sulfonic acid (AMPS).MethodsThe new formulation was named PAMPSGAT. The MRI response (R2) of the dosimeters was analyzed for conditions of varying dose, dose rate, and temperature during scanning. Radiological properties of the PAMPSGAT polymer gel dosimeter were investigated.ResultsThe dose-response (R2) of AMPS/Bis appears to be linear over a dose range 10–40 Gy. The percentage of difference between the R2 values for imaging at 15 °C and MRI room temperature is about 4.6% for vial with 40 Gy absorbed dose which decreased to less than 1% for imaging at 20 °C. The percentage difference of Zeff of PAMPSGAT gel and soft tissue was less than 1% in the practical energy range (100 KeV–100 MeV). The electron density of the PAMPSGAT polymer gel was 2.9% higher than that of muscle. Results showed that the sensitivity of PAMPSGAT polymer gel dosimeter irradiated by 60Co (energy = 1.25 MeV) is about 27.7% higher than that of irradiated using a 6 MeV Linac system.ConclusionsTemperature during MRI scanning has a small effect on the R2 response of the PAMPSGAT polymer gel dosimeter. Results confirmed tissue equivalency of the PAMPSGAT polymer gel dosimeter in most practical energy range. The PAMPSGAT polymer gel dosimeter response depends on energy and dose rate.  相似文献   

7.
PurposeTo verify the accuracy of 4D Monte Carlo (MC) simulations, using the 4DdefDOSXYZnrc user code, in a deforming anatomy. We developed a tissue-equivalent and reproducible deformable lung phantom and evaluated 4D simulations of delivered dose to the phantom by comparing calculations against measurements.MethodsA novel deformable phantom consisting of flexible foam, emulating lung tissue, inside a Lucite external body was constructed. A removable plug, containing an elastic tumor that can hold film and other dosimeters, was inserted in the phantom. Point dose and position measurements were performed inside and outside the tumor using RADPOS 4D dosimetry system. The phantom was irradiated on an Elekta Infinity linac in both stationary and moving states. The dose delivery was simulated using delivery log files and the phantom motion recorded with RADPOS.ResultsReproducibility of the phantom motion was determined to be within 1 mm. The phantom motion presented realistic features like hysteresis. MC calculations and measurements agreed within 2% at the center of tumor. Outside the tumor agreements were better than 5% which were within the positional/dose reading uncertainties at the measurement points. More than 94% of dose points from MC simulations agreed within 2%/2 mm compared to film measurements.ConclusionThe deformable lung phantom presented realistic and reproducible motion characteristics and its use for verification of 4D dose calculations was demonstrated. Our 4DMC method is capable of accurate calculations of the realistic dose delivered to a moving and deforming anatomy during static and dynamic beam delivery techniques.  相似文献   

8.
Background and PurposeWith the increasingly prominent role of stereotactic radiosurgery in radiation therapy, there is a clinical need for robust, efficient, and accurate solutions for targeting multiple sites with one patient setup. The end-to-end accuracy of high definition dynamic radiosurgery with Elekta treatment planning and delivery systems was investigated in this study.Materials and MethodsA patient-derived CT scan was used to create a radiosurgery plan to seven targets in the brain. Monaco was used for treatment planning using 5 VMAT non-coplanar arcs. Prior to delivery, 3D-printed phantoms from RTsafe were ordered including a gel phantom for 3D dosimetry, phantom with 2D film insert, and an ion chamber phantom for point dose measurement. Delivery was performed using the Elekta VersaHD, XVI cone-beam CT, and HexaPOD six degree of freedom tabletop.ResultsAbsolute dose accuracy was verified within 2%. 3D global gamma analysis in the film measurement revealed 3%/2 mm passing rates >95%. Gel dosimetry 3D global gamma analysis (3%/2 mm) were above 90% for all targets with the exception of one. Results were indicative of typical end-to-end accuracies (<1 mm spatial uncertainty, 2% dose accuracy) within 4 cm of isocenter. Beyond 4 cm, 2 mm accuracy was found.ConclusionsHigh definition dynamic radiosurgery expands clinically acceptable stereotactic accuracy to a sphere around isocenter allowing for radiosurgery of several targets with one setup with a high degree of dosimetric precision. Gel dosimetry proved to be an essential tool for the validation of the 3D dose distributions in this technique.  相似文献   

9.
PurposeTo develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the Small Animal Radiation Research Platform (SARRP).Methods and materialsA QA phantom was developed for carrying out daily, monthly and annual QA tasks including: imaging, dosimetry and treatment planning system (TPS) performance evaluation of the SARRP. The QA phantom consists of 15 (60 × 60 × 5 mm3) kV-energy tissue equivalent solid water slabs. The phantom can incorporate optically stimulated luminescence dosimeters (OSLD), Mosfet or film. One slab, with inserts and another slab with hole patterns are particularly designed for image QA.ResultsOutput constancy measurement results showed daily variations within 3%. Using the Mosfet in phantom as target, results showed that the difference between TPS calculations and measurements was within 5%. Annual QA results for the Percentage depth dose (PDD) curves, lateral beam profiles, beam flatness and beam profile symmetry were found consistent with results obtained at commissioning. PDD curves obtained using film and OSLDs showed good agreement. Image QA was performed monthly, with image-quality parameters assessed in terms of CBCT image geometric accuracy, CT number accuracy, image spatial resolution, noise and image uniformity.ConclusionsThe results show that the developed QA phantom can be employed as a tool for comprehensive performance evaluation of the SARRP. The study provides a useful reference for development of a comprehensive quality assurance program for the SARRP and other similar small animal irradiators, with proposed tolerances and frequency of required tests.  相似文献   

10.
11.

The aim of this study was to dosimetrically compare three total body irradiation (TBI) techniques which can be delivered by a standard linear accelerator, and to deduce which one is preferable. Specifically, Extended Source to Surface Distance (SSD) Field-in-Field (FiF), Extended SSD Volumetric Modulated Arc Therapy (VMAT), and Standard SSD VMAT TBI techniques were dosimetrically evaluated. Percent depth dose and dose profile measurements were made under treatment conditions for each specified technique. After having generated treatment plans with a treatment planning system (TPS), dose homogeneity and critical organ doses were investigated on a Rando phantom using radiochromic films and optically stimulated luminescence dosimeters (OSLDs). TBI dose of 12 Gy in six fractions was prescribed for each technique. The gamma index (5%/5 mm) was used for the analysis of radiochromic films. Passing rates for Extended SSD FiF, Extended SSD VMAT and Standard SSD VMAT techniques were found to be 90%, 87% and 94%, respectively. OSLD measurements were within?±?5% agreement with TPS calculations for the first two techniques whereas the agreement was found to be within?±?3% for the Standard SSD VMAT technique. TPS calculations demonstrated that mean lung doses in the first two techniques were around 8.5 Gy while it was kept around 7 Gy in Standard SSD VMAT. It is concluded that Standard SSD VMAT is superior in sparing the lung tissue while all three TBI techniques are feasible in clinical practice with acceptable dose homogeneity. In the absence of VMAT-based treatment planning, Extended SSD FiF would be a reasonable choice compared to other conventional techniques.

  相似文献   

12.
This study was carried out to investigate the suitability of using the optically stimulated luminescence dosimeter (OSLD) in measuring surface dose during radiotherapy. The water equivalent depth (WED) of the OSLD was first determined by comparing the surface dose measured using the OSLD with the percentage depth dose at the buildup region measured using a Markus ionization chamber. Surface doses were measured on a solid water phantom using the OSLD and compared against the Markus ionization chamber and Gafchromic EBT3 film measurements. The effect of incident beam angles on surface dose was also studied. The OSLD was subsequently used to measure surface dose during tangential breast radiotherapy treatments in a phantom study and in the clinical measurement of 10 patients. Surface dose to the treated breast or chest wall, and on the contralateral breast were measured. The WED of the OSLD was found to be at 0.4 mm. For surface dose measurement on a solid water phantom, the Markus ionization chamber measured 15.95% for 6 MV photon beam and 12.64% for 10 MV photon beam followed by EBT3 film (23.79% and 17.14%) and OSLD (37.77% and 25.38%). Surface dose increased with the increase of the incident beam angle. For phantom and patient breast surface dose measurement, the response of the OSLD was higher than EBT3 film. The in-vivo measurements were also compared with the treatment planning system predicted dose. The OSLD measured higher dose values compared to dose at the surface (Hp(0.0)) by a factor of 2.37 for 6 MV and 2.01 for 10 MV photon beams, respectively. The measurement of absorbed dose at the skin depth of 0.4 mm by the OSLD can still be a useful tool to assess radiation effects on the skin dermis layer. This knowledge can be used to prevent and manage potential acute skin reaction and late skin toxicity from radiotherapy treatments.  相似文献   

13.
PurposeThe purpose of our study was to acquire dose profiles at critical organs of lung and breast regions using optically stimulated luminescence (OSL) dosimeters; assess the actual radiation dose delivered at retrospective and prospective computed tomography coronary angiography (CTCA).Materials and methodsUsing a chest CT phantom we applied a prospectively-gated step-and-shoot- and a retrospectively-gated helical mode on a 64-detector row CT scanner. Retrospective scan mode was used with and without electrocardiogram (ECG) based tube current modulation. OSL dosimeters were used to measure dose profiles. In the both scan modes we acquired dose profiles and determined the mean and maximum dose in left lung and in left breast regions.ResultsIn prospective mode, the mean dose was 21.53 mGy in left lung- and 23.59 mGy in left breast region. With respect to the retrospective mode, the mean dose with tube current modulation was 38.63 mGy for left lung- and 46.02 mGy for left breast region, i.e. 0.56 and 0.55 times lower than the mean dose without modulation.ConclusionThe OSL dosimeter is useful for measurement of the actual radiation dose along z-axis at lung and breast regions in the prospective and the retrospective CTCA.  相似文献   

14.
AimDeveloping and assessing the feasibility of using a three-dimensional (3D) printed patient-specific anthropomorphic pelvis phantom for dose calculation and verification for stereotactic ablative radiation therapy (SABR) with dose escalation to the dominant intraprostatic lesions.Material and methodsA 3D-printed pelvis phantom, including bone-mimicking material, was fabricated based on the computed tomography (CT) images of a prostate cancer patient. To compare the extent to which patient and phantom body and bones overlapped, the similarity Dice coefficient was calculated. Modular cylindrical inserts were created to encapsulate radiochromic films and ionization chamber for absolute dosimetry measurements at the location of prostate and at the boost region. Gamma analysis evaluation with 2%/2mm criteria was performed to compare treatment planning system calculations and measured dose when delivering a 10 flattening filter free (FFF) SABR plan and a 10FFF boost SABR plan.ResultsDice coefficients of 0.98 and 0.91 were measured for body and bones, respectively, demonstrating agreement between patient and phantom outlines. For the boost plans the gamma analysis yielded 97.0% of pixels passing 2%/2mm criteria and these results were supported by the chamber average dose difference of 0.47 ± 0.03%. These results were further improved when overriding the bone relative electron density: 97.3% for the 2%/2mm gamma analysis, and 0.05 ± 0.03% for the ionization chamber average dose difference.ConclusionsThe modular patient-specific 3D-printed pelvis phantom has proven to be a highly attractive and versatile tool to validate prostate SABR boost plans using multiple detectors.  相似文献   

15.
PurposeTo investigate the feasibility of using the brass mesh bolus as an alternative to tissue- equivalent bolus for post mastectomy chest wall cancer by characterizing the dosimetric effects of the 2-mm fine brass bolus on both the skin dose, the dose at depth and spatial distribution.Materials and methodsSurface dose and percent depth dose data were acquired for a 6 MV photon beam in a solid water phantom using MOSkin™, Gafchromic EBT3 film and an Advanced Markus ionization chamber. Data were acquired for the case of: no bolus, Face-up bass bolus, Face-down brass bolus, double brass bolus, 0.5 cm and 1.0 cm of Superflab TE bolus. The exit doses were also measured via MOSkin™ dosimeter and Markus ionization chamber. Gafchromic EBT3 film strips were used to plot dose profile at surface and 10 cm depth for Face-up brass, Face-down brass, double brass, 0.5 cm and 1.0 cm of Superflab TE bolus.ResultsThe surface dose measured via MOSkin™ dosimeter increased from 19.2 ± 1.0% to 63.1 ± 2.1% under Face-up brass discs, 51.2 ± 1.2% under Face-up brass spaces, 61.5 ± 0.5% under Face-down brass discs, and 41.3 ± 2.1% under Face-down brass spaces. The percentage difference in the dose measured under brass discs between Face-up versus Face-down was less than 2% for entrance dose and 10% for exit dose, whereas the percentage difference under brass spaces was approximately 3% for entrance dose and about 5% for the exit dose. Gafchromic EBT3 film strip measurements show that the mesh bolus produced ripple beam profiles due to the mesh brass construction.ConclusionsBrass bolus does not significantly change dose at depth (less than 0.5%), and the surface dose is increased similar to TE bolus. Considering this, brass mesh may be used as a substitute for TE bolus to increase superficial dose for chest wall tangent plans.  相似文献   

16.
PurposeTo compare the effective dose (ED) and image quality (IQ) of O-arm cone-beam CT (Medtronic, Minneapolis, MN, USA) and Airo multi-slice CT (Brainlab AG, Munich, Germany) for intraoperative-CT (i-CT) in spinal surgery.MethodsThe manufacturer-defined protocols available in the O-arm and Airo systems for three-dimensional lumbar spine imaging were compared.Organ dose was measured both with thermo-luminescent dosimeters and GafChromic films in the Alderson Radiation Therapy anthropomorphic phantom.A subjective analysis was performed by neurosurgeons to compare the clinical IQ of the anthropomorphic phantom images acquired with the different i-CT systems and imaging protocols.Image uniformity, noise, contrast-to-noise-ratio (CNR), and spatial resolution were additionally assessed with the Catphan 504 phantom.ResultsO-arm i-CT caused 56% larger ED than Airo due to the high definition (HD) imaging protocol.The noise was larger for O-arm images leading to a lower CNR than that measured for Airo. Moreover, scattering and beam hardening effects were observed in the O-arm images. Better spatial resolution was measured for the O-arm system (9 lp/cm) than for Airo (4 lp/cm).For all the investigated protocols, O-arm was found to be better for identifying anatomical features important for accurate pedicle screw positioning.ConclusionsAccording to phantom measurements, the HD protocol of O-arm offered better clinical IQ than Airo but larger ED. The larger noise of O-arm images did not compromise the clinical IQ while the superior spatial resolution of this system allowed a better visibility of anatomical features important for pedicle screw positioning in the lumbar region.  相似文献   

17.
PurposeIn modern radiotherapy techniques, to ensure an accurate beam modeling process, dosimeters with high accuracy and spatial resolution are required. Therefore, this work aims to propose a simple, robust, and a small-scale fiber-integrated X-ray inorganic detector and investigate the dosimetric characteristics used in radiotherapy.MethodsThe detector is based on red-emitting silver-activated zinc-cadmium sulfide (Zn,Cd)S:Ag nanoclusters and the proposed system has been tested under 6 MV photons with standard dose rate used in the patient treatment protocol. The article presents the performances of the detector in terms of dose linearity, repeatability, reproducibility, percentage depth dose distribution, and field output factor. A comparative study is shown using a microdiamond dosimeter and considering data from recent literature.ResultsWe accurately measured a small field beam profile of 0.5 × 0.5 cm2 at a spatial resolution of 100 µm using a LINAC system. The dose linearity at 400 MU/min has shown less than 0.53% and 1.10% deviations from perfect linearity for the regular and smallest field. Percentage depth dose measurement agrees with microdiamond measurements within 1.30% and 2.94%, respectively for regular to small field beams. Besides, the stem effect analysis shows a negligible contribution in the measurements for fields smaller than 3x3 cm2. This study highlights the drastic decrease of the convolution effect using a point-like detector, especially in small dimension beam characterization. Field output factor has shown a good agreement while comparing it with the microdiamond dosimeter.ConclusionAll the results presented here anticipated that the developed detector can accurately measure delivered dose to the region of interest, claim accurate depth dose distribution hence it can be a suitable candidate for beam characterization and quality assurance of LINAC system.  相似文献   

18.
PurposeA dosimetric audit of Ir-192 high dose rate (HDR) brachytherapy remote after-loading units was carried out in 2019. All six brachytherapy departments on the island of Ireland participated in an end-to-end test and in a review of local HDR dosimetry procedures.Materials and methodsA 3D-printed customised phantom was created to position the following detectors at known distances from the HDR source: a Farmer ionization chamber, GafChromic film and thermoluminescent dosimeters (TLDs). Dedicated HDR applicator needles were used to position an Ir-192 source at 2 cm distance from these detectors. The end-to-end dosimetry audit pathway was performed at each host site and included the stages of imaging, applicator reconstruction, treatment planning and delivery. Deviations between planned and measured dose distributions were quantified using gamma analysis methods. Local procedures were also discussed between auditors and hosts.ResultsThe mean difference between Reference Air Kerma Rate (RAKR) measured during the audit and RAKR specified by the vendor source certificate was 1.3%. The results of end-to-end tests showed a mean difference between calculated and measured dose of 2.5% with TLDs and less than 0.5% with Farmer chamber measurements. GafChromic films showed a mean gamma passing rates of >95% for plastic and metal applicators with 2%/1 mm global tolerance criteria.ConclusionsThe results of this audit indicate dosimetric consistency between centres. The ‘end to end’ dosimetry audit methodology for HDR brachytherapy has been successfully implemented in a multicentre environment, which included different models of Ir-192 sources and different treatment planning systems.The ability to create a 3D-printed water-equivalent phantom customised to accurately position all three detector types simultaneously at controlled distances from the Ir-192 source under evaluation gives good reproducibility for end-to-end methodology.  相似文献   

19.
PurposeIn cerebral angiography, for diagnosis and interventional neuroradiology, cone-beam computed tomography (CBCT) scan is frequently performed for evaluating brain parenchyma, cerebral hemorrhage, and cerebral infarction. However, the patient’s eye lens is more frequently exposed to excessive doses in these scans than in the previous angiography and interventional neuroradiology (INR) procedures. Hence, radioprotection for the lenses is needed. This study selects the most suitable eye lens protection material for CBCT from among nine materials by evaluating the dose reduction rate and image quality.MethodsTo determine the dose reduction rate, the lens doses were measured using an anthropomorphic head phantom and a real-time dosimeter. For image quality assessment, the artifact index was calculated based on the pixel value and image noise within various regions of interest in a water phantom.ResultsThe protective materials exhibited dose reduction; however, streak artifacts were observed near the materials. The dose reduction rate and the degree of the artifact varied significantly depending on the protective material. The dose reduction rates were 14.6%, 14.2%, and 26.0% when bismuth shield: normal (bismuth shield in the shape of an eye mask), bismuth shield: separate (two separate bismuth shields), and lead goggles were used, respectively. The “separate” bismuth shield was found to be effective in dose reduction without lowering the image quality.ConclusionWe found that bismuth shields and lead goggles are suitable protective devices for the optimal reduction of lens doses.  相似文献   

20.
PurposeTo evaluate eXaSkin, a novel high-density bolus alternative to commercial tissue-equivalent Superflab, for 6MV photon-beam radiotherapy.Materials and methodsWe delivered a 10 × 10 cm2 open field at 90° and head-and-neck clinical plan, generated with the volumetric modulated arc therapy (VMAT) technique, to an anthropomorphic phantom in three scenarios: with no bolus on the phantom’s surface, with Superflab, and with eXaSkin. In each scenario, we measured dose to a central planning target volume (PTV) in the nasopharynx region with an ionization chamber, and we measured dose to the skin, at three different positions within the vicinity of a neck lymph node PTV, with MOSkin™, a semiconductor dosimeter. Measurements were compared against calculations with the treatment planning system (TPS).ResultsFor the static field, MOSkin results underneath the eXaSkin were in agreement with calculations to within 1.22%; for VMAT, to within 5.68%. Underneath Superflab, those values were 3.36% and 11.66%. The inferior agreement can be explained by suboptimal adherence of Superflab to the phantom’s surface as well as difficulties in accurately reproducing its placement between imaging and treatment session. In all scenarios, dose measured at the central target agreed to within 1% with calculations.ConclusionseXaSkin was shown to have superior adaptation to the phantom’s surface, producing minimal air gaps between the skin surface and bolus, allowing for accurate positioning and reproducibility of set-up conditions. eXaSkin with its high density material provides sufficient build-up to achieve full skin dose with less material thickness than Superflab.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号