首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neosporosis is a parasitic disease affecting the health of dogs and cattle worldwide. It is caused by Neospora caninum, an obligate intracellular apicomplexan parasite. Dogs are its definitive host, it mostly infects livestock animals, especially cattle that acts as intermediate host. It is necessary to have well-established models of abortion and vertical transmission in experimental animals, in order to determine basic control measures for the N. caninum infection. We evaluated the role of N. caninum dense granule antigen 7 (NcGRA7) in the vertical transmission of N. caninum using the C57BL/6 pregnant mouse model. We inoculated mice on day 3.5 of pregnancy with parental Nc-1 or NcGRA7-deficient parasites (NcGRA7KO). Post-mortem analyses were performed on day 30 after birth and the surviving pups were kept until day 30 postpartum. The number of parasites in the brain tissues of offspring from NcGRA7KO-infected dams was significantly lower than that of the Nc-1-infected dams under two infection doses (1 × 106 and 1 × 105 tachyzoites/mouse). The vertical transmission rates in the NcGRA7KO-infected group were significantly lower than those of the Nc1-infected group. To understand the mechanism by which the lack of NcGRA7 decreases the vertical transmission, pregnant mice were sacrificed on day 13.5 of pregnancy (10 days after infection), although parasite DNA was detected in the placentas, no significant difference was found between the two parasite lines. Histopathological analysis revealed a greater inflammatory response in the placentas from NcGRA7KO-infected dams than in those from the parental strain. This finding correlates with upregulated chemokine mRNA expression for CCL2, CCL8, and CXCL9 in the placentas from the NcGRA7KO-infected mice. In conclusion, these results suggest that loss of NcGRA7 triggers an inflammatory response in the placenta, resulting in decreased vertical transmission of N. caninum.  相似文献   

2.
Toxoplasma gondii is a master manipulator capable of effectively siphoning the resources from the host cell for its intracellular subsistence. However, the molecular underpinnings of how the parasite gains resources from its host remain largely unknown. Residing within a non-fusogenic parasitophorous vacuole (PV), the parasite must acquire resources across the limiting membrane of its replicative niche, which is decorated with parasite proteins including those secreted from dense granules. We discovered a role for the host Endosomal Sorting Complex Required for Transport (ESCRT) machinery in host cytosolic protein uptake by T. gondii by disrupting host ESCRT function. We identified the transmembrane dense granule protein TgGRA14, which contains motifs homologous to the late domain motifs of HIV-1 Gag, as a candidate for the recruitment of the host ESCRT machinery to the PV membrane. Using an HIV-1 virus-like particle (VLP) release assay, we found that the motif-containing portion of TgGRA14 is sufficient to substitute for HIV-1 Gag late domain to mediate ESCRT-dependent VLP budding. We also show that TgGRA14 is proximal to and interacts with host ESCRT components and other dense granule proteins during infection. Furthermore, analysis of TgGRA14-deficient parasites revealed a marked reduction in ingestion of a host cytosolic protein compared to WT parasites. Thus, we propose a model in which T. gondii recruits the host ESCRT machinery to the PV where it can interact with TgGRA14 for the internalization of host cytosolic proteins across the PV membrane (PVM). These findings provide new insight into how T. gondii accesses contents of the host cytosol by exploiting a key pathway for vesicular budding and membrane scission.  相似文献   

3.
Toxoplasma gondii is an intracellular protozoan parasite, which relies on a specialized compartment, the parasitophorous vacuole (PV), to survive within host cells. Dense granules within the parasite release a large variety of proteins to maintain the integrity of the vacuole structure. Here, we identified a novel dense granule protein in T. gondii, TgGRA23, which is a homolog of the Sarcocystis muris dense granule protein, SmDG32. Recombinant TgGRA23 (rTgGRA23) expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein was used to raise antisera in mice and rabbits. Immunoblotting showed that antisera from the immunized mice and rabbits reacted with parasite lysates to yield a 21-kDa native protein. In addition, immuno-electron microscopic examination showed that TgGRA23 resides in the dense granules, PV membrane and intravacuolar network of the parasite. To confirm the precise subcellular localization of TgGRA23 in T. gondii, an immunofluorescent antibody test was performed using dense granule markers. Notably, TgGRA23 co-localized with other dense granule proteins including TgGRA4 and TgGRA7, in the extracellular-stage parasites. Biochemical experiments indicated that TgGRA23 is insoluble and may form an electrostatic complex that is resistant to non-ionic detergents. Furthermore, specific antibodies to TgGRA23 were detected during the chronic stage of Toxoplasma infection in mice. Our results suggest that TgGRA23 is an as yet unknown member of the T. gondii dense granule proteins, and that it may be involved in remodeling or maintenance of the PV.  相似文献   

4.
Abortion and reproductive failure caused by Neospora caninum infection has a dramatic negative economic impact on the cattle industry. To date, no definitive serodiagnostic tool for assessing N. caninum abortion has been reported. In this study, we evaluated the diagnostic performance of numerous N. caninum antigens in relation to abortion in cattle. Five recombinant proteins with potential as diagnostic antigens (NcGRA6, NcGRA7, NcGRA14, NcCyP, and NcSAG1) were compared by indirect enzyme-linked immunosorbent assay (iELISA) using sera from mice and cattle experimentally infected with N. caninum. The best-performing three antigens (NcSAG1, NcGRA7, and NcGRA6) were evaluated by IgG-iELISAs to assess their utility in diagnosing Neospora abortion using sera from confirmed N. caninum-aborted dams based on immunohistochemical assays (IHC). Additionally, all samples were tested using a commercial N. caninum antibody competitive ELISA (cELISA). The iELISAs against both NcSAG1 and NcGRA7 could efficiently distinguish IHC positive and negative samples compared with iELISAs against NcGRA6 and the cELISA. Furthermore, antibody levels against NcSAG1 and NcGRA7 were significantly higher in aborting cows comparing with infected but non-aborted dams in a herd experiencing a Neospora abortion outbreak. Tracking the dynamics of antibody levels during pregnancy revealed a marked increase in NcSAG1- and NcGRA7-specific antibodies at the last trimester of pregnancy. In contrast, no marked differences in antibody levels against either antigen were noted in neurologically symptomatic calves compared with non-symptomatic infected calves. Our data suggests NcSAG1 and NcGRA7 as indicators for Neospora abortion.  相似文献   

5.
Neospora caninum is the etiologic agent of bovine neosporosis, which affects the reproductive performance of cattle worldwide. The transmembrane protein, NcSRS2, and dense-granule protein, NcGRA7, were identified as protective antigens based on their ability to induce significant protective immune responses in murine neosporosis models. In the current study, NcSRS2 and NcGRA7 genes were spliced by overlap-extension PCR in a recombinant adenovirus termed Ad5-NcSRS2-NcGRA 7, expressing the NcSRS2-NcGRA7 gene, and the efficacy was evaluated in mice. The results showed that the titer of the recombinant adenovirus was 109TCID50/ml. Three weeks post-boost immunization (w.p.b.i.), the IgG antibody titer in sera was as high as 1:4,096. IFN-γ and IL-4 levels were significantly different from the control group (P<0.01). This research established a solid foundation for the development of a recombinant adenovirus vaccine against bovine N. caninum.  相似文献   

6.
The development of Neospora caninum tachyzoites, an apicomplexan protozoan parasite, was studied in vitro using the human breast carcinoma cell 7 (MCF-7) as the host cell line. The extracellular NC-1 tachyzoites in MCF-7 cells were observed and counted daily for 6 consecutive days post-infection to establish the growth curve. The intracellular parasites were observed by acridine orange staining using Laser scanning confocal microscope. The results indicated that NC-1 tachyzoites invaded MCF-7 cells and multiplied intracellularly. The number of extracellular NC-1 tachyzoites started to increase rapidly around day 3 and reached the maximum number around day 4. Results from the present study suggested that MCF-7 cells were susceptible to NC-1 tachyzoites and could be used as an alternative cell line for in vitro studies.  相似文献   

7.
Neospora caninum is an intracellular protozoan pathogen that causes abortion in cattle. We studied how the interaction between murine conventional dendritic cells or macrophages and N. caninum influences the generation of cell-mediated immunity against the parasite. We first explored the invasion and survival ability of N. caninum in dendritic cells and macrophages. We observed that protozoa rapidly invaded and proliferated into these two cell populations. We then investigated how Neospora-exposed macrophages or dendritic cells distinguish between viable and non-viable (heat-killed tachyzoites and antigenic extract) parasites. Viable tachyzoites and antigenic extract, but not killed parasites, altered the phenotype of immature dendritic cells. Dendritic cells infected with viable parasites down-regulated the expression of MHC-II, CD40, CD80 and CD86 whereas dendritic cells exposed to N. caninum antigenic extract up-regulated the expression of MHC-II and CD40 and down-regulated CD80 and CD86 expression. Moreover, only viable tachyzoites and antigenic extract induced IL-12 synthesis by dendritic cells. MHC-II expression was up-regulated and CD86 expression was down-regulated at the surface of macrophages, regardless of the parasitic form was encountered. However, IL-12 secretion by macrophages was only observed under conditions using viable and heat-killed parasite. We then analysed how macrophages and dendritic cells were involved in inducing T-cell responses. T lymphocyte IFN-γ-secretion in correlation with IL-12 production occurred after interactions between T cells and dendritic cells exposed to viable tachyzoites or antigenic extract. By contrast, for macrophages IFN-γ production was IL-12-independent and only occurred after interactions between T cells and macrophages exposed to antigenic extract. Thus, N. caninum-induced activation of murine dendritic cells, but not that of macrophages, was associated with T cell IFN-γ production after IL-12 secretion.  相似文献   

8.
Dense granule protein 7 (NcGRA7) is a potent diagnostic antigen of Neospora caninum. Some studies have reported on the difficult expression, low yield, and variable degree of solubility of recombinant NcGRA7. We aimed to unravel the possible causes for these issues and tested NcGRA7 antigenicity in enzyme linked immunosorbent assays (ELISAs). The NcGRA7 coding sequence (217 amino acids) was split into five amino acid regions: NcGRA7m (27–217), NcGRA7m3 (27–160), NcGRA7m4 (27–135), NcGRA7m5 (161–190), and NcGRA7m6 (188–217). Three fragments, NcGRA7m, NcGRA7m3 and NcGRA7m4, exhibited high antigenic properties when tested against experimentally-infected mice and dog sera by ELISA. High levels of IgG2 antibodies against NcGRA7m3 were observed in field dog sera. In experimentally and naturally-infected cattle, the N. caninum-specific sera only reacted with NcGRA7m, indicating that this antigenic region differs among the three animal species. This study presents valuable information about the antigenic properties and topology of NcGRA7, and highlights its suitability for diagnostic purposes.  相似文献   

9.
Profilins are actin-binding proteins that in Toxoplasma gondii stimulate innate immunity in mice by binding Toll-like receptors (TLR) on dendritic cells (DC) leading to release of inflammatory cytokines, primarily IL-12 and IFN-γ. The purpose of the present study was to characterize Neospora caninum profilin, termed NcProfilin. Recombinant NcProfilin was purified by affinity chromatography, and used to prepare specific antisera to allow characterization of native NcProfilin antigen in N. caninum tachyzoites. By immunoblotting, recombinant NcProfilin is 22 kDa, and is similar in size to the respective 22 kDa native protein. Immunofluorescence and immunoelectron microscopy localized native NcProfilin to the apical end of N. caninum tachyzoites. Incubation of recombinant NcProfilin with spleen cells from BALB/c mice induced release of IFN-γ. Also, injection of BALB/c mice with purified rNcProfilin elicited a strong IFN-γ and IL-12 responses at 6 and 24 h after injection indicating that NcProfilin may be an important protein in regulation of cytokine responses to N. caninum.  相似文献   

10.
Coxiella burnetii is an obligate intracellular bacterium that replicates in a large lysosome-like parasitophorous vacuole (PV). Current methods of cloning C. burnetii are laborious and technically demanding. We have developed an alternative cloning method that involves excision of individual C. burnetii-laden PVs from infected cell monolayers by micromanipulation. To demonstrate the cloning utility and efficiency of this procedure, we coinfected Vero cells with isogenic variants of the Nine Mile strain of C. burnetii. Coinhabited PVs harboring Nine Mile phase II (NMII) and Nine Mile phase I (NMI) or Nine Mile crazy (NMC) were demonstrated by immunofluorescence. PVs were then randomly excised from cells coinfected with NMI and NMC by micromanipulation, and PVs harboring both strains were identified by PCR. Fresh Vero cells were subsequently infected with organisms from coinhabited PVs, and the PV excision and PCR screening process was repeated. Without exception, PVs obtained from second-round excisions contained clonal populations of either NMII or NMC, demonstrating that micromanipulation is an efficient and reproducible procedure for obtaining C. burnetii clones.  相似文献   

11.

Background

Neosporosis is an infectious disease primarily of cattle and dogs, caused by intracellular parasite, Neospora caninum. Neosporosis appears to be a major cause of abortion in dairy cattle worldwide and causes to huge economic loss to dairy industry.

Results

Recombinant surface associated antigen 1 (NcSAG1), NcSAG1 related sequence 2 (NcSRS2) and the dense granule antigen 2 (NcGRA2) of N. caninum were expressed either in silkworm or in Escherichia coli and purified. The purified recombinant proteins bound to the N. caninum-specific antibodies in serum samples from infected cattle as revealed by an enzyme-linked immunosorbent assay (ELISA). By co-immobilizing these recombinant proteins, a novel indirect ELISA was developed for detection of neosporosis. With the use of 32 serum samples, comprising 12 positive serum samples and 20 negative serum samples, the sensitivity and specificity of the assay were found to be 91.7 and 100%, respectively. Seventy-two serum samples from dairy farms were also tested and one was diagnosed with neosporasis with both this method and a commercial assay.

Conclusions

A diagnostic method employing recombinant proteins of N. caninum was developed. The method showed high sensitivity and specificity. Diagnostic test with field serum samples suggested its applicability to the practical diagnosis of neosporosis.  相似文献   

12.
The intracellular parasite Toxoplasma gondii develops inside a parasitophorous vacuole (PV) that derives from the host cell plasma membrane during invasion. Previous electron micrograph images have shown that the membrane of this vacuole undergoes an extraordinary remodeling with an extensive network of thin tubules and vesicles, the intravacuolar network (IVN), which fills the lumen of the PV. While dense granule proteins, secreted during and after invasion, are the main factors for the organization and tubulation of the network, little is known about the source of lipids used for this remodeling. By selectively labeling host cell or parasite membranes, we uncovered evidence that strongly supports the host cell as the primary, if not exclusive, source of lipids for parasite IVN remodeling. Fluorescence recovery after photobleaching (FRAP) microscopy experiments revealed that lipids are surprisingly dynamic within the parasitophorous vacuole and are continuously exchanged or replenished by the host cell. The results presented here suggest a new model for development of the parasitophorous vacuole whereby the host provides a continuous stream of lipids to support the growth and maturation of the PVM and IVN.  相似文献   

13.
Coxiella burnetii is a gram‐negative intracellular bacterium that forms a large, lysosome‐like parasitophorous vacuole (PV) essential for bacterial replication. Host membrane lipids are critical for the formation and maintenance of this intracellular niche, yet the mechanisms by which Coxiella manipulates host cell lipid metabolism, trafficking and signalling are unknown. Oxysterol‐binding protein‐related protein 1 long (ORP1L) is a mammalian lipid‐binding protein that plays a dual role in cholesterol‐dependent endocytic trafficking as well as interactions between endosomes and the endoplasmic reticulum (ER). We found that ORP1L localized to the Coxiella PV within 12 h of infection through a process requiring the Coxiella Dot/Icm Type 4B secretion system, which secretes effector proteins into the host cell cytoplasm where they manipulate trafficking and signalling pathways. The ORP1L N‐terminal ankyrin repeats were necessary and sufficient for PV localization, indicating that ORP1L binds a PV membrane protein. Strikingly, ORP1L simultaneously co‐localized with the PV and ER, and electron microscopy revealed membrane contact sites between the PV and ER membranes. In ORP1L‐depleted cells, PVs were significantly smaller than PVs from control cells. These data suggest that ORP1L is specifically recruited by the bacteria to the Coxiella PV, where it influences PV membrane dynamics and interactions with the ER.  相似文献   

14.
An important area in the cell biology of intracellular parasitism is the customization of parasitophorous vacuoles (PVs) by prokaryotic or eukaryotic intracellular microorganisms. We were curious to compare PV biogenesis in primary mouse bone marrow-derived macrophages exposed to carefully prepared amastigotes of either Leishmania major or L. amazonensis. While tight-fitting PVs are housing one or two L. major amastigotes, giant PVs are housing many L. amazonensis amastigotes. In this study, using multidimensional imaging of live cells, we compare and characterize the PV biogenesis/remodeling of macrophages i) hosting amastigotes of either L. major or L. amazonensis and ii) loaded with Lysotracker, a lysosomotropic fluorescent probe. Three dynamic features of Leishmania amastigote-hosting PVs are documented: they range from i) entry of Lysotracker transients within tight-fitting, fission-prone L. major amastigote-housing PVs; ii) the decrease in the number of macrophage acidic vesicles during the L. major PV fission or L. amazonensis PV enlargement; to iii) the L. amazonensis PV remodeling after homotypic fusion. The high content information of multidimensional images allowed the updating of our understanding of the Leishmania species-specific differences in PV biogenesis/remodeling and could be useful for the study of other intracellular microorganisms.  相似文献   

15.
Among the monoclonal antibodies (mAb) against Toxoplasma gondii, mAb Tg485 specifically reacted with an 82-kDa cytoplasmic protein of tachyzoites. The protein was secreted from extracellular tachyzoites, but was not released into the parasitophorous vacuole after invasion. The cDNA fragment encoding the protein was obtained by screening a T. gondii cDNA expression library with Tg485. The full-length cDNA was amplified by the 5(')-RACE method and sequenced. The deduced amino acid sequence of the 82 kDa protein reacting with Tg485 revealed a polypeptide of 708 amino acids showing significant homology to the heat shock protein 90 (HSP90) family of other organisms, especially to those of apicomplexan species. Treatment with geldanamycin, a drug known to interfere with HSP90 function, did not affect the secretion of TgHSP90 from extracellular tachyzoites, but the entry of the tachyzoites into host cells and the intracellular growth of the parasite were significantly disturbed.  相似文献   

16.
The intracellular protozoan parasite Toxoplasma gondii develops within the parasitophorous vacuole (PV), an intracellular niche in which it secretes proteins from secretory organelles named dense granules and rhoptries. Here, we describe a new dense granule protein that should now be referred to as GRA12, and that displays no homology with other proteins. Immunofluorescence and immuno-electron microscopy showed that GRA12 behaves similarly to both GRA2 and GRA6. It is secreted into the PV from the anterior pole of the parasite soon after the beginning of invasion, transits to the posterior invaginated pocket of the parasite where a membranous tubulovesicular network is first assembled, and finally resides throughout the vacuolar space, associated with the mature membranous nanotubular network. GRA12 fails to localise at the parasite posterior end in the absence of GRA2. Within the vacuolar space, like the other GRA proteins, GRA12 exists in both a soluble and a membrane-associated form. Using affinity chromatography experiments, we showed that in both the parasite and the PV soluble fractions, GRA12 is purified with the complex of GRA proteins associated with a tagged version of GRA2 and that this association is lost in the PV membranous fraction.  相似文献   

17.
Data on parasitophorous vacuole (PV) formation in host cells (HC) harbouring different intracellular protozoan parasites have been reviewed and critically analysed, with special reference to the main representatives of the Coccidia. The vacuole membrane (PVM) is the interface between host and parasite, playing a role in nutrient acquisition by the parasite from the HC. The PV phenomenon is regarded as a generalized HC response to the introduction of alien bodies (microorganisms), which eventually reflects the evolutionary established host-parasite relationships at cellular, subcellular and molecular levels. Special attention has been paid to the existing morpho-functional diversity of the PVs within the same genera and species of parasites, and even at different stages of the parasite life cycle. The PVM is generally considered to derive from the HC plasmalemma, whose biochemical composition undergoes significant changes as the intravacuolar parasite grows. The original HC proteins are selectively excluded from the PVM, while those of the parasite are incorporated. As the result, the changed PVM becomes not fusigenic for HC lysosomes. For Toxoplasma gondii and other cyst-forming coccidia (Isospora, Sarcocystis), a definite correlation has been noticed between the extent of rhoptry and dense granule secrets released by a zoite during HC internalization, on the one hand, and the pattern of the PV that forms, on the other one. In T. gondii, tachyzoites, known to discharge abundant secrets, commonly force the development of PVs limited with a single unit membrane and equipped with a tubulovesicular network in the lumen. Unlike, bradyzoites known to be deficient in secretory materials trigger the formation of PVs with a three-membrane lining composed of the changed invaginated plasmalemma in addition to two membranes of endoplasmic reticulum. The two different types of PV harbour, respectively, exoenteric and enteric stages of T. gondii, the latter being confined to the cat intestine only. Unlike, all endogenous stages of the classic intestinal coccidia (Eimeria spp.) develop within PVs limited with a single membrane, with some invaginations extending into the PV lumen. Unusual PV patterns are characteristic of the extracytoplasmic eimerian coccidia (Cryptosporidium, Epieimeria) and adeleid haemogreagarines (Karyolysus). In cyst-forming coccidia, the PVM is actively involved in tissue cyst wall formation, thus protecting the encysted parasites from recognition by the host immune system. All this strongly suggests that the PV is far from being an indifferent membraneous vesicle containing a parasite, but represents a metabolically active compartment in infected cells. Since all the coccidia are obligate intracellular parasites, the mode of their intimate interaction with the HC, largely accomplished via the PV and its membrane, is vital for their survival as biological species.  相似文献   

18.
19.
Notch is a single-pass transmembrane receptor protein which is composed of a short extracellular region, a single-pass transmembrane domain and a small intracellular region. Notch ligand like Delta, member of the DSL protein family, is also single-pass transmembrane protein. It has been demonstrated that of the 36 EGF repeats of Notch, 11th and 12th are sufficient to mediate interactions with Delta. Crystal structure of mammalian Notch extracellular ligand binding domain contains 11 and 12 EGF-like repeats. Here a portion of the Delta protein of Drosophila, known to interact with Notch extracellular domain (ECD) has been modeled using homology modeling. The structure of the Delta-Notch complex was subsequently modeled by protein docking method using GRAMM. MD simulations of the modeled structures were performed. The structure for Delta-Notch complex has been proposed based on interaction energy parameter and planarity studies.  相似文献   

20.
Toxoplasma gondii and Neospora caninum, which cause the diseases toxoplasmosis and neosporosis, respectively, are two closely related apicomplexan parasites. They have similar heteroxenous life cycles and conserved genomes and share many metabolic features. Despite these similarities, T. gondii and N. caninum differ in their transmission strategies and zoonotic potential. Comparative analyses of the two parasites are important to identify the unique biological features that underlie the basis of host preference and pathogenicity. T. gondii and N. caninum are obligate intravacuolar parasites; in contrast to T. gondii, events that occur during N. caninum infection remain largely uncharacterized. We examined the capability of N. caninum (Liverpool isolate) to interact with host organelles and scavenge nutrients in comparison to that of T. gondii (RH strain). N. caninum reorganizes the host microtubular cytoskeleton and attracts endoplasmic reticulum (ER), mitochondria, lysosomes, multivesicular bodies, and Golgi vesicles to its vacuole though with some notable differences from T. gondii. For example, the host ER gathers around the N. caninum parasitophorous vacuole (PV) but does not physically associate with the vacuolar membrane; the host Golgi apparatus surrounds the N. caninum PV but does not fragment into ministacks. N. caninum relies on plasma lipoproteins and scavenges cholesterol from NPC1-containing endocytic organelles. This parasite salvages sphingolipids from host Golgi Rab14 vesicles that it sequesters into its vacuole. Our data highlight a remarkable degree of conservation in the intracellular infection program of N. caninum and T. gondii. The minor differences between the two parasites related to the recruitment and rearrangement of host organelles around their vacuoles likely reflect divergent evolutionary paths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号