首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the basis of the potential benefits to human health there is an increased interest in producing milk containing lower-saturated fatty acid (SFA) and higher unsaturated fatty acid (FA) concentrations, including cis-9 18:1 and cis-9, trans-11-conjugated linoleic acid (CLA). Twenty-four multiparous Holstein cows were used in two experiments according to a completely randomized block design, with 21-day periods to examine the effects of incremental replacement of prilled palm fat (PALM) with sunflower oil (SFO) in high-concentrate diets containing 30 g/kg dry matter (DM) of supplemental fat (Experiment 1) or increases in the forage-to-concentrate (F : C) ratio from 39 : 61 to 48 : 52 of diets containing 30 g/kg DM of SFO (Experiment 2) on milk production, digestibility and milk FA composition. Replacing PALM with SFO had no effect on DM intake, but tended to increase organic matter digestibility, yields of milk, protein and lactose, and decreased linearly milk fat content. Substituting SFO for PALM decreased linearly milk fat 8:0 to 16:0 and cis-9 16:1, and increased linearly 18:0, cis-9 18:1, trans-18:1 (Δ4 to 16), 18:2 and CLA concentrations. Increases in the F : C ratio of diets containing SFO had no effect on intake, yields of milk, milk protein or milk lactose, lowered milk protein content in a quadratic manner, and increased linearly NDF digestion and milk fat secretion. Replacing concentrates with forages in diets containing SFO increased milk fat 4:0 to 10:0 concentrations in a linear or quadratic manner, decreased linearly cis-9 16:1, trans-6 to -10 18:1, 18:2n-6, trans-7, cis-9 CLA, trans-9, cis-11 CLA and trans-10, cis-12 CLA, without altering milk fat 14:0 to 16:0, trans-11 18:1, cis-9, trans-11 CLA or 18:3n-3 concentrations. In conclusion, replacing prilled palm fat on with SFO in high-concentrate diets had no adverse effects on intake or milk production, other than decreasing milk fat content, but lowered milk fat medium-chain SFA and increased trans FA and polyunsaturated FA concentrations. Increases in the proportion of forage in diets containing SFO increased milk fat synthesis, elevated short-chain SFA and lowered trans FA concentrations, without altering milk polyunsaturated FA content. Changes in fat yield on high-concentrate diets containing SFO varied between experiments and individual animals, with decreases in milk fat secretion being associated with increases in milk fat trans-10 18:1, trans-10, cis-12 CLA and trans-9, cis-11 CLA concentrations.  相似文献   

2.
人乳脂是一种在甘油骨架Sn-2位上富含棕榈酸(C16:0)的结构酯。经分析可知,猪油中棕榈酸主要分布在甘油酯的Sn-2位,可作为制备1,3-二油酸-2-棕榈酸甘油三酯(OPO)的原料。以Candidasp.99—125脂肪酶作催化剂,以猪油和油酸为原料,通过正交试验对无溶剂体系中酸解合成OPO的工艺条件进行研究,得到最适反应条件:猪油与油酸的质量比为1:2.0,酶用量为总底物质量的10%,反应温度40℃,反应时间4h。在该反应条件下,经酸解合成的产物三甘酯中,Sn-2C16:0的含量大于70%,占总脂肪酸中棕榈酸含量的93%以上,并合有43%以上的OPO。  相似文献   

3.
Dietary fat may play a role in the aetiology of many chronic diseases. Milk and milk-derived foods contribute substantially to dietary fat, but have a fat composition that is not optimal for human health. We measured the fat composition of milk samples in 1918 Dutch Holstein Friesian cows in their first lactation and estimated genetic parameters for fatty acids. Substantial genetic variation in milk-fat composition was found: heritabilities were high for short- and medium-chain fatty acids (C4:0-C16:0) and moderate for long-chain fatty acids (saturated and unsaturated C18). We genotyped 1762 cows for the DGAT1 K232A polymorphism, which is known to affect milk-fat percentage, to study the effect of the polymorphism on milk-fat composition. We found that the DGAT1 K232A polymorphism has a clear influence on milk-fat composition. The DGAT1 allele that encodes lysine (K) at position 232 (232K) is associated with more saturated fat; a larger fraction of C16:0; and smaller fractions of C14:0, unsaturated C18 and conjugated linoleic acid (P < 0.001). We conclude that selective breeding can make a significant contribution to change the fat composition of cow's milk.  相似文献   

4.
We have assessed that nuclear lipids from rat kidney cells are not only membrane components, but they are also found within the nucleus. The most abundant nuclear and endonuclear lipids have a high proportion of unsaturated fatty acids (n-6 series: arachidonic > linoleic), mainly esterified to PtdCho. Nuclear most abundant molecular species are 16:0–20:4, 16:0–18:2, 18:0–20:4, 18:0–18:2, and 16:0–18:1. Arachidonic acid is esterified at the sn-2 position of PtdCho: 16:0–20:4(25%), 18:0–20:4(15%), 18:2–20:4(3%), 18:1–20:4(2%). Exogenous [1-14C]20:4n-6-CoA is esterified in vitro in GP (glycerophospholipids) > > TAG and DAG. Five PtdCho molecular species were labeled: 16:0–20:4, 18:0–20:4, 18:1–20:4, 18:2–20:4, and 20:4–20:4. In conclusion, these results demonstrated that: (1) there is an important lipid pool within kidney cell nuclei; (2) main nuclear and endonuclear lipid pools were PtdCho molecular species which contained a high proportion of unsaturated fatty acids (20:4n-6 and 18:2n-6) esterified at sn-2 position and 16:0 esterified at sn-1 position; (3) kidney cell nuclei also contained the necessary enzymes to esterify exogenous 20:4n-6-CoA to glycerolipids and to GP; (4) exogenous 20:4n-6-CoA was esterified in five PtdCho molecular species with 20:4n-6 at the sn-2 position, although the most actively synthesized PtdCho contained 20:4n-6 at both the sn-1 and sn-2 positions of the molecule; (5) we can infer that by a remodeling process, the unsaturated fatty acids at the sn-1 position of PtdCho molecular species could be replaced by 16:0 and 18:0, and thus PtdCho would achieve the physiological profile characteristic of the organ.  相似文献   

5.
Fatty acid metabolism and the contribution of dietary fatty acids to milk cholesteryl ester (CE) and phospholipid (PL) were investigated in normal lactating mothers. The approach used was to feed mixtures of triglycerides containing deuterium-labeled palmitic acid (16:0-2H2), oleic acid (18:1-2H6), and linoleic acid (18:2-2H4). Milk and plasma samples were collected for 72 hr. Triglyceride (TG), CE, and PL fractions from milk, plasma, and lipoprotein were isolated and analyzed by gas-liquid chromatography and mass spectrometry. Data for the milk CE and PL fractions showed a definite selectivity for incorporation of 16:0-2H2 and 18:1-2H6 relative to 18:2-2H4. Based on the ratios of the deuterated fatty acids incorporated into the milk CE and PL samples, their incorporation times and isotopic enrichment data, it appears that these fatty acids are supplied mainly by the TG derived from chylomicrons and very low density lipoproteins. Plasma and lipoprotein CE data showed a progressive increase in 18:2-2H4 content, with 16:0-2H2 and 18:1-2H4 remaining relatively constant over the collection period. Plasma and lipoprotein PL data showed a higher rate for incorporation of 18:2-2H4 than 16:0-2H2 and 18:1-2H6 over the course of the sampling period. Comparison to previous data from adult males indicates lactation does not have a major effect on the general metabolism of these fatty acids. An increase with time in the isotopic enrichment of 18:2-2H4 in the plasma and lipoprotein CE and PL samples was observed which is consistent with in vitro selectivities reported for lecithin:cholesterol acyltransferase and phosphatidylcholine acyltransferase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
To compare the relative impact of trans-18:1 with the two main dietary saturated fatty acids it replaces, plasma lipid response was assessed in Mongolian gerbils fed diets rich in 16:0 (24%en),18:0 (10%en), or trans-18:1 (4 or 6%en). The diets were designed such that the 18:0-rich diet substituted 7%en as 18:0 for 16:0, whereas 4%en and 6%en from trans-18:1 was substituted for 16:0 in the two trans diets. The control group was fed a diet formulated according to the fatty acid balance of American Heart Association (AHA), but provided 40%en as fat. Gerbils (n = 10 per dietary group) were fed one of the five diets for 8 weeks. The control diet, with 4 times the polyunsaturated fatty acids (PUFA) content and a P:S ratio about 10 times greater than the test diets, resulted in the lowest plasma TC, LDL cholesterol (LDL-C) and VLDL cholesterol (VLDL-C). Among the test diets, plasma TC and TG were lowest with the 18:0-rich diet. TC in gerbils fed the 16:0-rich diet and 4%en-trans were 20% higher than the 18:0-rich diet, while the 6%en-trans diet was 35% higher. VLDL-C was significantly higher in the 6%en-trans diet compared to all other groups at 8 weeks. Both trans fatty acid diets elevated plasma TG approximately 2- and 3-fold, respectively, compared to the 16:0-rich and 18:0-rich diets at 8 weeks. Further, plasma TG continued to rise over time with trans fatty acids compared to 16:0 or 18:0. Thus, in the fatty acid-sensitive gerbil, impaired TG metabolism represents a major aspect of the hyperlipemia caused by trans fatty acid substitution for major saturated fatty acids.  相似文献   

7.
Detecting genes associated with milk fat composition could provide valuable insights into the complex genetic networks of genes underling variation in fatty acids synthesis and point towards opportunities for changing milk fat composition via selective breeding. In this study, we conducted a genome-wide association study (GWAS) for 22 milk fatty acids in 784 Chinese Holstein cows with the PLINK software. Genotypes were obtained with the Illumina BovineSNP50 Bead chip and a total of 40,604 informative, high-quality single nucleotide polymorphisms (SNPs) were used. Totally, 83 genome-wide significant SNPs and 314 suggestive significant SNPs associated with 18 milk fatty acid traits were detected. Chromosome regions that affect milk fatty acid traits were mainly observed on BTA1, 2, 5, 6, 7, 9, 13, 14, 18, 19, 20, 21, 23, 26 and 27. Of these, 146 SNPs were associated with more than one milk fatty acid trait; most of studied fatty acid traits were significant associated with multiple SNPs, especially C18:0 (105 SNPs), C18 index (93 SNPs), and C14 index (84 SNPs); Several SNPs are close to or within the DGAT1, SCD1 and FASN genes which are well-known to affect milk composition traits of dairy cattle. Combined with the previously reported QTL regions and the biological functions of the genes, 20 novel promising candidates for C10:0, C12:0, C14:0, C14:1, C14 index, C18:0, C18:1n9c, C18 index, SFA, UFA and SFA/UFA were found, which composed of HTR1B, CPM, PRKG1, MINPP1, LIPJ, LIPK, EHHADH, MOGAT1, ECHS1, STAT1, SORBS1, NFKB2, AGPAT3, CHUK, OSBPL8, PRLR, IGF1R, ACSL3, GHR and OXCT1. Our findings provide a groundwork for unraveling the key genes and causal mutations affecting milk fatty acid traits in dairy cattle.  相似文献   

8.
Molecular species and fatty acid distribution of triacylglycerol (TG) accumulated in spinach (Spinacia oleracea L.) leaves fumigated with ozone (0.5 microliter per liter) were compared with those of monogalactosyldiacylglycerol (MGDG). Analysis of positional distribution of the fatty acids in MGDG and the accumulated TG by the enzymatic digestion method showed that hexadecatrienoate (16:3) was restricted to sn-2 position of the glycerol backbone in both MGDG and TG, whereas α-linolenate (18:3) was preferentially located at sn-1 position in MGDG, and sn-1 and/or sn-3 positions in TG, suggesting that 1,2-diacylglycerol moieties of MGDG are the direct precursor of TG in ozonefumigated leaves. Further analysis of TG molecular species by argentation chromatography and mass spectrometry showed that TG increased with ozone fumigation consisted of approximately an equal molar ratio of sn-1,3-18:3-2-16:3 and sn-1,2,3-18:3. Because the molecular species of MGDG in spinach leaves is composed of a similar molar ratio of sn-1-18:3-2-16:3 and sn-1,2-18:3, we concluded that MGDG was converted to 1,2-diacylglycerol and acylated with 18:3 to TG in ozone-fumigated spinach leaves.  相似文献   

9.
The importance of dietary lipids during childhood is evident, as they are necessary for correct growth and development of the newborn. When breastfeeding is not possible, infant formulas are designed to mimic human milk as much as possible to fulfill infant’s requirements. However, the composition of these dairy products is relatively constant, while human milk is not a uniform bio-fluid and changes according to the requirements of the baby. In this study, breast milk samples were donated by 24 Spanish mothers in different lactation stages and different infant formulas were purchased in supermarkets and pharmacies. Gas chromatography coupled to flame ionization detection was used for the fatty acid determination. Compared to breast milk, first-stage formulas are apparently very similar in composition; however, no major differences were observed in the fatty acid profiles between formulas of different lactation stages. The Galician women breast milk has a fatty acid profile rich in oleic acid, linoleic acid, arachidonic acid, and docosahexaenoic acid. When comparing human milk with formulas, it becomes evident that the manufacturers tend to enrich the formulas with essential fatty acids (especially with α-linolenic acid), but arachidonic and docosahexaenoic acid levels are lower than in breast milk. Additionally, the obtained results demonstrated that after 1 year of lactation, human milk is still a good source of energy, essential fatty acids, and long-chain polyunsaturated fatty acids for the baby.  相似文献   

10.
Plant oilseeds are a major source of nutritional oils. Their fatty acid composition, especially the proportion of saturated and unsaturated fatty acids, has important effects on human health. Because intake of saturated fats is correlated with the incidence of cardiovascular disease and diabetes, a goal of metabolic engineering is to develop oils low in saturated fatty acids. Palmitic acid (16:0) is the most abundant saturated fatty acid in the seeds of many oilseed crops and in Arabidopsis thaliana. We expressed FAT–5, a membrane‐bound desaturase cloned from Caenorhabditis elegans, in Arabidopsis using a strong seed‐specific promoter. The FAT‐5 enzyme is highly specific to 16:0 as substrate, converting it to 16:1?9; expression of fat‐5 reduced the 16:0 content of the seed by two‐thirds. Decreased 16:0 and elevated 16:1 levels were evident both in the storage and membrane lipids of seeds. Regiochemical analysis of phosphatidylcholine showed that 16:1 was distributed at both positions on the glycerolipid backbone, unlike 16:0, which is predominately found at the sn‐1 position. Seeds from a plant line homozygous for FAT–5 expression were comparable to wild type with respect to seed set and germination, while oil content and weight were somewhat reduced. These experiments demonstrate that targeted heterologous expression of a desaturase in oilseeds can reduce the level of saturated fatty acids in the oil, significantly improving its nutritional value.  相似文献   

11.
Fatty alcohols play a variety of biological roles in all kingdoms of life. Fatty acyl reductase (FAR) enzymes catalyze the reduction of fatty acyl-coenzyme A (CoA) or fatty acyl-acyl carrier protein substrates to primary fatty alcohols. FAR enzymes have distinct substrate specificities with regard to chain length and degree of saturation. FAR5 (At3g44550) and FAR8 (At3g44560) from Arabidopsis thaliana are 85% identical at the amino acid level and are of equal length, but they possess distinct specificities for 18:0 or 16:0 acyl chain length, respectively. We used Saccharomyces cerevisiae as a heterologous expression system to assess FAR substrate specificity determinants. We identified individual amino acids that affect protein levels or 16:0-CoA versus 18:0-CoA specificity by expressing in yeast FAR5 and FAR8 domain-swap chimeras and site-specific mutants. We found that a threonine at position 347 and a serine at position 363 were important for high FAR5 and FAR8 protein accumulation in yeast and thus are likely important for protein folding and stability. Amino acids at positions 355 and 377 were important for dictating 16:0-CoA versus 18:0-CoA chain length specificity. Simultaneously converting alanine 355 and valine 377 of FAR5 to the corresponding FAR8 residues, leucine and methionine, respectively, almost fully converted FAR5 specificity from 18:0-CoA to 16:0-CoA. The reciprocal amino acid conversions, L355A and M377V, made in the active FAR8-S363P mutant background converted its specificity from 16:0-CoA to 18:0-CoA. This study is an important advancement in the engineering of highly active FAR proteins with desired specificities for the production of fatty alcohols with industrial value.  相似文献   

12.
The main fatty acids at the sn-1 position of phospholipids (PLs) are saturated or monounsaturated fatty acids such as palmitic acid (C16:0), stearic acid (C18:0), and oleic acid (C18:1) and are constantly replaced, like unsaturated fatty acids at the sn-2 position. However, little is known about the molecular mechanism underlying the replacement of fatty acids at the sn-1 position, i.e., the sn-1 remodeling. Previously, we established a method to evaluate the incorporation of fatty acids into the sn-1 position of lysophospholipids (lyso-PLs). Here, we used this method to identify the enzymes capable of incorporating fatty acids into the sn-1 position of lyso-PLs (sn-1 lysophospholipid acyltransferase [LPLAT]). Screenings using siRNA knockdown and recombinant proteins for 14 LPLATs identified LPLAT7/lysophosphatidylglycerol acyltransferase 1 (LPGAT1) as a candidate. In vitro, we found LPLAT7 mainly incorporated several fatty acids into the sn-1 position of lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), with weak activities toward other lyso-PLs. Interestingly, however, only C18:0-containing phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were specifically reduced in the LPLAT7-mutant cells and tissues from knockout mice, with a concomitant increase in the level of C16:0- and C18:1-containing PC and PE. Consistent with this, the incorporation of deuterium-labeled C18:0 into PLs dramatically decreased in the mutant cells, while deuterium-labeled C16:0 and C18:1 showed the opposite dynamic. Identifying LPLAT7 as an sn-1 LPLAT facilitates understanding the biological significance of sn-1 fatty acid remodeling of PLs. We also propose to use the new nomenclature, LPLAT7, for LPGAT1 since the newly assigned enzymatic activities are quite different from the LPGAT1s previously reported.  相似文献   

13.
Milk and dairy products are considered the main sources of saturated fatty acids, which are a valuable source of nutrients in the human diet. Fat composition can be adjusted through guided nutrition of dairy animals but also through selective breeding. Recently, a dinucleotide substitution located in the exon 8 of the gene coding for acyl CoA: diacylglycerol acyltransferase 1 (DGAT1), that alters the amino acid sequence from a lysine to an alanine (p.Lys232Ala) in the mature protein, was shown to have a strong effect on milk fat content in some cattle breeds. Therefore, the objectives of this work were to study the occurrence of the DGAT1 p.Lys232Ala polymorphism in Romanian Holstein cattle and Romanian Buffalo breeds and to further investigate its possible influence on fat percentage and fatty acid profiles. The results obtained in this study show that in Romanian Holstein cattle the K allele is associated with increased fat percentage and higher levels of C16:0 and C18:0 fatty acids. The ratio of saturated fatty acids versus unsaturated fatty acids (SFA/UFA) was also higher in KK homozygous individuals, whereas the fractions of C14:0, unsaturated C18 decreased. The DGAT1 p.Lys232Ala polymorphism revealed a high genetic variance for fat percentage, unsaturated C18, C16:0, and SFA/UFA. Although the effect of this polymorphism was not so evident for short chain fatty acids such as C4:0–C8:0, it was significant for C14:0 fatty acids. We concluded that selective breeding of carriers of the A allele in Romanian Holsteins can contribute to improvement in unsaturated fatty acids content of milk. However, in buffalo, the lack of the A allele makes selection inapplicable because only the K allele, associated with higher saturated fatty acids contents in milk, was identified.  相似文献   

14.
In this study, we hypothesized that dietary cocoa bean shell (CBS) as a partial replacer of human edible cereal grains in the diet of lactating ewes may affect performance and milk and cheese composition. Twenty Comisana lactating ewes allotted into control (CTRL; n = 10) or cocoa (CBS; n = 10) group received alfalfa hay ad libitum and 800 g of conventional (CTRL) or experimental (CBS) concentrate containing 11.7% CBS to partially replace corn and barley of the CTRL concentrate. Milk yield and composition did not differ between groups, and only urea concentration was lower in CBS milk. Dietary CBS increased cheese fat and reduced protein percentage in CBS group. Fatty acid composition of rumen content partially reflected that of the ingested diet, with total saturated fatty acids (SFA), total monounsaturated fatty acids (MUFA), 16:0, 18:0 and 18:1c9 greater in the CBS group. Moreover, all the identified trans- and cis-18:1 isomers were greater in CBS rumen content. Milk and cheese showed a similar fatty acid composition. Total MUFAs were greater in milk and cheese of CBS, mainly due to the proportion of 18:1c9, and conversely, total polyunsaturated fatty acids (PUFA), PUFAn-6 and PUFAn-6-to-PUFAn-3 ratio was greater in CTRL group. Concluding, the inclusion of CBS in the diet of lactating ewes within the limit imposed by the current legislation did not cause detrimental effects on animal performance and milk composition. Interestingly, dietary CBS reduced milk urea concentration probably due to the phenols contained in CBS concentrate. However, our results support that biohydrogenation was weakly impaired by dietary CBS. Finally, CBS negatively affected cheese nutritional characteristics due to lower protein and greater fat content, but improved fat health indexes in milk and cheese.  相似文献   

15.
Levels of n-6, n-3, and medium-chain fatty acids (MCFA) in milk are highly variable. Higher carbohydrate intakes are associated with increased mammary gland MCFA synthesis, but the role of unsaturated fatty acids for milk MCFA secretion is unclear. This study addressed whether n-6 and n-3 fatty acids, which are known to inhibit hepatic fatty acid synthesis, influence MCFA in rat and human milk and the implications of varying MCFA, n-6, and n-3 fatty acids in rat milk for metabolic regulation in the neonatal liver. Rats were fed a low-fat diet or one of six higher-fat diets, varying in 16:0, 18:1n-9, 18:2n-6, 18:3n-3, and long-chain (LC) n-3 fatty acids. Higher maternal dietary 18:2n-6 or 18:3n-3 did not influence milk MCFA, but lower maternal plasma triglycerides, due to either a low-fat or a high-fat high-LC n-3 diet led to higher milk MCFA. MCFA levels were inversely associated with 18:1n-9, 18:2n-6, and 18:3n-3 in human milk, likely reflecting the association between dietary total fat and unsaturated fatty acids. High LC n-3 fatty acid in rat milk was associated with lower hepatic Pklr, Acly, Fasn, and Scd1 and higher Hmgcs2 in the milk-fed rat neonate, with no effect of milk 18:1n-9, 18:2n-6, or MCFA. These studies show that the dietary fatty acid composition does not impact MCFA secretion in milk, but the fatty acid composition of milk, particularly the LC n-3 fatty acid, is relevant to hepatic metabolic regulation in the milk-fed neonate.  相似文献   

16.
《Small Ruminant Research》2010,89(2-3):135-144
The potential to modify milk fatty acid composition and milk production by dietary administration of marine oils rich in n-3 PUFAs in goats diets is reviewed. Moreover animal and human health implications are considered. Role of nutrition in dairy goats for enhancing content of CLA in milk fat is also discussed. At last, rumen protected choline supplementation is evaluated to improve productive performance and metabolic health. While the effects of n-3 PUFAs administration on goat productive performance seem to depend on many factors, fish oil administration has been extensively shown to lower average concentration of C18:0 and saturated fatty acids, with a relative increase of C16:1, C18:3 n-3 and very long-chain n-3 PUFAs. Positive results have been evidenced in animals health following administration of EPA and DHA from fish oil, leading to increased phagocytic activity with no effects on extracellular ROS production in incubated goats cells. The nutritional and health properties of goat's milk could be further improved by increasing the content of CLA in milk fat. Provision of PUFAs from fresh pasture and plant lipids, mainly C18:2 n-6 and C18-3 n3 which serve as precursor for trans C18:1 formation in the rumen, have proved to enhance content of CLA in goat milk fat. Marine oils rich in n-3 PUFAs have been shown to be very effective at increasing CLA content in bovine milk, but very scarce data are available on dairy goats.Rumen protected choline has been show to increase productive performance, particularly milk production, fat percentage, and fat and protein yield without detrimental effects on methyl groups, thus reducing BHBA plasma content and hepatocellular lipid accumulation around transition.However the magnitude of the production response seems to be affected by the composition of the diet, and other factors as already reported for n-3 PUFAs administration.  相似文献   

17.
Feeding dietary supplements containing trans-10, cis-12-conjugated linoleic acid (t10,c12-CLA) has been shown to induce milk fat depression in cows, ewes and goats. However, the magnitude of the response is apparently less pronounced in lactating goats. The objective of this study was to evaluate the effects of increasing doses of CLA methyl esters (CLA-ME) on milk production, composition and fatty-acid profile of dairy goats. Eight Toggenburg goats were separated in two groups (four primiparous and four multiparous) and received the following dietary treatments in a 4×4 Latin Square design: CLA0: 45 g/day of calcium salts of fatty acids (CSFA); CLA15; 30 g/day of CSFA+15 g/day of CLA-ME; CLA30: 15 g/day of CSFA+30 g/day of CLA-ME; and CLA45: 45 g/day of CLA-ME. The CLA-ME supplement (Luta-CLA 60) contained 29.9% of t10,c12-CLA; therefore, the dietary treatments provided 0, 4.48, 8.97 and 13.45 g/day of t10,c12-CLA, respectively. Feed intake, milk production, concentration and secretion of milk protein and lactose, body condition score and body weight were unaffected by the dietary treatments. Milk fat secretion was reduced by 14.9%, 30.8% and 40.5%, whereas milk fat concentration was decreased by 17.2%, 33.1% and 40.7% in response to CLA15, CLA30 and CLA45, respectively. Secretions of both de novo synthesized and preformed fatty acids were progressively reduced as the CLA dose increased, but the magnitude of the inhibition was greater for the former. There was a linear reduction in most milk fat desaturase indexes (14:1/14:0, 16:1/16:0, 17:1/17:0 and 18:1/18:0). Milk fat t10,c12-CLA concentration and secretion increased with the CLA dose, and its apparent transfer efficiency from diet to milk was 1.18%, 1.17% and 1.21% for CLA15, CLA30 and CLA45 treatments, respectively. The estimated energy balance was linearly improved in goats fed CLA.  相似文献   

18.
《Small Ruminant Research》2009,85(1-3):47-53
Two experiments were carried out to study the effects of supplementing the ration of lactating ewes with vegetable fats (sunflower oil, SO or hydrogenated palm oil, HPO; HIDROPALM®) on diet digestibility, milk yield and milk composition, and on the concentration of the conjugated linoleic acid (CLA) C18:2 cis-9 trans-11 and C18:1 trans-11 (vaccenic acid, VA) and other main fatty acids in milk fat. Treatments involved a control diet, without added oil, and 2 diets supplemented with either 12 g/kg SO or 12 g/kg HPO on a dry matter (DM) basis. In the first experiment, 6 non-pregnant, non-lactating Lacaune ewes were used following a 3 × 3 replicated Latin Square design. Addition of vegetable fat supplement to the diet increased digestibility of DM, organic matter (OM) and crude protein (CP), but did not affect that of the ether extract (EE), neutral detergent fibre (NDF) or acid detergent fibre (ADF). In the second experiment, 60 Lacaune dairy ewes mid-way through lactation (120 ± 12 days in milk, 0.98 ± 0.03 kg/day average milk yield) were divided into three equal-sized groups each of which was assigned to one of the three experimental diets for 4 weeks. Compared with the control treatment, supplementation with HPO increased milk yield and energy-corrected milk. But neither vegetable fat supplement modified percentages of fat and protein in milk. Supplementation with HPO increased C14:1, C16:1 and C16:0 content and reduced C18:0 and C18:1 cis-9 content in milk fat. Supplementation with SO increased the VA content in milk fat by 36% and that of cis-9 trans-11 CLA by 29% in comparison with the control diet. Supplementation with HPO led to milk fat with 15% more cis-9 trans-11 CLA than control milk. In conclusion, adding a moderate dose of HPO or SO to the diets increased CLA concentration in milk fat. Nevertheless, supplementation with SO was more effective than HPO in increasing CLA concentration in milk fat and reducing the atherogenicity index, improving milk quality from the human health standpoint.  相似文献   

19.
The objective was to determine performance and milk fatty acid changes of high producing dairy cows in early lactation, under summer heat, by adding a supplemental rumen inert fat in the form of a saturated free fatty acid (856 g/kg C16:0/kg of total fatty acids) to the total mixed ration (TMR). Early lactation multiparous Holstein cows in two similar pens of 99 and 115 cows were used in a 2 × 2 Latin Square design experiment with 35 d periods during a period when daily high and low temperatures averaged 34.3 and 15.9 °C, the relative humidity averaged 51% and there were no rain events. The TMR was the same for both groups, consisting of approximately 435 g/kg forage and 565 g/kg concentrate, except that the vitamin/mineral premix had no added fat (control, C) or added fat (C16:0) at a level designed to deliver approximately 450 g/cow/d of supplemental fat if cows consumed 26.5 kg/d of dry matter (DM). The two TMR averaged 905 g/kg organic matter (OM), 318 g/kg neutral detergent fiber (aNDF), and 186 g/kg crude protein (CP). The ‘C’ TMR had 58 g/kg total fatty acids with an estimated net energy for lactation (NEl) of 7.3 MJ/kg (DM), while the C16:0 TMR had 72 g/kg total fatty acids and 7.5 MJ/kg NEl (DM). Whole tract digestibility of DM, OM, aNDF and CP tended (P<0.10) to increase, and that of fatty acids increased substantially (P<0.01), with C16:0 feeding, whereas, DM intake was not affected. Milk fat content decreased (P<0.01) with C16:0 feeding (37.5 versus 36.0 g/kg), whereas, true protein content tended (P=0.09) to increase. There was a tendency (P=0.07) for increased milk yield (36.69 versus 38.04 kg/d), while milk protein yield increased (P=0.03) with C16:0 supplementation (1.08 versus 1.13 kg/d). Milk fat yield was unaffected by treatment. Concentrations of short and medium chain milk fatty acids (C6:0–C15:0), decreased, or tended to decrease, with C16:0 addition (C13:0 and C15:0, P<0.10; all others, P≤0.05). The concentration of C16:0 increased (P<0.001) in milk triglycerides from cows fed C16:0 (27.10 versus 31.57 g/kg), the longer chain saturated fatty acids C17:0 and C18:0 decreased (P≤0.05) and other long chain unsaturated fatty acids were unaffected. Benefits of C16:0 feeding on cow productivity must be balanced against negative effects on the nutritive value of the milk (i.e., increased C16:0 in milk fatty acids) produced for human consumption. However, relatively low amounts of supplemental C16:0 (27.10 versus 31.57 g/kg in milk triglycerides for C and C16:0 supplemented cows, respectively) were actually secreted in milk, in spite of them being essentially fully digested in the digestive tract. Strategies to divide cows into production groups based on milk yield and/or milk fat proportions could further limit C16:0 secretion in milk. Supplemental dietary C16:0 may have positive effects on milk production that outweigh the negative health effects of the increased C16:0 content in the milk fat.  相似文献   

20.
Even though extensive research has examined the role of nutrition on milk fat composition, there is less information on the impact of forages on milk fatty acid (FA) composition. In the current study, the effect of replacing grass silage (GS) with maize silage (MS) as part of a total mixed ration on animal performance and milk FA composition was examined using eight multiparous mid-lactation cows in a replicated 4 × 4 Latin square with 28-day experimental periods. Four treatments comprised the stepwise replacement of GS with MS (0, 160, 334 and 500 g/kg dry matter (DM)) in diets containing a 54 : 46 forage : concentrate ratio on a DM basis. Replacing GS with MS increased (P < 0.001) the DM intake, milk yield and milk protein content. Incremental replacement of GS with MS in the diet enhanced linearly (P < 0.001) the proportions of 6:0-14:0, decreased (P < 0.01) the 16:0 concentrations, but had no effect on the total milk fat saturated fatty acid content. Inclusion of MS altered the distribution of trans-18:1 isomers and enhanced (P < 0.05) total trans monounsaturated fatty acid and total conjugated linoleic acid content. Milk total n-3 polyunsaturated fatty acid (PUFA) content decreased with higher amounts of MS in the diet and n-6 PUFA concentration increased, leading to an elevated n-6 : n-3 PUFA ratio. Despite some beneficial changes associated with the replacement of GS with MS, the overall effects on milk FA composition would not be expected to substantially improve long-term human health. However, the role of forages on milk fat composition must also be balanced against the increases in total milk and protein yield on diets containing higher proportions of MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号