首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Host phylogenetic relatedness and ecological similarity are thought to contribute to parasite community assembly and infection rates. However, recent landscape level anthropogenic changes may disrupt host-parasite systems by impacting functional and phylogenetic diversity of host communities. We examined whether changes in host functional and phylogenetic diversity, forest cover, and minimum temperature influence the prevalence, diversity, and distributions of avian haemosporidian parasites (genera Haemoproteus and Plasmodium) across 18 avian communities in the Atlantic Forest. To explore spatial patterns in avian haemosporidian prevalence and taxonomic and phylogenetic diversity, we surveyed 2241 individuals belonging to 233 avian species across a deforestation gradient. Mean prevalence and parasite diversity varied considerably across avian communities and parasites responded differently to host attributes and anthropogenic changes. Avian malaria prevalence (termed herein as an infection caused by Plasmodium parasites) was higher in deforested sites, and both Plasmodium prevalence and taxonomic diversity were negatively related to host functional diversity. Increased diversity of avian hosts increased local taxonomic diversity of Plasmodium lineages but decreased phylogenetic diversity of this parasite genus. Temperature and host phylogenetic diversity did not influence prevalence and diversity of haemosporidian parasites. Variation in the diversity of avian host traits that promote parasite encounter and vector exposure (host functional diversity) partially explained the variation in avian malaria prevalence and diversity. Recent anthropogenic landscape transformation (reduced proportion of native forest cover) had a major influence on avian malaria occurrence across the Atlantic Forest. This suggests that, for Plasmodium, host phylogenetic diversity was not a biotic filter to parasite transmission as prevalence was largely explained by host ecological attributes and recent anthropogenic factors. Our results demonstrate that, similar to human malaria and other vector-transmitted pathogens, prevalence of avian malaria parasites will likely increase with deforestation.  相似文献   

2.
Individuals of migratory species may be more likely to become infected by parasites because they cross different regions along their route, thereby being exposed to a wider range of parasites during their annual cycle. Conversely, migration may have a protective effect since migratory behaviour allows hosts to escape environments presenting a high risk of infection. Haemosporidians are one of the best studied, most prevalent and diverse groups of avian parasites, however the impact of avian host migration on infection by these parasites remains controversial. We tested whether migratory behaviour influenced the prevalence and richness of avian haemosporidian parasites among South American birds. We used a dataset comprising ~ 11,000 bird blood samples representing 260 bird species from 63 localities and Bayesian multi-level models to test the impact of migratory behaviour on prevalence and lineage richness of two avian haemosporidian genera (Plasmodium and Haemoproteus). We found that fully migratory species present higher parasite prevalence and higher richness of haemosporidian lineages. However, we found no difference between migratory and non-migratory species when evaluating prevalence separately for Plasmodium and Haemoproteus, or for the richness of Plasmodium lineages. Nevertheless, our results indicate that migratory behaviour is associated with an infection cost, namely a higher prevalence and greater variety of haemosporidian parasites.  相似文献   

3.
Avian host life history traits have been hypothesized to predict rates of infection by haemosporidian parasites. Using molecular techniques, we tested this hypothesis for parasites from three haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon) collected from a diverse sampling of birds in northern Malawi. We found that host life history traits were significantly associated with parasitism rates by all three parasite genera. Nest type and nest location predicted infection probability for all three parasite genera, whereas flocking behavior is an important predictor of Plasmodium and Haemoproteus infection and habitat is an important predictor of Leucocytozoon infection. Parasite prevalence was 79.1% across all individuals sampled, higher than that reported for comparable studies from any other region of the world. Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species. A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified) based on BLAST queries against the avian malaria database, MalAvi.  相似文献   

4.
DNA-sequence analyses of avian haemosporidian parasites, primarily of passerine birds, have described the phylogenetic relationships of major groups of these parasites, which are in general agreement with morphological taxonomy. However, less attention has been paid to haemosporidian parasites of non-passerine birds despite morphological and DNA-sequence evidence for unique clades of parasites in these birds. Detection of haemosporidian parasites in the Galapagos archipelago has raised conservation concerns and prompted us to characterise the origins and diversity of these parasites in the Galapagos dove (Zenaida galapagoensis). We used partial mitochondrial cytochrome b (cyt b) and apicoplast caseinolytic protease C (ClpC) genes to develop a phylogenetic hypothesis of relationships of haemosporidian parasites infecting New World Columbiformes, paying special attention to those parasites infecting the endemic Galapagos dove. We identified a well-supported and diverse monophyletic clade of haemosporidian parasites unique to Columbiformes, which belong to the sub-genus Haemoproteus (Haemoproteus). This is a sister clade to all the Haemoproteus (Parahaemoproteus) and Plasmodium parasites so far identified from birds as well as the Plasmodium parasites of mammals and reptiles. Our data suggest that the diverse Haemoproteus parasites observed in Galapagos doves are not endemic to the archipelago and likely represent multiple recent introductions.  相似文献   

5.
Avian haemosporidian infections (of the genera Haemoproteus, Plasmodium and Leucocytozoon) can regulate passerine populations. Thus, reduction in the number of avian haemosporidian infections in a population, for example in recently introduced hosts, may facilitate host establishment or spread (i.e. enemy release). Alternatively, colonizers could decrease competitive ability of native individuals in the novel range by increasing the prevalence of avian haemosporidians in that native passerine community (i.e. novel weapons). However, whether either or both of these phenomena will occur is difficult to predict because infection risk can be highly heterogeneous and dependent upon the interaction of biotic and abiotic factors at the microclimate level, especially because of the important role of vectors for these parasites. Here, we describe which factors best predicted avian haemosporidian prevalence in populations of house sparrows Passer domesticus introduced to Kenya. House sparrows inhabit an invasion gradient in Kenya; they were introduced via the eastern port city of Mombasa in ? 1950 and have since spread west‐ward across the country. This range expansion gave us the opportunity to examine how parasite prevalence changes over small spatiotemporal scales and what role is played by environmental and individual traits. Among all individuals, body mass was the strongest predictor of infection, with larger house sparrows being more likely to be infected. At the population level, capture month, precipitation (higher prevalence with more rainfall), and population age (increasing prevalence with increasing time since introduction) were important risk factors. Overall, haemosporidian prevalence in Kenyan house sparrows appears to be more strongly associated with individual characteristics rather than with time since introduction as was predicted, though this does not necessarily rule out a role for enemy release or novel weapons in this system.  相似文献   

6.
Environmental factors strongly influence the ecology and evolution of vector‐borne infectious diseases. However, our understanding of the influence of climatic variation on host–parasite interactions in tropical systems is rudimentary. We studied five species of birds and their haemosporidian parasites (Plasmodium and Haemoproteus) at 16 sampling sites to understand how environmental heterogeneity influences patterns of parasite prevalence, distribution, and diversity across a marked gradient in water availability in northern South America. We used molecular methods to screen for parasite infections and to identify parasite lineages. To characterize spatial heterogeneity in water availability, we used weather‐station and remotely sensed climate data. We estimated parasite prevalence while accounting for spatial autocorrelation, and used a model selection approach to determine the effect of variables related to water availability and host species on prevalence. The prevalence, distribution, and lineage diversity of haemosporidian parasites varied among localities and host species, but we found no support for the hypothesis that the prevalence and diversity of parasites increase with increasing water availability. Host species and host × climate interactions had stronger effects on infection prevalence, and parasite lineages were strongly associated with particular host species. Because climatic variables had little effect on the overall prevalence and lineage diversity of haemosporidian parasites across study sites, our results suggest that independent host–parasite dynamics may influence patterns in parasitism in environmentally heterogeneous landscapes.  相似文献   

7.
Biogeographic patterns of parasite diversity are useful for determining how host–parasite interactions can influence speciation. However, variation in methodologies and sampling effort can skew diversity estimates. Avian haemosporidians are vector-transmitted blood parasites represented by over 1300 unique genetic lineages spread across over 40 countries. We used a global database of lineage distributions for two avian haemosporidian genera, Plasmodium and Haemoproteus, to test for congruence of diversity among haemosporidians and their avian hosts across 13 geographic regions. We demonstrated that avian haemosporidians exhibit similar diversity patterns to their avian hosts; however, specific patterns differ between genera. Haemoproteus spp. diversity estimates were significantly higher than those of Plasmodium spp. in all areas where the genera co-occurred, apart from the Plasmodium spp.-rich region of South America. The geographic distributions of parasite genera also differed, with Haemoproteus spp. absent from the majority of oceanic regions while Plasmodium spp. were cosmopolitan. These findings suggest fundamental differences in the way avian haemosporidians diverge and colonise new communities. Nevertheless, a review of the literature suggests that accurate estimates of avian haemosporidian diversity patterns are limited by (i) a concentration of sampling towards passerines from Europe and North America, (ii) a frequent failure to include microscopic techniques together with molecular screening and (iii) a paucity of studies investigating distributions across vector hosts.  相似文献   

8.
Understanding how pathogens and parasites diversify through time and space is fundamental to predicting emerging infectious diseases. Here, we use biogeographic, coevolutionary and phylogenetic analyses to describe the origin, diversity, and distribution of avian malaria parasites in the most diverse avifauna on Earth. We first performed phylogenetic analyses using the mitochondrial cytochrome b (cyt b) gene to determine relationships among parasite lineages. Then, we estimated divergence times and reconstructed ancestral areas to uncover how landscape evolution has shaped the diversification of Parahaemoproteus and Plasmodium in Amazonia. Finally, we assessed the coevolutionary patterns of diversification in this host–parasite system to determine how coevolution may have influenced the contemporary diversity of avian malaria parasites and their distribution among Amazonian birds. Biogeographic analysis of 324 haemosporidian parasite lineages recovered from 4178 individual birds provided strong evidence that these parasites readily disperse across major Amazonian rivers and this has occurred with increasing frequency over the last five million years. We also recovered many duplication events within areas of endemism in Amazonia. Cophylogenetic analyses of these blood parasites and their avian hosts support a diversification history dominated by host switching. The ability of avian malaria parasites to disperse geographically and shift among avian hosts has played a major role in their radiation and has shaped the current distribution and diversity of these parasites across Amazonia.  相似文献   

9.
Haemosporidian parasites of birds are ubiquitous in terrestrial ecosystems, but their coevolutionary dynamics remain poorly understood. If species turnover in parasites occurs at a finer scale than turnover in hosts, widespread hosts would encounter diverse parasites, potentially diversifying as a result. Previous studies have shown that some wide-ranging hosts encounter varied haemosporidian communities throughout their range, and vice-versa. More surveys are needed to elucidate mechanisms that underpin spatial patterns of diversity in this complex multi-host multi-parasite system. We sought to understand how and why a community of avian haemosporidian parasites varies in abundance and composition across elevational transects in eight sky islands in southwestern North America. We tested whether bird community composition, environment, or geographic distance explain haemosporidian parasite species turnover in a widespread host that harbors a diverse haemosporidian community, the Audubon’s Warbler (Setophaga auduboni). We tested predictors of infection using generalized linear models, and predictors of bird and parasite community dissimilarity using generalized dissimilarity modeling. Predictors of infection differed by parasite genus: Parahaemoproteus was predicted by elevation and climate, Leucocytozoon varied idiosyncratically among mountains, and Plasmodium was unpredictable, but rare. Parasite turnover was nearly three-fold higher than bird turnover and was predicted by elevation, climate, and bird community composition, but not geographic distance. Haemosporidian communities vary strikingly at fine spatial scales (hundreds of kilometers), across which the bird community varies only subtly. The finer scale of turnover among parasites implies that their ranges may be smaller than those of their hosts. Avian host species should encounter different parasite species in different parts of their ranges, resulting in spatially varying selection on host immune systems. The fact that parasite turnover was predicted by bird turnover, even when considering environmental characteristics, implies that host species or their phylogenetic history plays a role in determining which parasite species will be present in a community.  相似文献   

10.
Re-examination, using molecular tools, of the diversity of haemosporidian parasites (among which the agents of human malaria are the best known) has generally led to rearrangements of traditional classifications. In this study, we explored the diversity of haemosporidian parasites infecting vertebrate species (particularly mammals, birds and reptiles) living in the forests of Gabon (Central Africa), by analyzing a collection of 492 bushmeat samples. We found that samples from five mammalian species (four duiker and one pangolin species), one bird and one turtle species were infected by haemosporidian parasites. In duikers (from which most of the infected specimens were obtained), we demonstrated the existence of at least two distinct parasite lineages related to Polychromophilus species (i.e., bat haemosporidian parasites) and to sauropsid Plasmodium (from birds and lizards). Molecular screening of sylvatic mosquitoes captured during a longitudinal survey revealed the presence of these haemosporidian parasite lineages also in several Anopheles species, suggesting a potential role in their transmission. Our results show that, differently from what was previously thought, several independent clades of haemosporidian parasites (family Plasmodiidae) infect mammals and are transmitted by anopheline mosquitoes.  相似文献   

11.
Identifying robust environmental predictors of infection probability is central to forecasting and mitigating the ongoing impacts of climate change on vector‐borne disease threats. We applied phylogenetic hierarchical models to a data set of 2,171 Western Palearctic individual birds from 47 species to determine how climate and landscape variation influence infection probability for three genera of haemosporidian blood parasites (Haemoproteus, Leucocytozoon, and Plasmodium). Our comparative models found compelling evidence that birds in areas with higher vegetation density (captured by the normalized difference vegetation index [NDVI]) had higher likelihoods of carrying parasite infection. Magnitudes of this relationship were remarkably similar across parasite genera considering that these parasites use different arthropod vectors and are widely presumed to be epidemiologically distinct. However, we also uncovered key differences among genera that highlighted complexities in their climate responses. In particular, prevalences of Haemoproteus and Plasmodium showed strong but contrasting relationships with winter temperatures, supporting mounting evidence that winter warming is a key environmental filter impacting the dynamics of host‐parasite interactions. Parasite phylogenetic community diversities demonstrated a clear but contrasting latitudinal gradient, with Haemoproteus diversity increasing towards the equator and Leucocytozoon diversity increasing towards the poles. Haemoproteus diversity also increased in regions with higher vegetation density, supporting our evidence that summer vegetation density is important for structuring the distributions of these parasites. Ongoing variation in winter temperatures and vegetation characteristics will probably have far‐reaching consequences for the transmission and spread of vector‐borne diseases.  相似文献   

12.
The lark sparrow (Chondestes grammacus) is a ground-nesting passerine that breeds across much of the central North American steppe and sand barrens. Through genotyping and sequencing of avian malaria parasites we examined levels of malaria prevalence and determined the distribution of Haemoproteus and Plasmodium lineages across the breeding range of the lark sparrow. Analysis of 365 birds collected from five breeding locations revealed relatively high levels of malaria prevalence in adults (80 %) and juveniles (46 %), with infections being primarily of Haemoproteus (91 % of sequenced samples). Levels of genetic diversity and genetic structure of malaria parasites with respect to the avian host populations revealed distinct patterns for Haemoproteus and Plasmodium, most likely as a result of their distinct life histories, host specificity, and transmission vectors. With the exception of one common Haemoproteus haplotype detected in all populations, all other haplotypes were either population-specific or shared by two to three populations. A hierarchical analysis of molecular variance of Haemoproteus sequences revealed that 15–18 % of the genetic variation can be explained by differences among host populations/locations (p < 0.001). In contrast to the regional patterns of genetic differentiation detected for the lark sparrow populations, Haemoproteus parasites showed high levels of population-specific variation and no significant differences among regions, which suggests that the population dynamics of the parasites may be driven by evolutionary processes operating at small spatial scales (e.g., at the level of host populations). These results highlight the potential effects of host population structure on the demographic and evolutionary dynamics of parasites.  相似文献   

13.
Malaria caused by Plasmodium parasites is one of the worst scourges of mankind and threatens wild animal populations. Therefore, identifying mechanisms that mediate the spread of the disease is crucial for both human health and conservation. Human‐induced climate change has been hypothesized to alter the geographic distribution of malaria pathogens. As the earth warms, arthropod vectors may display a general range expansion or may enjoy longer breeding season, both of which can enhance parasite transmission. Moreover, Plasmodium species may directly benefit for elevating temperatures, which provide stimulating conditions for parasite reproduction. To test for the link between climate change and malaria prevalence on a global scale for the first time, I used long‐term records on avian malaria, which is a key model for studying the dynamics of naturally occurring malarial infections. Following the variation in parasite prevalence in more than 3000 bird species over seven decades, I show that the infection rate by Plasmodium is strongly associated with temperature anomalies and has been augmented with accelerating tendency during the last 20 years. The impact of climate change on malaria prevalence varies across continents, with the strongest effects found for Europe and Africa. Migration habit did not predict susceptibility to the escalating parasite pressure by Plasmodium. Consequently, wild birds are at an increasing risk of malaria infection due to recent climate change, which can endanger both naïve bird populations and domesticated animals. The prevailing avian example may provide useful lessons for understanding the effect of climate change on malaria in humans.  相似文献   

14.
Tropical forest degradation affects host-parasite interactions, determining the probability of animals acquiring an infection. The activation of an immune response to fight off infections requires energy and other resources such as antioxidants which may be redirected from growth and reproduction. A key question is how selective logging—the most common form of tropical forest degradation—impacts the prevalence of avian haemosporidian infection and its correlated physiological responses (nutritional and oxidative status markers). We investigated the prevalence of Plasmodium, Haemoproteus, and Leucocytozoon parasites in 14 understorey bird species in lowland, logged and unlogged, old-growth forests of Borneo. Prevalences of infections were similar between selectively logged and unlogged forests. To explore nutritional and oxidative status effects of haemosporidian infections, we examined associations between infections and plasma proteins, plasma triglycerides, and multiple blood-based markers of oxidative status, testing for an impact of selective logging on those markers. Birds infected with Plasmodium showed higher levels of plasma proteins and non-enzymatic antioxidant capacity, and lower levels of plasma triglycerides and glutathione, compared with haemosporidian-free individuals. Conversely, birds infected with Haemoproteus showed no changes in nutritional or physiological markers compared with uninfected individuals. These results indicate higher metabolic and physiological costs of controlling Plasmodium infection, compared with Haemoproteus, possibly due to higher pathogenicity of Plasmodium. Selectively logged forests had no effect on the responses of birds to infection, suggesting that the environmental conditions of degraded forests do not appear to induce any appreciable physiological demands in parasitised birds.  相似文献   

15.
Identifying the mechanisms driving the distribution and diversity of parasitic organisms and characterizing the structure of parasite assemblages are critical to understanding host–parasite evolution, community dynamics, and disease transmission risk. Haemosporidian parasites of the genera Plasmodium and Haemoproteus are a diverse and cosmopolitan group of bird pathogens. Despite their global distribution, the ecological and historical factors shaping the diversity and distribution of these protozoan parasites across avian communities and geographic regions remain unclear. Here we used a region of the mitochondrial cytochrome b gene to characterize the diversity, biogeographical patterns, and phylogenetic relationships of Plasmodium and Haemoproteus infecting Amazonian birds. Specifically, we asked whether, and how, host community similarity and geography (latitude and area of endemism) structure parasite assemblages across 15 avian communities in the Amazon Basin. We identified 265 lineages of haemosporidians recovered from 2661 sampled birds from 330 species. Infection prevalence varied widely among host species, avian communities, areas of endemism, and latitude. Composition analysis demonstrated that both malarial parasites and host communities differed across areas of endemism and as a function of latitude. Thus, areas with similar avian community composition were similar in their parasite communities. Our analyses, within a regional biogeographic context, imply that host switching is the main event promoting diversification in malarial parasites. Although dispersal of haemosporidian parasites was constrained across six areas of endemism, these pathogens are not dispersal‐limited among communities within the same area of endemism. Our findings indicate that the distribution of malarial parasites in Amazonian birds is largely dependent on local ecological conditions and host evolutionary relationships.  相似文献   

16.
Understanding the ecology and evolution of parasites is contingent on identifying the selection pressures they face across their infection landscape. Such a task is made challenging by the fact that these pressures will likely vary across time and space, as a result of seasonal and geographical differences in host susceptibility or transmission opportunities. Avian haemosporidian blood parasites are capable of infecting multiple co‐occurring hosts within their ranges, yet whether their distribution across time and space varies similarly in their different host species remains unclear. Here, we applied a new PCR method to detect avian haemosporidia (genera Haemoproteus, Leucocytozoon, and Plasmodium) and to determine parasite prevalence in two closely related and co‐occurring host species, blue tits (Cyanistes caeruleus, N = 529) and great tits (Parus major, N = 443). Our samples were collected between autumn and spring, along an elevational gradient in the French Pyrenees and over a three‐year period. Most parasites were found to infect both host species, and while these generalist parasites displayed similar elevational patterns of prevalence in the two host species, this was not always the case for seasonal prevalence patterns. For example, Leucocytozoon group A parasites showed inverse seasonal prevalence when comparing between the two host species, being highest in winter and spring in blue tits but higher in autumn in great tits. While Plasmodium relictum prevalence was overall lower in spring relative to winter or autumn in both species, spring prevalence was also lower in blue tits than in great tits. Together, these results reveal how generalist parasites can exhibit host‐specific epidemiology, which is likely to complicate predictions of host–parasite co‐evolution.  相似文献   

17.
ABSTRACT.   Nest-site choice affects individual fitness and possibly reflects natural selection of the capacity of individuals to select appropriate microhabitat features. From 2003 to 2005, we examined nest-site characteristics and nesting success of Blue-black Grassquits ( Volatinia jacarina ) in central Brazil. We compared the characteristics of nest sites and nonused sites, as well as the characteristics of successful and unsuccessful nests. Grassquit nest sites were structurally more complex than nonused sites. Shrub height and the interaction between vegetation height and percentage of ground coverage were the most important predictors of nest placement. Grassquits used only four (20%) of the 20 grass species in the study area, with Paspalum pectinatum used less than expected based on availability and Melinis minutiflora more than expected. The only variable that differed between unsuccessful and successful nests was the distance to nearest conspecific nest; the latter were about twice as far from neighboring nests as unsuccessful nests. The evaluation of microhabitat candidate models indicated that the daily survival probability of nests varied chiefly as a function of the interaction between their external height and inner depth. Greater survival occurred when the external height was minimized in combination with augmentation of internal depth of the nest cup. The link between nest success and the inverse association of external height and internal depth suggests that minimizing the visual cues of nest presence while maintaining a viable incubation chamber can positively affect nest success. Thus, we suggest that nest concealment is the most critical attribute associated with nest site choice for Blue-black Grassquits in the study area. Vegetation cover above the nest seems to be particularly important, perhaps as a strategy to deter visually oriented aerial predators.  相似文献   

18.
Mosquito vectors play a crucial role in the distribution of avian Plasmodium parasites worldwide. At northern latitudes, where climate warming is most pronounced, there are questions about possible changes in the abundance and distribution of Plasmodium parasites, their vectors, and their impacts to avian hosts. To better understand the transmission of Plasmodium among local birds and to gather baseline data on potential vectors, we sampled a total of 3,909 mosquitoes from three locations in south‐central Alaska during the summer of 2016. We screened mosquitoes for the presence of Plasmodium parasites using molecular techniques and estimated Plasmodium infection rates per 1,000 mosquitoes using maximum likelihood methods. We found low estimated infection rates across all mosquitoes (1.28 per 1,000), with significantly higher rates in Culiseta mosquitoes (7.91 per 1,000) than in Aedes mosquitoes (0.57 per 1,000). We detected Plasmodium in a single head/thorax sample of Culiseta, indicating potential for transmission of these parasites by mosquitoes of this genus. Plasmodium parasite DNA isolated from mosquitoes showed a 100% identity match to the BT7 Plasmodium lineage that has been detected in numerous avian species worldwide. Additionally, microscopic analysis of blood smears collected from black‐capped chickadees (Poecile atricapillus) at the same locations revealed infection by parasites preliminarily identified as Plasmodium circumflexum. Results from our study provide the first information on Plasmodium infection rates in Alaskan mosquitoes and evidence that Culiseta species may play a role in the transmission and maintenance of Plasmodium parasites in this region.  相似文献   

19.
Characterizing the diversity and structure of host–parasite communities is crucial to understanding their eco-evolutionary dynamics. Malaria and related haemosporidian parasites are responsible for fitness loss and mortality in bird species worldwide. However, despite exhibiting the greatest ornithological biodiversity, avian haemosporidians from Neotropical regions are quite unexplored. Here, we analyze the genetic diversity of bird haemosporidian parasites (Plasmodium and Haemoproteus) in 1,336 individuals belonging to 206 bird species to explore for differences in diversity of parasite lineages and bird species across 5 well-differentiated Peruvian ecoregions. We detected 70 different haemosporidian lineages infecting 74 bird species. We showed that 25 out of the 70 haplotypes had not been previously recorded. Moreover, we also identified 81 new host–parasite interactions representing new host records for these haemosporidian parasites. Our outcomes revealed that the effective diversity (as well as the richness, abundance, and Shannon–Weaver index) for both birds and parasite lineages was higher in Amazon basin ecoregions. Furthermore, we also showed that ecoregions with greater diversity of bird species also had high parasite richness, hence suggesting that host community is crucial in explaining parasite richness. Generalist parasites were found in ecoregions with lower bird diversity, implying that the abundance and richness of hosts may shape the exploitation strategy followed by haemosporidian parasites. These outcomes reveal that Neotropical region is a major reservoir of unidentified haemosporidian lineages. Further studies analyzing host distribution and specificity of these parasites in the tropics will provide important knowledge about phylogenetic relationships, phylogeography, and patterns of evolution and distribution of haemosporidian parasites.  相似文献   

20.
Previous studies about geographic patterns of species diversity of avian malaria parasites and others in the Order Haemosporida did not include the avian biodiversity hotspot Madagascar. Since there are few data available on avian malaria parasites on Madagascar, we conducted the first known large-scale molecular-based study to investigate their biodiversity. Samples (1067) from 55 bird species were examined by a PCR method amplifying nearly the whole haemosporidian cytochrome b gene (1063?bp). The parasite lineages found were further characterized phylogenetically and the degree of specialization was determined with a newly introduced host diversity index (Hd). Our results demonstrate that Madagascar indeed represents a biodiversity hotspot for avian malaria parasites as we detected 71 genetically distinct parasite lineages of the genera Plasmodium and Haemoproteus. Furthermore, by using a phylogenetic approach and including the sequence divergence we suspect that the detected haemosporidian lineages represent at least 29 groups i.e. proposed species. The here presented Hd values for each parasite regarding host species, genus and family strongly support previous works demonstrating the elastic host ranges of some avian parsites of the Order Haemosporida. Representatives of the avian parasite genera Plasmodium and Leucocytozoon tend to more often be generalists than those of the genus Haemoproteus. However, as demonstrated in various examples, there is a large overlap and single parasite lineages frequently deviate from this rule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号