首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
室管膜下区(subventricular zone,SVZ)存在着神经干细胞(nueral stem cells,NSCs),是成年哺乳动物脑内重要的神经发生区域。神经发生过程极为复杂,包括一系列的生物学事件。在病理状态下,SVZ区的细胞增殖,新生的神经细胞迁移到病灶处,取代或修复受损的细胞,起到保护脑组织的作用。该文就SVZ区的神经干细胞、神经发生过程及病理状态下神经发生的相关研究做一综述。  相似文献   

2.
Ezrin is a member of the ezrin–radixin–moesin (ERM) family of proteins, which link the cytoskeleton and cell membrane. ERM proteins are involved in pivotal cellular functions including cell–matrix recognition, cell–cell communication, and cell motility. Several recent studies have shown that ERM proteins are expressed in specific cell types of the adult rostral migratory stream (RMS). In this study, we found that ERM proteins are expressed highly in the early postnatal RMS and the ventricular zone of embryonic cerebral cortex, suggesting that these proteins may be expressed by neural progenitors. Furthermore, whereas ezrin previously was found to be expressed exclusively by astrocytes of the adult RMS, we found that ezrin-expressing cells also expressed the markers for indicating neuroblasts in vivo and in vitro, and that ezrin expression by neuroblasts decreases progressively as neuroblasts migrate. Using in vitro differentiation of adult neural stem cells, we found that ezrin is expressed by neural stem cells and their progeny (neuroblasts and astrocytes), but not by oligodendrocytic progeny. Collectively our findings demonstrate that adult neural stem cells and neuroblasts express ezrin and that ezrin may be involved in intracellular actin remodeling.  相似文献   

3.
目的:研究艾塞那肽(Ex-4)对成年小鼠脑室下区(SVZ)神经干细胞(NSCs)分化的影响及机制。方法:提取5周龄C57BL/6J小鼠SVZ的NSCs,100 nmol/L Ex-4处理分化14 d观察细胞形态,用免疫荧光检测巢蛋白(nestin)和胰高糖素样肽-1受体(GLP-1R)的表达。用shRNA敲低GLP-1R,将研究分为四组:对照组,Ex-4组,GLP-1R敲低组,GLP-1R敲低+Ex-4组。100 nmol/L Ex-4处理14 d后免疫荧光标记β-微管蛋白3(β-tublin III)和胶质纤维酸性蛋白(GFAP)并统计β-tublin III阳性细胞比例,Western blot检测环磷腺苷效应元件结合蛋白(CREB)的活化。为进一步研究Ex-4对MAPK和PI3K通路的影响,分别以丝裂原活化蛋白激酶(MAPK)抑制剂U0126 0.07 μmol/L预处理细胞30 min、磷脂酰肌醇-3激酶(PI3K)抑制剂LY294002 50 μmol/预处理细胞2 h,将研究分为: 对照组,Ex-4组,U0126组,U0126+Ex-4组,LY294002组,LY294002+Ex-4组,Western blot检测各组CREB的活化,各组实验独立重复三次。结果:成功从C57BL/6J小鼠SVZ提取NSCs,免疫荧光提示NSCs中nestin以及GLP-1R阳性。相对于对照组,Ex-4组分化为神经元的比例更高。GLP-1R敲低+Ex-4组中神经元比例与对照组基本一致(P<0.01),β-tublin III阳性的细胞显示出GLP-1R以及CREB活化阳性。Western blot显示Ex-4组中CREB显著活化,GLP-1R敲低+Ex-4组的CERB活化与对照组基本一致(P<0.01)。U0126+Ex-4组与Ex-4组CERB活化水平一致,LY294002+Ex-4组与对照组CERB活化水平一致(P<0.01)。 结论:Ex-4通过GLP-1R受体促进成年小鼠SVZ中NSCs分化为神经元,这一作用可能通过PI3K/ CREB通路来实现。  相似文献   

4.
The subventricular zone (SVZ) is a major reservoir for stem cells in the adult mammalian brain. Neural stem cells supply the olfactory bulb with new interneurons and provide cells that migrate towards lesioned brain areas. Neuropeptide Y (NPY), one of the most abundant neuropeptides in the brain, was previously shown to induce neuroproliferation on mice SVZ cells. In the present study, performed in rats, we demonstrate the endogenous synthesis of NPY by cells in the SVZ that suggests that NPY could act as an autocrine/paracrine factor within the SVZ area. We observed that NPY promotes SVZ cell proliferation as previously reported in mice, but does not affect self-renewal of SVZ stem cells. Additionally, this study provides the first direct evidence of a chemokinetic activity of NPY on SVZ cells. Using pharmacological approaches, we demonstrate that both the mitogenic and chemokinetic properties of NPY involve Y1 receptor-mediated activation of the ERK1/2 MAP kinase pathway. Altogether, our data establish that NPY through Y1 receptors activation controls chemokinetic activity and, as for mice, is a major neuroproliferative regulator of rat SVZ cells.  相似文献   

5.
目的:探讨一氧化氮(NO)对新生大鼠体外培养的神经干细胞(NSCs)分化的作用。方法:采用常规方法分离新生大鼠脑室下区(SVZ)组织,进行NSCs体外培养。用DETA/NO作为NO供体,用L-NAME作为一氧化氮合酶(NOS)抑制剂。免疫荧光法检测NSCs标志物-巢蛋白(nestin)、神经元标志物-8Ⅲ型微管蛋白(Tuj-1)和星型胶质细胞标志物-胶质原纤维酸性蛋白(GFAP)的表达,还检测了神经元型NOS的表达。用Greiss还原法检测培养液中总NO的浓度。结果:培养的神经球均为nestin阳性、BIdu阳性和nNOS阳性。NSCs和40μmol/L、50μmol/L、60μmol/LDEFA/N0共培养5d,实验组培养液中N0浓度较对照组显著增高(P〈0.01),相应实验组分化的神经元数和星型胶质细胞数较对照组明显增加(P〈0.01和P〈0.05)。NSCs和100μmol/L、150μmol/L、200μmol/LL-NAME共培养5d,实验组培养液中NO浓度较对照组降低(P〈0.05),相应实验组分化的神经元数和星型胶质细胞数也较对照组减少(P〈0.05)。结论:NO能直接促进大鼠SVZ体外培养的NSCs分化。  相似文献   

6.

Neural stem cells (NSCs) are multipotent, self-renewable cells who are capable of differentiating into neurons, astrocytes, and oligodendrocytes. NSCs reside at the subventricular zone (SVZ) of the adult brain permanently to guarantee a lifelong neurogenesis during neural network plasticity or undesirable injuries. Although the specious inaccessibility of adult NSCs niche hampers their in vivo identification, researchers have been seeking ways to optimize adult NSCs isolation, expansion, and differentiation, in vitro. NSCs were isolated from rhesus monkey SVZ, expanded in vitro and then characterized for NSCs-specific markers expression by immunostaining, real-time PCR, flow cytometry, and cell differentiation assessments. Moreover, cell survival as well as self-renewal capacity were evaluated by TUNEL, Live/Dead and colony assays, respectively. In the next step, to validate SVZ-NSCs identity in other species, a similar protocol was applied to isolate NSCs from adult rat’s SVZ as well. Our findings revealed that isolated SVZ-NSCs from both monkey and rat preserve proliferation capacity in at least nine passages as confirmed by Ki67 expression. Additionally, both SVZ-NSCs sources are capable of self-renewal in addition to NESTIN, SOX2, and GFAP expression. The mortality was measured meager with over 95% viability according to TUNEL and Live/Dead assay results. Eventually, the multipotency of SVZ-NSCs appraised authentic after their differentiation into neurons, astrocytes, and oligodendrocytes. In this study, we proposed a reliable method for SVZ-NSCs in vitro maintenance and identification, which, we believe is a promising cell source for therapeutic approach to recover neurological disorders and injuries condition.

  相似文献   

7.
Glioblastoma multiforme (GBM), the most frequently occurring malignant brain tumor in adults, remains mostly untreatable. Because of the heterogeneity of invasive gliomas and drug resistance associated with the tumor microenvironment, the prognosis is poor, and the survival rate of patients is low. Communication between GBMs and non-glioma cells in the tumor microenvironment plays a vital role in tumor growth and recurrence. Emerging data have suggested that neural stem cells (NSCs) in the subventricular zone (SVZ) are the cells-of-origin of gliomas, and SVZ NSC involvement is associated with the progression and recurrence of GBM. This review highlights the interaction between SVZ NSCs and gliomas, summarizes current findings on the crosstalk between gliomas and other non-glioma cells, and describes the links between SVZ NSCs and gliomas. We also discuss the role and mechanism of SVZ NSCs in glioblastoma, as well as the interventions targeting the SVZ and their therapeutic implications in glioblastoma. Taken together, understanding the biological mechanism of glioma-NSC interactions can lead to new therapeutic strategies for GBM.  相似文献   

8.
9.
This study reports an effect of taurine (1-10 mM) increasing markedly (120%) the number of neural precursor cells (NPCs) from adult mouse subventricular zone, cultured as neurospheres. This effect is one of the highest reported for adult neural precursor cells. Taurine-containing cultures showed 73-120% more cells than controls, after 24 and 96 h in culture, respectively. Taurine effect is due to enhanced proliferation as assessed by BrdU incorporation assays. In taurine cultures BrdU incorporation was markedly higher than controls from 1.5 to 48 h, with the maximal difference found at 1.5 h. This effect of taurine reproduced at every passage with the same window time. Taurine effects are not mimicked by glycine, alanine or GABA. Clonal efficiency values of 3.6% for taurine cultures and 1.3% for control cultures suggest a taurine influence on both, progenitor and stem cells. Upon differentiation, the proportion of neurons in control and taurine cultures was 3.1% (±0.5) and 10.2% (±0.8), respectively. These results are relevant for taurine implication in brain development as well as in adult neurogenesis. Possible mechanisms underlying taurine effects on cell proliferation are discussed.  相似文献   

10.
According to the current consensus, murine neural stem cells (NSCs) apically contacting the lateral ventricle generate differentiated progenitors by rare asymmetric divisions or by relocating to the basal side of the ventricular–subventricular zone (V‐SVZ). Both processes will ultimately lead to the generation of adult‐born olfactory bulb (OB) interneurons. In contrast to this view, we here find that adult‐born OB interneurons largely derive from an additional NSC‐type resident in the basal V‐SVZ. Despite being both capable of self‐renewal and long‐term quiescence, apical and basal NSCs differ in Nestin expression, primary cilia extension and frequency of cell division. The expression of Notch‐related genes also differs between the two NSC groups, and Notch activation is greatest in apical NSCs. Apical downregulation of Notch‐effector Hes1 decreases Notch activation while increasing proliferation across the niche and neurogenesis from apical NSCs. Underscoring their different roles in neurogenesis, lactation‐dependent increase in neurogenesis is paralleled by extra activation of basal but not apical NSCs. Thus, basal NSCs support OB neurogenesis, whereas apical NSCs impart Notch‐mediated lateral inhibition across the V‐SVZ.  相似文献   

11.
Dopaminergic receptors are expressed on neural precursor cells (NPCs) in the subventricular zone (SVZ) and are known to regulate NPC proliferation and differentiation fate in this region. We now report that this optimally requires the simultaneous activation of both D1-like and D2-like dopaminergic receptors with the agonists Bromocriptine, SKF-38393 and 7-OH-pipat maleate (BSP) in vitro. This is consistent with our previous findings that dopamine stimulates NPC proliferation through an EGF paracrine mechanism within the SVZ. Furthermore this combined dopamine agonist therapy rescues NPC proliferation in the SVZ in the 6-OHDA animal model of PD and importantly significantly increases neuronal differentiation in the olfactory bulb to a greater extent than we showed previously with L-dopa. This result has implications for the use of dopaminergic therapies in PD and in the development of such therapies focusing on upregulating SVZ neurogenesis.  相似文献   

12.
13.
Neural stem cells (NSCs) have the remarkable capacity to self-renew and the lifelong ability to generate neurons in the adult mammalian brain. However, the molecular and cellular mechanisms contributing to these behaviors are still not understood. Now that prospective isolation of the NSCs has become feasible, these mechanisms can be studied. Here we describe a protocol for the efficient isolation of adult NSCs, by the application of a dual-labeling strategy on the basis of their glial identity and ciliated nature. The cells are isolated from the lateral ventricular subependymal zone (SEZ) of adult hGFAP-eGFP (human glial fibrillary acidic protein-enhanced green fluorescent protein) transgenic mice by fluorescence-activated cell sorting. Staining against prominin1 (CD133) allows the isolation of the NSCs (hGFAP-eGFP(+)/prominin1(+)), which can be further subdivided by labeling with the fluorescent epidermal growth factor. This protocol, which can be completed in 7 h, allows the assessment of quantitative changes in SEZ NSCs and the examination of their molecular and functional characteristics.  相似文献   

14.
Adult neural stem cells are self-renewing multipotent cells that have the potential to replace dysfunctional and/or dying neuronal cells at the site of brain injury or degeneration. Caveolins are well-known tumor-suppressor genes that were recently found to be involved in the regulation of stem cell proliferation. For instance, ablation of the caveolin-1 (Cav-1) gene in mice markedly increases the proliferation of intestinal and mammary stem cells. However, the roles of caveolins in the proliferation of adult neural stem cells still remain unknown. In this study, dual-label immunofluorescence analysis of the proliferation marker, Ki67, and the stem cell markers, nestin and Sox2, was performed on brains of 8 week-old wild-type (WT) and Cav-1 knockout (KO) mice. Our results demonstrate an increased number of Ki67-positive nuclei in the subventricular zone (SVZ) of Cav-1 KO brains. Importantly, our dual-label immunofluorescence analyses demonstrate increased co-localization of Ki67 with both nestin and Sox2 in the SVZ of Cav-1 KO brains. Remarkably similar results were also obtained with Cav-2 and Cav-3 KO mouse brains as well, with increased proliferation of adult neural stem cells. Thus, the SVZ of caveolin KO mouse brains displays an increased proliferation of adult neural stem cells. Caveolin proteins might represent new crucial regulators of adult neural stem cell proliferation.  相似文献   

15.
16.
17.

Background  

Stem cells with the ability to form clonal floating colonies (spheres) were recently isolated from the neonatal murine spiral ganglion. To further examine the features of inner ear-derived neural stem cells and their derivatives, we investigated the effects of leukemia inhibitory factor (LIF), a neurokine that has been shown to promote self-renewal of other neural stem cells and to affect neural and glial cell differentiation.  相似文献   

18.
The incidence of amyloid plaques, composed mainly of beta-amyloid peptides (Abeta), does not correlate well with the severity of neurodegeneration in patients with Alzheimer's disease (AD). The effects of Abeta(42) on neurons or neural stem cells (NSCs) in terms of the aggregated form remain controversial. We prepared three forms of oligomeric, fibrillar, and monomeric Abeta(42) peptides and investigated their effects on the proliferation and neural differentiation of adult NSCs, according to the degree of aggregation or concentration. A low micromolar concentration (1 micromol/L) of oligomeric Abeta(42) increased the proliferation of adult NSCs remarkably in a neurosphere assay. It also enhanced the neuronal differentiation of adult NSCs and their ability to migrate. These results provide us with valuable information regarding the effects of Abeta(42) on NSCs in the brains of patients with AD.  相似文献   

19.
20.
Neural stem cells are maintained in the subventricular zone (SVZ) of the adult mammalian brain. Here, we review the cellular organization of this germinal layer and propose lineage relationships of the three main cell types found in this area. The majority of cells in the adult SVZ are migrating neuroblasts (type A cells) that continue to proliferate. These cells form an extensive network of tangentially oriented pathways throughout the lateral wall of the lateral ventricle. Type A cells move long distances through this network at high speeds by means of chain migration. Cells in the SVZ network enter the rostral migratory stream (RMS) and migrate anteriorly into the olfactory bulb, where they differentiate into interneurons. The chains of type A cells are ensheathed by slowly proliferating astrocytes (type B cells), the second most common cell type in this germinal layer. The most actively proliferating cells in the SVZ, type C, form small clusters dispersed throughout the network. These foci of proliferating type C cells are in close proximity to chains of type A cells. We discuss possible lineage relationships among these cells and hypothesize which are the neural stem cells in the adult SVZ. In addition, we suggest that interactions between type A, B, and C cells may regulate proliferation and initial differentiation within this germinal layer. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 234–248, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号