首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leishmania amazonensis, L. braziliensis and L. chagasi promastigotes were grown in the presence of l-arginine analogs such as Nω-nitro-l-arginine methyl ester (l-NAME), NG-nitro-l-arginine (l-NNA) and d-arginine (an inactive l-arginine isomer), besides an intracellular calcium chelator [ethylene glycol-bis (β-aminoethyl ether)-N,N,N′,N′-tetra acetic acid; EGTA] to verify the importance of l-arginine metabolism and the cofactors for these parasites. The parasite's growth curve was followed up and the culture supernatants were used to assay nitric oxide (NO˙) production by the Griess reaction. The results showed a significant effect of l-arginine analogs on NO˙ production by all Leishmania species studied, especially l-NAME, an irreversible inhibitor of the constitutive nitric oxide synthase (cNOS). When L. amazonensis promastigotes were pre-incubated with l-NAME, the infection range of the murine macrophages was lowered to 61% in 24?h and 19% after 48?h. These data demonstrated that the parasite NO˙ pathway is important to the establishment of the infection.  相似文献   

2.
Previous results demonstrate that the hybrid synthetic pterocarpanquinone LQB-118 presents antileishmanial activity against Leishmania amazonensis in a mouse model. The aim of the present study was to use a hamster model to investigate whether LQB-118 presents antileishmanial activity against Leishmania (Viannia) braziliensis, which is the major Leishmania species related to American tegumentary leishmaniasis. The in vitro antileishmanial activity of LQB-118 on L. braziliensis was tested on the promastigote and intracellular amastigote forms. The cell death induced by LQB-118 in the L. braziliensis promastigotes was analyzed using an annexin V-FITC/PI kit, the oxidative stress was evaluated by 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) and the ATP content by luminescence. In situ labeling of DNA fragments by terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) was used to investigate apoptosis in the intracellular amastigotes. L. braziliensis-infected hamsters were treated from the seventh day of infection with LQB-118 administered intralesionally (26 µg/kg/day, three times a week) or orally (4,3 mg/kg/day, five times a week) for eight weeks. LQB-118 was active against the L. braziliensis promastigotes and intracellular amastigotes, producing IC50 (50% inhibitory concentration) values of 3,4±0,1 and 7,5±0,8 µM, respectively. LQB-118 induced promastigote phosphatidylserine externalization accompanied by increased reactive oxygen species production and ATP depletion. Intracellular amastigote DNA fragmentation was also observed, without affecting the viability of macrophages. The treatment of L. braziliensis-infected hamsters with LQB-118, either orally or intralesionally, was effective in the control of lesion size, parasite load and increase intradermal reaction to parasite antigen. Taken together, these results show that the antileishmanial effect of LQB-118 extends to L. braziliensis in the hamster model, involves the induction of parasite apoptosis and shows promising therapeutic option by oral or local routes in leishmaniasis.  相似文献   

3.

Background

Leishmaniasis remains a worldwide public health problem. The limited therapeutic options, drug toxicity and reports of resistance, reinforce the need for the development of new treatment options. Previously, we showed that 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), a Heat Shock Protein 90 (HSP90)-specific inhibitor, reduces L. (L.) amazonensis infection in vitro. Herein, we expand the current knowledge on the leishmanicidal activity of 17-AAG against cutaneous leishmaniasis, employing an experimental model of infection with L. (V.) braziliensis.

Methodology/Principal findings

Exposure of axenic L. (V.) braziliensis promastigotes to 17-AAG resulted in direct dose-dependent parasite killing. These results were extended to L. (V.) braziliensis-infected macrophages, an effect that was dissociated from the production of nitric oxide (NO), superoxide (O−2) or inflammatory mediators such as TNF-α, IL-6 and MCP-1. The leishmanicidal effect was then demonstrated in vivo, employing BALB/c mice infected with L. braziliensis. In this model, 17-AAG treatment resulted in smaller skin lesions and parasite counts were also significantly reduced. Lastly, 17-AAG showed a similar effect to amphotericin B regarding the ability to reduce parasite viability.

Conclusion/Significance

17-AAG effectively inhibited the growth of L. braziliensis, both in vitro and in vivo. Given the chronicity of L. (V.) braziliensis infection and its association with mucocutaneous leishmaniasis, 17-AAG can be envisaged as a new chemotherapeutic alternative for cutaneous Leishmaniasis.  相似文献   

4.

Background

Leishmania (Viannia) braziliensis is a parasite recognized as the most important etiologic agent of mucosal leishmaniasis (ML) in the New World. In Amazonia, seven different species of Leishmania, etiologic agents of human Cutaneous Leishmaniasis, have been described. Isolated cases of ML have been described for several different species of Leishmania: L. (V.) panamensis, L. (V.) guyanensis and L. (L.) amazonensis.

Methodology

Leishmania species were characterized by polymerase chain reaction (PCR) of tissues taken from mucosal biopsies of Amazonian patients who were diagnosed with ML and treated at the Tropical Medicine Foundation of Amazonas (FMTAM) in Manaus, Amazonas state, Brazil. Samples were obtained retrospectively from the pathology laboratory and prospectively from patients attending the aforementioned tertiary care unit.

Results

This study reports 46 cases of ML along with their geographical origin, 30 cases caused by L. (V.) braziliensis and 16 cases by L. (V.) guyanensis. This is the first record of ML cases in 16 different municipalities in the state of Amazonas and of simultaneous detection of both species in 4 municipalities of this state. It is also the first record of ML caused by L. (V.) guyanensis in the states of Pará, Acre, and Rondônia and cases of ML caused by L. (V.) braziliensis in the state of Rondônia.

Conclusions/Significance

L. (V.) braziliensis is the predominant species that causes ML in the Amazon region. However, contrary to previous studies, L. (V.) guyanensis is also a significant causative agent of ML within the region. The clinical and epidemiological expression of ML in the Manaus region is similar to the rest of the country, although the majority of ML cases are found south of the Amazon River.

Author Summary

Leishmaniasis is considered a neglected disease with 1.5 million new cases of cutaneous leishmaniasis (CL) occurring each year. In the Amazon region and in the Americas in general, ML is caused by Leishmania (Viannia) braziliensis, though in rare cases it has been related to other species. ML, which is associated with inadequate treatment of CL, normally manifests itself years after the occurrence of CL. Clinical features evolve slowly and most often affect the nasal cavity, in some cases causing perforation, or even destruction, of the septum. Diagnosis is made using the Montenegro skin test, serology and histopathology of the patients'' mucosal tissues, or by isolation of the parasites. PCR is the best way to identify the species of leishmaniasis and is therefore the diagnostic method of choice. This paper describes 46 cases of ML and their geographical origin, 30 cases associated with L. (V.) braziliensis and 16 with L. (V.) guyanensis. The species of leishmaniasis was identified using mucosal biopsies taken from Amazonian patients who were diagnosed and treated for ML in the tertiary care unit, in Manaus, Amazonas state, Brazil. This is the highest number of ML cases caused by L. (V.) guyanensis that has ever been reported.  相似文献   

5.
We present the sequencing and annotation of the Leishmania (Leishmania) amazonensis genome, an etiological agent of human cutaneous leishmaniasis in the Amazon region of Brazil. L. (L.) amazonensis shares features with Leishmania (L.) mexicana but also exhibits unique characteristics regarding geographical distribution and clinical manifestations of cutaneous lesions (e.g. borderline disseminated cutaneous leishmaniasis). Predicted genes were scored for orthologous gene families and conserved domains in comparison with other human pathogenic Leishmania spp. Carboxypeptidase, aminotransferase, and 3′-nucleotidase genes and ATPase, thioredoxin, and chaperone-related domains were represented more abundantly in L. (L.) amazonensis and L. (L.) mexicana species. Phylogenetic analysis revealed that these two species share groups of amastin surface proteins unique to the genus that could be related to specific features of disease outcomes and host cell interactions. Additionally, we describe a hypothetical hybrid interactome of potentially secreted L. (L.) amazonensis proteins and host proteins under the assumption that parasite factors mimic their mammalian counterparts. The model predicts an interaction between an L. (L.) amazonensis heat-shock protein and mammalian Toll-like receptor 9, which is implicated in important immune responses such as cytokine and nitric oxide production. The analysis presented here represents valuable information for future studies of leishmaniasis pathogenicity and treatment.  相似文献   

6.
Human cutaneous leishmaniasis (CL) caused by Leishmania braziliensis, presents an exaggerated Th1 response that is associated with ulcer development. Macrophages are the primary cells infected by Leishmania parasites and both reactive oxygen species (ROS) and nitric oxide (NO) are important in the control of Leishmania by these cells. The mechanism involved in the killing of L. braziliensis is not well established. In this study, we evaluate the role of ROS and NO in the control of L. braziliensis infection by monocytes from CL patients. After in vitro infection with L. braziliensis, the oxidative burst by monocytes from CL patients was higher when compared to monocytes from healthy subjects (HS). Inhibition of the ROS pathway caused a significant decrease in the oxidative burst in L. braziliensis infected monocytes from both groups. In addition, we evaluated the intracellular expression of ROS and NO in L. braziliensis-infected monocytes. Monocytes from CL patients presented high expression of ROS after infection with L. braziliensis. The expression of NO was higher in monocytes from CL patients as compared to expression in monocytes from HS. A strong positive correlation between NO production and lesion size of CL patients was observed. The inhibition of ROS production in leishmania-infected monocytes from CL patients allowed the growth of viable promastigotes in culture supernatants. Thus, we demonstrate that while production of ROS is involved in L. braziliensis killing, NO alone is not sufficient to control infection and may contribute to the tissue damage observed in human CL.  相似文献   

7.
Leishmania parasites expose phosphatidylserine (PS) on their surface, a process that has been associated with regulation of host''s immune responses. In this study we demonstrate that PS exposure by metacyclic promastigotes of Leishmania amazonensis favours blood coagulation. L. amazonensis accelerates in vitro coagulation of human plasma. In addition, L. amazonensis supports the assembly of the prothrombinase complex, thus promoting thrombin formation. This process was reversed by annexin V which blocks PS binding sites. During blood meal, Lutzomyia longipalpis sandfly inject saliva in the bite site, which has a series of pharmacologically active compounds that inhibit blood coagulation. Since saliva and parasites are co-injected in the host during natural transmission, we evaluated the anticoagulant properties of sandfly saliva in counteracting the procoagulant activity of L. amazonensis . Lu. longipalpis saliva reverses plasma clotting promoted by promastigotes. It also inhibits thrombin formation by the prothrombinase complex assembled either in phosphatidylcholine (PC)/PS vesicles or in L. amazonensis . Sandfly saliva inhibits factor X activation by the intrinsic tenase complex assembled on PC/PS vesicles and blocks factor Xa catalytic activity. Altogether our results show that metacyclic promastigotes of L. amazonensis are procoagulant due to PS exposure. Notably, this effect is efficiently counteracted by sandfly saliva.  相似文献   

8.
The current standard of care for cutaneous leishmaniasis (CL) is organic antimonial compounds, but the administration of these compounds is complicated by a low therapeutic - toxic index, as well as parenteral administration. Thus, there is an urgent need for the development of new and inexpensive therapies for the treatment of CL. In this study, we evaluate the activity of the triphenylmethane (TPM) class of compounds against three species of Leishmania which are pathogenic in humans. The TPM have a history of safe use in humans, dating back to the use of the original member of this class, gentian violet (GV), from the early 20th century. Initially, the in vitro efficacy against Leishmania (Viannia) braziliensis, L. (Leishmania) amazonensis and L. (L.) major of 9 newly synthesized TPM, in addition to GV, was tested. Inhibitory concentrations (IC) IC50 of 0.025 to 0.84 µM had been found in promastigotes in vitro assays. The four most effective compounds were then tested in amastigote intracellular assays, resulting in IC50 of 0.10 to 1.59 µM. A high degree of selectivity of antiparasitic activity over toxicity to mammalian cells was observed. Afterwards, GV and TPM 6 were tested in a topical formulation in mice infected with L. (L.) amazonensis leading to elimination of parasite burdens at the site of lesion/infection. These results demonstrated that TPM present significant anti-leishmanial activities and provide a rationale for human clinical trials of GV and other TPM. TPM are inexpensive and safe, thus using them for treatment of CL may have a major impact on public health.  相似文献   

9.
The in vitro screening of 43 polysubstituted chalcones against Leishmania amazonensis axenic amastigotes, led to the evaluation of 9 of them in a macrophage-infected model with the two other most infectious Leishmania species prevalent in Peru (L. braziliensis and L. peruviana). The five most active and selective chalcones were studied in vivo, resulting on the identification of two chalcones with high reduction parasite burden percentages.  相似文献   

10.
Due to the diversity of its physiological and pathophysiological functions and general ubiquity, the study of nitric oxide (NO) has become of great interest. In this work, it was demonstrated that Leishmania amazonensis promastigotes produces NO, a free radical synthesized from l-arginine by nitric oxide synthase (NOS). A soluble NOS was purified from L. amazonensis promastigotes by affinity chromatography (2′, 5′-ADP-agarose) and on SDS-PAGE the enzyme migrates as a single protein band of 116.2 (±6) kDa. Furthermore, the presence of a constitutive NOS was detected through indirect immunofluorescence using anti-cNOS and in NADPH consumption assays. The present work show that NO production, detected as nitrite in culture supernatant, is prominent in promastigotes preparations with high number of metacyclic forms, suggesting an association with the differentiation and the infectivity of the parasite.  相似文献   

11.
A new series of 5-(1-aryl-3-methyl-1H-pyrazol-4-yl)-1H-tetrazole derivatives (4am) and their precursor 1-aryl-3-methyl-1H-pyrazole-4-carbonitriles (3am) were synthesized and evaluated as antileishmanials against Leishmania braziliensis and Leishmania amazonensis promastigotes in vitro. In parallel, the cytotoxicity of these compounds was evaluated on the RAW 264.7 cell line. The results showed that among the assayed compounds the substituted 3-chlorophenyl (4a) (IC50/24 h = 15 ± 0.14 μM) and 3,4-dichlorophenyl tetrazoles (4d) (IC50/24 h = 26 ± 0.09 μM) were the most potent against L. braziliensis promastigotes, as compared the reference drug pentamidine, which presented IC50 = 13 ± 0.04 μM. In addition, 4a and 4d derivatives were less cytotoxic than pentamidine. However, these tetrazole derivatives (4) and pyrazole-4-carbonitriles precursors (3) differ against each of the tested species and were more effective against L.braziliensis than on L. amazonensis.  相似文献   

12.
Peromyscus yucatanicus (Rodentia: Cricetidae) is a primary reservoir of Leishmania (Leishmania) mexicana (Kinetoplastida: Trypanosomatidae). Nitric oxide (NO) generally plays a crucial role in the containment and elimination of Leishmania. The aim of this study was to determine the amount of NO produced by P. yucatanicus infected with L. (L.) mexicana. Subclinical and clinical infections were established in P. yucatanicus through inoculation with 1 x 102 and 2.5 x 106 promastigotes, respectively. Peritoneal macrophages were cultured alone or co-cultured with lymphocytes with or without soluble Leishmania antigen. The level of NO production was determined using the Griess reaction. The amount of NO produced was significantly higher (p ≤ 0.0001) in co-cultured macrophages and lymphocytes than in macrophages cultured alone. No differences in NO production were found between P. yucatanicus with subclinical L. (L.) mexicana infections and animals with clinical infections. These results support the hypothesis that the immunological mechanisms of NO production in P. yucatanicus are similar to those described in mouse models of leishmaniasis and, despite NO production, P. yucatanicus is unable to clear the parasite infection.  相似文献   

13.
Leishmania chagasi and Leishmania amazonensis are the etiologic agents of different clinical forms of human leishmaniasis in South America. In an attempt to select candidate antigens for a vaccine protecting against different Leishmania species, the efficacy of vaccination using Leishmania ribosomal proteins and saponin as adjuvant was examined in BALB/c mice against challenge infection with both parasite species. Mice vaccinated with parasite ribosomal proteins purified from Leishmania infantum plus saponin showed a specific production of IFN-γ, IL-12 and GM-CSF after in vitro stimulation with L. infantum ribosomal proteins. Vaccinated mice showed a reduction in the liver and spleen parasite burdens after L. chagasi infection. After L. amazonensis challenge, vaccinated mice showed a decrease of the dermal pathology and a reduction in the parasite loads in the footpad and spleen. In both models, protection was correlated to an IL-12-dependent production of IFN-γ by CD4+ and CD8+ T cells that activate macrophages for the synthesis of NO. In the protected mice a decrease in the parasite-mediated IL-4 and IL-10 responses was also observed. In mice challenged with L. amazonensis, lower levels of anti-parasite-specific antibodies were detected. Thus, Leishmania ribosomal proteins plus saponin fits the requirements to compose a pan-Leishmania vaccine.  相似文献   

14.
《Phytomedicine》2014,21(12):1689-1694
Protozoan diseases, such as leishmaniasis, are a cause of considerable morbidity throughout the world, affecting millions every year. In this study, two triterpenic acids (maslinic and oleanolic acids) were isolated from Tunisian olive leaf extracts and their in vitro activity against the promastigotes stage of Leishmania (L.) infantum and Leishmania (L.) amazonensis was investigated. Maslinic acid showed the highest activity with an IC50 of 9.32 ± 1.654 and 12.460 ± 1.25 μg/ml against L. infantum and L. amazonensis, respectively. The mechanism of action of these drugs was investigated by detecting changes in the phosphatidylserine (PS) exposure, the plasma membrane permeability, the mitochondrial membrane potential and the ATP level production in the treated parasites. By using the fluorescent probe SYTOX® Green, both triterpenic acids showed that they produce a time-dependent plasma membrane permeabilization in the treated Leishmania species. In addition, spectrofluorimeteric data revealed the surface exposure of PS in promastigotes. Both molecules reduced the mitochondrial membrane potential and decreased the ATP levels to 15% in parasites treated with IC90 for 24 h. We conclude that the triterpenic acids tested in this study, show potential as future therapeutic alternative against leishmaniasis. Further studies are needed to confirm this.  相似文献   

15.
16.

Background

Human leishmaniasis is caused by more than 20 Leishmania species and has a wide range of symptoms. Our recent studies have demonstrated the essential role of sphingolipid degradation in the virulence of Leishmania (Leishmania) major, a species responsible for localized cutaneous leishmaniasis in the Old World. In this study, we investigated the function of sphingolipid degradation in Leishmania (Leishmania) amazonensis, an etiological agent of localized and diffuse cutaneous leishmaniasis in South America.

Methodology/Principal Findings

First, we identified the enzyme LaISCL which is responsible for sphingolipid degradation in L. amazonensis. Primarily localized in the mitochondrion, LaISCL shows increased expression as promastigotes progress from replicative log phase to non-replicative stationary phase. To study its function, null mutants of LaISCL (Laiscl) were generated by targeted gene deletion and complemented through episomal gene add-back. In culture, loss of LaISCL leads to hypersensitivity to acidic pH and poor survival in murine macrophages. In animals, Laiscl mutants exhibit severely attenuated virulence towards C57BL6 mice but are fully infective towards BALB/c mice. This is drastically different from wild type L. amazonensis which cause severe pathology in both BALB/c and C57BL 6 mice.

Conclusions/Significance

A single enzyme LaISCL is responsible for the turnover of sphingolipids in L. amazonensis. LaISCL exhibits similar expression profile and biochemical property as its ortholog in L. major. Deletion of LaISCL reduces the virulence of L. amazonensis and the outcome of Laiscl-infection is highly dependent on the host''s genetic background. Therefore, compared to L. major, the role of sphingolipid degradation in virulence is substantially different in L. amazonensis. Future studies may reveal whether sphingolipid degradation is required for L. amazonensis to cause diffuse cutaneous infections in humans.  相似文献   

17.
18.
Previous work has demonstrated that N-N′-diphenyl-R-benzamidine was highly effective against Leishmania amazonensis promastigotes/axenic amastigotes and Trypanosoma evansi trypomastigotes and the compound with a methoxy substituent, was the most effective derivative in the parasite-macrophage interaction. Comparative analysis of the nitric oxide (NO) released from the culture infection's supernatant showed the amidine to be less effective than pentamidine Isethionate as a reference drug. Additionally, in order to verify if the methoxylated derivative interferes with NO production by L. amazonensis, the effect of the amidine on the constitutive nitric oxide synthase (cNOS) purified from parasites, was examined, but demonstrated less activity in comparison with the reference drug. This data contributes to studies concerning the metabolic targets present in Leishmania parasites for leishmanicidal drugs.  相似文献   

19.
Autophagy is a central process behind the cellular remodeling that occurs during differentiation of Leishmania, yet the cargo of the protozoan parasite''s autophagosome is unknown. We have identified glycosomes, peroxisome-like organelles that uniquely compartmentalize glycolytic and other metabolic enzymes in Leishmania and other kinetoplastid parasitic protozoa, as autophagosome cargo. It has been proposed that the number of glycosomes and their content change during the Leishmania life cycle as a key adaptation to the different environments encountered. Quantification of RFP-SQL-labeled glycosomes showed that promastigotes of L. major possess ∼20 glycosomes per cell, whereas amastigotes contain ∼10. Glycosome numbers were significantly greater in promastigotes and amastigotes of autophagy-defective L. major Δatg5 mutants, implicating autophagy in glycosome homeostasis and providing a partial explanation for the previously observed growth and virulence defects of these mutants. Use of GFP-ATG8 to label autophagosomes showed glycosomes to be cargo in ∼15% of them; glycosome-containing autophagosomes were trafficked to the lysosome for degradation. The number of autophagosomes increased 10-fold during differentiation, yet the percentage of glycosome-containing autophagosomes remained constant. This indicates that increased turnover of glycosomes was due to an overall increase in autophagy, rather than an upregulation of autophagosomes containing this cargo. Mitophagy of the single mitochondrion was not observed in L. major during normal growth or differentiation; however, mitochondrial remnants resulting from stress-induced fragmentation colocalized with autophagosomes and lysosomes, indicating that autophagy is used to recycle these damaged organelles. These data show that autophagy in Leishmania has a central role not only in maintaining cellular homeostasis and recycling damaged organelles but crucially in the adaptation to environmental change through the turnover of glycosomes.  相似文献   

20.
Leishmania amazonensis, the causal agent of diffuse cutaneous leishmaniasis, is known for its ability to modulate the host immune response. Because a relationship between ectonucleotidase activity and the ability of Leishmania to generate injury in C57BL/6 mice has been demonstrated, in this study we evaluated the involvement of ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) activity of L. amazonensis in the process of infection of J774-macrophages. Our results show that high-activity parasites show increased survival rate in LPS/IFN-γ-activated cells, by inhibiting the host-cell NO production. Conversely, inhibition of E-NTPDase activity reduces the parasite survival rates, an effect associated with increased macrophage NO production. E-NTPDase activity generates substrate for the production of extracellular adenosine, which binds to A2B receptors and reduces IL-12 and TNF-α produced by activated macrophages, thus inhibiting NO production. These results indicate that E-NTPDase activity is important for survival of L. amazonensis within macrophages, showing the role of the enzyme in modulating macrophage response and lower NO production, which ultimately favors infection. Our results point to a new mechanism of L. amazonensis infection that may pave the way for the development of new treatments for this neglected disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号