首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Valorization of all major lignocellulose components, including lignin, cellulose, and hemicellulose is critical for an economically viable bioeconomy. In most biochemical conversion approaches, the standard process separately upgrades sugar hydrolysates and lignin. Here, we present a new process concept based on an engineered microbe that could enable simultaneous upgrading of all lignocellulose streams, which has the ultimate potential to reduce capital cost and enable new metabolic engineering strategies. Pseudomonas putida is a robust microorganism capable of natively catabolizing aromatics, organic acids, and D-glucose. We engineered this strain to utilize D-xylose by tuning expression of a heterologous D-xylose transporter, catabolic genes xylAB, and pentose phosphate pathway (PPP) genes tal-tkt. We further engineered L-arabinose utilization via the PPP or an oxidative pathway. This resulted in a growth rate on xylose and arabinose of 0.32 h−1 and 0.38 h−1, respectively. Using the oxidative L-arabinose pathway with the PPP xylose pathway enabled D-glucose, D-xylose, and L-arabinose co-utilization in minimal medium using model compounds as well as real corn stover hydrolysate, with a maximum hydrolysate sugar consumption rate of 3.3 g/L/h. After modifying catabolite repression, our engineered P. putida simultaneously co-utilized five representative compounds from cellulose (D-glucose), hemicellulose (D-xylose, L-arabinose, and acetic acid), and lignin-related compounds (p-coumarate), demonstrating the feasibility of simultaneously upgrading total lignocellulosic biomass to value-added chemicals.  相似文献   

2.
3.
Polyketides represent a class of natural product small molecules with an impressive range of medicinal activities. In order to improve access to therapeutic polyketide compounds, heterologous metabolic engineering has been applied to transfer polyketide genetic pathways from often fastidious native hosts to more industrially-amenable heterologous hosts such as Escherichia coli, Saccharomyces cerevisiae, or Streptomyces coelicolor. Efforts thus far have resulted in titers either inferior to the native host and significantly below the theoretical yield, emphasizing the need to computationally investigate and engineer the interaction between native and heterologous metabolism for the improved production of heterologous polyketide compounds. In this work, we applied flux balance analysis on genome-scale models to simulate cellular metabolism and 6-deoxyerythronolide B (the cyclized polyketide precursor to erythromycin) production in three common heterologous hosts (E. coli, Bacillus subtilis, and S. cerevisiae) under a variety of carbon-source and medium compositions. We then undertook minimization of metabolic adjustment optimization to identify single and double gene-knockouts that resulted in increased polyketide production while maintaining cellular growth. For the production of 6-deoxyerythronolide B, the results suggest B. subtilis and E. coli are better heterologous hosts when compared to S. cerevisiae and that several single and multiple gene-knockout mutants are computationally predicted to improve specific production, in some cases, over 25-fold.  相似文献   

4.
Two fosmid libraries, totaling 13,200 clones, were obtained from bioreactor sludge of petroleum refinery wastewater treatment system. The library screening based on PCR and biological activity assays revealed more than 400 positive clones for phenol degradation. From these, 100 clones were randomly selected for pyrosequencing in order to evaluate the genetic potential of the microorganisms present in wastewater treatment plant for biodegradation, focusing mainly on novel genes and pathways of phenol and aromatic compound degradation. The sequence analysis of selected clones yielded 129,635 reads at an estimated 17-fold coverage. The phylogenetic analysis showed Burkholderiales and Rhodocyclales as the most abundant orders among the selected fosmid clones. The MG-RAST analysis revealed a broad metabolic profile with important functions for wastewater treatment, including metabolism of aromatic compounds, nitrogen, sulphur and phosphorus. The predicted 2,276 proteins included phenol hydroxylases and cathecol 2,3- dioxygenases, involved in the catabolism of aromatic compounds, such as phenol, byphenol, benzoate and phenylpropanoid. The sequencing of one fosmid insert of 33 kb unraveled the gene that permitted the host, Escherichia coli EPI300, to grow in the presence of aromatic compounds. Additionally, the comparison of the whole fosmid sequence against bacterial genomes deposited in GenBank showed that about 90% of sequence showed no identity to known sequences of Proteobacteria deposited in the NCBI database. This study surveyed the functional potential of fosmid clones for aromatic compound degradation and contributed to our knowledge of the biodegradative capacity and pathways of microbial assemblages present in refinery wastewater treatment system.  相似文献   

5.
6.
Freshwater mussels (Family Unionidae) are among the most imperiled group of organisms in the world, with nearly 65% of North American species considered endangered. Anthropogenic disturbances, including altered flow regimes, habitat alteration, and pollution, are the major driver of this group''s decline. We investigated the effects of tertiary treated municipal wastewater effluent on survivorship, growth, and condition of freshwater mussels in experimental cages in a small Central Texas stream. We tested the effluent effects by measuring basic physical parameters of native three ridge mussels (Amblema plicata) and of non-native Asian clams (Corbicula fluminea), before and after 72-day exposure at four sites above and below a municipal wastewater treatment plant outfall. Survivorship and growth of the non-native Asian clams and growth and condition indices of the native three ridge mussels were significantly higher at the reference site above the outfall than in downstream sites. We attribute this reduction in fitness below the outfall to elevated nutrient and heavy metal concentrations, and the potential presence of other untested-for compounds commonly found in municipal effluent. These results, along with an absence of native mussels below the discharge, indicate a significant negative impact of wastewater effluent on both native and non-native mussels in the stream.  相似文献   

7.
Zhang Z  Hou Z  Yang C  Ma C  Tao F  Xu P 《Bioresource technology》2011,102(5):4111-4116
A bacterial isolate, designated as DQ8, was found capable of degrading diesel, crude oil, n-alkanes and polycyclic aromatic hydrocarbons (PAHs) in petroleum. Strain DQ8 was assigned to the genus Pseudomonas aeruginosa based on biochemical and genetic data. The metabolites identified from n-docosane as substrate suggested that P. aeruginosa DQ8 could oxidize n-alkanes via a terminal oxidation pathway. P. aeruginosa DQ8 could also degrade PAHs of three or four aromatic rings. The metabolites identified from fluorene as substrate suggested that P. aeruginosa DQ8 may degrade fluorene via two pathways. One is monooxygenation at C-9 of fluorene, and the other is initiated by dioxygenation at C-3 and C-4 of fluorene. P. aeruginosa DQ8 should be of great practical significance both in bioremediation of oil-contaminated soils and biotreatment of oil wastewater.  相似文献   

8.
Enhancement of the cellular exportation of heterologous compounds is an important aspect to improve the product yield in microbial cell factory. Efflux pumps can expel various intra- or extra-cellular substances out of microbial hosts and increase the cellular tolerance. Thus in this study, by using the hydrophobic sesquiterpene (amorphadiene) and diterpene (kaurene) as two model compounds, we attempted to improve isoprenoid production through systematically engineering the efflux pumps in Escherichia coli BL21(DE3). The pleiotropic resistant pumps, AcrAB-TolC, MdtEF-TolC from E. coli and heterologous MexAB-OprM pump from Pseudomonas aeruginosa, were overexpressed, assembled, and finely modulated. We found that overexpression of AcrB and TolC components can effectively enhance the specific yield of amorphadiene and kaurene, e.g., 31 and 37 % improvement for amorphadiene compared with control, respectively. The heterologous MexB component can enhance kaurene production with 70 % improvement which is more effective than TolC and AcrB. The results suggest that the three components of tripartite efflux pumps play varied effect to enhance isoprenoid production. Considering the highly organized structure of efflux pumps and importance of components interaction, various component combinations were constructed and the copy number of key components AcrB and TolC was finely modulated as well. The results exhibit that the combination TolC and TolC and AcrB improved the specific yield of amorphadiene with 118 %, and AcrA and TolC and AcrB improved that of kaurene with 104 %. This study indicates that assembling and finely modulating efflux pumps is an effective strategy to improve the production of heterologous compounds in E. coli.  相似文献   

9.
Invasion by exotic trees into riparian areas has the potential to impact aquatic systems. We examined the effects of the exotic Salix fragilis (crack willow) on the structure and functioning of small streams in northern Patagonian Andes via a field survey of benthic invertebrates and leaf litter and an in situ experiment. We compared leaf decomposition of the native Ochetophila trinervis (chacay) and S. fragilis in reaches dominated by native vegetation versus reaches dominated by crack willow. We hypothesized that S. fragilis affects the quality of leaf litter entering the streams, changing the aquatic biota composition and litter decomposition. Our study showed that crack willow leaves decomposed slower than chacay, likely related to leaf properties (i.e., leaf toughness). Benthic leaf litter mass was similar between the two riparian vegetation types, though in stream reaches dominated by crack willow, leaves of this species represented 82% of the total leaf litter. Benthic invertebrate abundance and diversity were similar between reaches but species composition differed. Our study found little evidence for strong impacts of crack willow on those small streams. Further studies on other aspects of ecosystem functioning, such as primary production, would enhance our understanding of the impacts of crack willow on Patagonian streams.  相似文献   

10.
The aquatic nuisance species Didymosphenia geminata was first documented in Rapid Creek of South Dakota’s Black Hills during 2002. Since then, blooms have occurred primarily in a 39-km section of Rapid Creek while blooms were rarely observed in other Black Hills streams. In this study, we evaluated factors related to the presence and development of visible colonies of D. geminata in four streams of the Black Hills. At the watershed scale, stream gradient was negatively associated with the occurrence of D. geminata whereas stream width was positively related to D. geminata presence. At the stream scale, D. geminata coverage was inversely related to canopy coverage and iron concentration. At the local scale, shading by bridges virtually eliminated growth of D. geminata colonies under bridges. At all three scales, proxy measures of light such as stream width, canopy coverage, and bridge shading revealed that light availability was an important factor influencing the presence and coverage of D. geminata colonies. In general, streams that had relatively wide stream reaches (mean = 9.9 m), shallow gradients (mean = 0.22%), and little canopy cover (mean = 13%) were associated with D. geminata blooms. In addition, iron concentrations in streams with D. geminata colonies were lower than in streams without blooms.  相似文献   

11.
12.
Microbial conversion offers a promising strategy for overcoming the intrinsic heterogeneity of the plant biopolymer, lignin. Soil microbes that natively harbour aromatic-catabolic pathways are natural choices for chassis strains, and Pseudomonas putida KT2440 has emerged as a viable whole-cell biocatalyst for funnelling lignin-derived compounds to value-added products, including its native carbon storage product, medium-chain-length polyhydroxyalkanoates (mcl-PHA). In this work, a series of metabolic engineering targets to improve mcl-PHA production are combined in the P. putida chromosome and evaluated in strains growing in a model aromatic compound, p-coumaric acid, and in lignin streams. Specifically, the PHA depolymerase gene phaZ was knocked out, and the genes involved in β-oxidation (fadBA1 and fadBA2) were deleted. Additionally, to increase carbon flux into mcl-PHA biosynthesis, phaG, alkK, phaC1 and phaC2 were overexpressed. The best performing strain – which contains all the genetic modifications detailed above – demonstrated a 53% and 200% increase in mcl-PHA titre (g l−1) and a 20% and 100% increase in yield (g mcl-PHA per g cell dry weight) from p-coumaric acid and lignin, respectively, compared with the wild type strain. Overall, these results present a promising strain to be employed in further process development for enhancing mcl-PHA production from aromatic compounds and lignin.  相似文献   

13.
Native macrophytes were transplanted into a small urban stream as part of a rehabilitation program, that also meandered the previously channeled stream, naturalized stream banks, and planted native riparian vegetation. Transplanted macrophytes minimized spread of introduced macrophytes and were viewed beneficially by residents, as was the stream rehabilitation. We transplanted the native macrophyte Myriophyllum triphyllum into five larger streams dominated by exotic macrophytes—some of which were weeded prior to transplanting—to see whether Myriophyllum could prevent regrowth of weeded plants. Transplanted Myriophyllum plants were washed away in two streams, reflecting high shear stresses there. Myriophyllum cover in the other streams decreased as weeded plants regrew. Our attempt at eliminating exotic macrophytes in patches in large streams was unsuccessful. Furthermore, council authorities weeded other experimental sections following complaints from residents of excess macrophyte growth. This problem highlighted conflicting multiple values placed on urban streams by managers and the public. A repeat survey of residents living near the original rehabilitated stream showed that many respondents were now critical of excessive plant growth—both in‐stream and riparian. A recurring comment made concerned the apparent lack of maintenance to the stream, giving it an untidy appearance. Difficulties with propagating and transplanting native macrophytes into larger streams, coupled with a negative perception of native vegetation (both in‐stream and riparian) if it looks unmanaged, suggest that planting macrophytes or riparian plants as part of urban stream rehabilitation programs may be more problematic than realized.  相似文献   

14.
Synopsis The hypothesis that Sacramento suckers, Catostomus occidentalis, compete with rainbow trout, Salmo gairdneri, for space in streams was examined by measuring microhabitat utilization of both species in three California streams. Two streams were similar in most respects except one contained only trout and one contained trout and a large population of suckers. The third stream, formed by the union of the first two, contained trout and a small population of suckers. The species overlapped in five of the six microhabitat variables measured: maximum depth, mean water column velocity, focal point velocity, surface water velocity, and substrate type. However, the species had strong vertical segregation; there was little overlap between species in focal point depth. Mean focal point velocities were also significantly different. Suckers roamed over and generally remained in contact with the bottom while trout held position in the water column. Microhabitat utilization by trout in the stream without suckers was similar to in the stream with a higher sucker density. Differences in microhabitat utilization by trout between the third stream and the other two was attributed to the larger size of the third stream. Both sucker and trout showed a similar within-species segregation of size classes - fish under 50 mm in length sought shallow water. Size-specific trends indicated ontogenic shifts in resource utilization which reduced overlap within species. These results suggest that competition for space between trout and suckers was not a major factor regulating microhabitat utilization of trout, although the possibility that larger suckers may displace small trout needs further study.  相似文献   

15.
Burkholderia sp. strain JS150 is able to metabolize a wide range of alkyl-and chloroaromatic hydrocarbons through multiple, apparently redundant catabolic pathways. Previous research has shown that strain JS150 is able to synthesize enzymes for multiple upper pathways as well as multiple lower pathways to accommodate variously substituted catechols that result from degradation of complex mixtures of monoaromatic compounds. We report here the genetic organization and functional characterization of a gene cluster, designated tbc (for toluene, benzene, and chlorobenzene utilization), which has been cloned as a 14.3-kb DNA fragment from strain JS150 into vector pRO1727. The cloned DNA fragment expressed in Pseudomonas aeruginosa PAO1c allowed the recombinant to grow on toluene or benzene and to transform chlorobenzene, trichloroethylene, phenol, and cresols. The tbc genes are organized into two divergently transcribed operons, tbc1 and tbc2, each comprised of six open reading frames. Similarity searches of databases revealed that the tbc1 and tbc2 genes showed significant homology to multicomponent cresol and phenol hydroxylases and to toluene and benzene monooxygenases, respectively. Deletion mutagenesis and product analysis were used to demonstrate that tbc2 plays a role in the initial catabolism of the unactivated alkyl- or chloroaromatic substrate and that the tbc1 gene products play a role in the catabolism of the first metabolite that results from transformation of the initial substrate. Phylogenetic analysis was used to compare individual components of these tbc monooxygenases with similar sequences in the databases. These results provide further evidence for the existence of multiple, functionally redundant alkyl- and chloroaromatic monooxygenases in strain JS150.  相似文献   

16.
The construction of powerful cell factories requires intensive genetic engineering for the addition of new functionalities and the remodeling of native pathways and processes. The present study demonstrates the feasibility of extensive genome reprogramming using modular, specialized de novo-assembled neochromosomes in yeast. The in vivo assembly of linear and circular neochromosomes, carrying 20 native and 21 heterologous genes, enabled the first de novo production in a microbial cell factory of anthocyanins, plant compounds with a broad range of pharmacological properties. Turned into exclusive expression platforms for heterologous and essential metabolic routes, the neochromosomes mimic native chromosomes regarding mitotic and genetic stability, copy number, harmlessness for the host and editability by CRISPR/Cas9. This study paves the way for future microbial cell factories with modular genomes in which core metabolic networks, localized on satellite, specialized neochromosomes can be swapped for alternative configurations and serve as landing pads for the addition of functionalities.  相似文献   

17.
18.
Due to the worldwide prevalence of multidrug-resistant pathogens and high incidence of diseases such as cancer, there is an urgent need for the discovery and development of new drugs. Nearly half of the FDA-approved drugs are derived from natural products that are produced by living organisms, mainly bacteria, fungi, and plants. Commercial development is often limited by the low yield of the desired compounds expressed by the native producers. In addition, recent advances in whole genome sequencing and bioinformatics have revealed an abundance of cryptic biosynthetic gene clusters within microbial genomes. Genetic manipulation of clusters in the native host is commonly used to awaken poorly expressed or silent gene clusters, however, the lack of feasible genetic manipulation systems in many strains often hinders our ability to engineer the native producers. The transfer of gene clusters into heterologous hosts for expression of partial or entire biosynthetic pathways is an approach that can be used to overcome this limitation. Heterologous expression also facilitates the chimeric fusion of different biosynthetic pathways, leading to the generation of “unnatural” natural products. The genus Streptomyces is especially known to be a prolific source of drugs/antibiotics, its members are often used as heterologous expression hosts. In this review, we summarize recent applications of Streptomyces species, S. coelicolor, S. lividans, S. albus, S. venezuelae and S. avermitilis, as heterologous expression systems.  相似文献   

19.
20.
Species-specific sequences were identified within the V4 variable region of 16S rRNA of two bacterial species capable of aromatic hydrocarbon metabolism, Pseudomonas putida F1 and Burkholderia sp. strain JS150, and a third, Bacillus subtilis ATCC 7003, that can function as a secondary degrader. Fluorescent in situ hybridization (FISH) with species-specific oligonucleotides was used for direct counting of these species throughout a phenol biodegradation experiment in batch culture. Traditional differential plate counting methods could not be used due to the similar metabolism and interactions of the primary degraders and difficulties in selecting secondary degraders in mixed culture. In contrast, the FISH method provided reliable quantitative results without interference from those factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号