首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modulation of inflammasome pathways by bacterial and viral pathogens   总被引:1,自引:0,他引:1  
Inflammasomes are emerging as key regulators of the host response against microbial pathogens. These cytosolic multiprotein complexes recruit and activate the cysteine protease caspase-1 when microbes invade sterile tissues or elicit cellular damage. Inflammasome-activated caspase-1 induces inflammation by cleaving the proinflammatory cytokines IL-1β and IL-18 into their biologically active forms and by releasing the alarmin HMGB1 into the extracellular milieu. Additionally, inflammasomes counter bacterial replication and clear infected immune cells through an inflammatory cell death program termed pyroptosis. As a countermeasure, bacterial and viral pathogens evolved virulence factors to antagonize inflammasome pathways. In this review, we discuss recent progress on how inflammasomes contribute to host defense against bacterial and viral pathogens, and we review how viruses and bacteria modulate inflammasome function to their benefit.  相似文献   

2.
Viral immune evasion strategies are important for establishment and maintenance of infections. Many viruses are in possession of mechanisms to counteract the antiviral response raised by the infected host. Here we show that a herpes simplex virus type 1 (HSV-1) mutant lacking functional viral protein 16 (VP16)-a tegument protein promoting viral gene expression-induced significantly higher levels of proinflammatory cytokines than wild-type HSV-1. This was observed in several cell lines and primary murine macrophages, as well as in peritoneal cells harvested from mice infected in vivo. The enhanced ability to stimulate cytokine expression in the absence of VP16 was not mediated directly by VP16 but was dependent on the viral immediate-early genes for infected cell protein 4 (ICP4) and ICP27, which are expressed in a VP16-dependent manner during primary HSV infection. The virus appeared to target cellular factors other than interferon-induced double-stranded RNA-activated protein kinase R (PKR), since the virus mutants remained stronger inducers of cytokines in cells stably expressing a dominant-negative mutant form of PKR. Finally, mRNA stability assay revealed a significantly longer half-life for interleukin-6 mRNA after infection with the VP16 mutant than after infection with the wild-type virus. Thus, HSV is able to suppress expression of proinflammatory cytokines by decreasing the stability of mRNAs, thereby potentially impeding the antiviral host response to infection.  相似文献   

3.
Highly pathogenic influenza H5N1 virus continues to pose a threat to public health. Although the mechanisms underlying the pathogenesis of the H5N1 virus have not been fully defined, it has been suggested that cytokine dysregulation plays an important role. As the human respiratory epithelium is the primary target cell for influenza viruses, elucidating the viral tropism and innate immune responses of influenza H5N1 virus in the alveolar epithelium may help us to understand the pathogenesis of the severe pneumonia associated with H5N1 disease. Here we used primary cultures of differentiated human alveolar type II cells, alveolar type I-like cells, and alveolar macrophages isolated from the same individual to investigate viral replication competence and host innate immune responses to influenza H5N1 (A/HK/483/97) and H1N1 (A/HK/54/98) virus infection. The viral replication kinetics and cytokine and chemokine responses were compared by quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). We demonstrated that influenza H1N1 and H5N1 viruses replicated productively in type II cells and type I-like cells although with different kinetics. The H5N1 virus replicated productively in alveolar macrophages, whereas the H1N1 virus led to an abortive infection. The H5N1 virus was a more potent inducer of proinflammatory cytokines and chemokines than the H1N1 virus in all cell types. However, higher levels of cytokine expression were observed for peripheral blood monocyte-derived macrophages than for alveolar macrophages in response to H5N1 virus infection. Our findings provide important insights into the viral tropisms and host responses of different cell types found in the lung and are relevant to an understanding of the pathogenesis of severe human influenza disease.  相似文献   

4.
The immune response against viral infection relies on the early production of cytokines that induce an antiviral state and trigger the activation of immune cells. This response is initiated by the recognition of virus-associated molecular patterns such as dsRNA, a viral replication intermediate recognized by TLR3 and certain RNA helicases. Infection with West Nile virus (WNV) can lead to lethal encephalitis in susceptible individuals and constitutes an emerging health threat. In this study, we report that WNV envelope protein (WNV-E) specifically blocks the production of antiviral and proinflammatory cytokines induced by dsRNA in murine macrophages. This immunosuppressive effect was not dependent on TLR3 or its adaptor molecule Trif. Instead, our experiments show that WNV-E acts at the level of receptor-interacting protein 1. Our results also indicate that WNV-E requires a certain glycosylation pattern, specifically that of dipteran cells, to inhibit dsRNA-induced cytokine production. In conclusion, these data show that the major structural protein of WNV impairs the innate immune response and suggest that WNV exploits differential vector/host E glycosylation profiles to evade antiviral mechanisms.  相似文献   

5.
Monkeypox virus (MPXV) is an orthopoxvirus closely related to variola virus, the causative agent of smallpox. Human MPXV infection results in a disease that is similar to smallpox and can also be fatal. Two clades of MPXV have been identified, with viruses of the central African clade displaying more pathogenic properties than those within the west African clade. The monkeypox inhibitor of complement enzymes (MOPICE), which is not expressed by viruses of the west African clade, has been hypothesized to be a main virulence factor responsible for increased pathogenic properties of central African strains of MPXV. To gain a better understanding of the role of MOPICE during MPXV-mediated disease, we compared the host adaptive immune response and disease severity following intrabronchial infection with MPXV-Zaire (n = 4), or a recombinant MPXV-Zaire (n = 4) lacking expression of MOPICE in rhesus macaques (RM). Data presented here demonstrate that infection of RM with MPXV leads to significant viral replication in the peripheral blood and lungs and results in the induction of a robust and sustained adaptive immune response against the virus. More importantly, we show that the loss of MOPICE expression results in enhanced viral replication in vivo, as well as a dampened adaptive immune response against MPXV. Taken together, these findings suggest that MOPICE modulates the anti-MPXV immune response and that this protein is not the sole virulence factor of the central African clade of MPXV.  相似文献   

6.
Respirovirus infection can cause viral pneumonia and acute lung injury (ALI).The interleukin-1 (IL-1) family consists of proinflammatory cytokines that play essential roles in regulating immune and inflammatory responses in vivo.IL-1 signaling is associated with protection against respiratory influenza virus infection by mediation of the pulmonary anti-viral immune response and inflammation.We analyzed the infiltration lung immune leukocytes and cytokines that contribute to inflammatory lung pathology and mortality of fatal H1N1 virus-infected IL-1 receptor 1 (IL-1R1) deficient mice.Results showed that early innate immune cells and cytokine/chemokine dysregulation were observed with significantly decreased neutrophil infiltration and IL-6,TNF-α,G-CSF,KC,and MIP-2 cytokine levels in the bronchoalveolar lavage fluid of infected IL-1R1-/-mice in comparison with that of wild type infected mice.The adaptive immune response against the H1N1 virus in IL-1R1-/-mice was impaired with downregulated anti-viral Th1 cell,CD8+ cell,and antibody functions,which contributes to attenuated viral clearance.Histological analysis revealed reduced lung inflammation during early infection but severe lung pathology in late infection in IL-1R1-/-mice compared with that in WT infected mice.Moreover,the infected IL-1R1-/-mice showed markedly reduced neutrophil generation in bone marrow and neutrophil recruitment to the inflamed lung.Together,these results suggest that IL-1 signaling is associated with pulmonary anti-influenza immune response and inflammatory lung injury,particularly via the influence on neutrophil mobilization and inflammatory cytokine/chemokine production.  相似文献   

7.
8.
Resistance or susceptibility to most infectious diseases is strongly determined by the balance of type 1 vs type 2 cytokines produced during infection. However, for viruses, this scheme may be applicable only to infections with some cytopathic viruses, where IFN-gamma is considered as mandatory for host defense with little if any participation of type 2 responses. We studied the role of signature Th1 (IL-12, IFN-gamma) and Th2 (IL-4, IL-10) cytokines for immune responses against vaccinia virus (VV). IL-12-/- mice were far more susceptible than IFN-gamma-/- mice, and primary CTL responses against VV were absent in IL-12-/- mice but remained intact in IFN-gamma-/- mice. Both CD4+ and CD8+ T cells from IL-12-/- mice were unimpaired in IFN-gamma production, although CD4+ T cells showed elevated Th2 cytokine responses. Virus replication was impaired in IL-4-/- mice and, even more strikingly, in IL-10-/- mice, which both produced elevated levels of the proinflammatory cytokines IL-1alpha and IL-6. Thus, IL-4 produced by Th2 cells and IL-10 produced by Th2 cells and probably also by macrophages counteract efficient anti-viral host defense. Surprisingly, NO production, which is considered as a major type 1 effector pathway inhibited by type 2 cytokines, appears to play a limited role against VV, because NO sythetase 2-deficient mice did not show increased viral replication. Thus, our results identify a new role for IL-12 in defense beyond the induction of IFN-gamma and show that IL-4 and IL-10 modulate host protective responses to VV.  相似文献   

9.
Although most viral infections cause minor, if any, symptoms, a certain number result in serious illness. Viral disease symptoms result both from direct viral replication within host cells and from indirect immunopathological consequences. Dendritic cells (DCs) are key determinants of viral disease outcome; they activate immune responses during viral infection and direct T cells toward distinct T helper type responses. Certain viruses are able to skew cytokine secretion by DCs inducing and/or downregulating the immune system with the aim of facilitating and prolonging release of progeny. Thus, the interaction of DCs with viruses most often results in the absence of disease or complete recovery when natural functions of DCs prevail, but may lead to chronic illness or death when these functions are outmanoeuvred by viruses in the exploitation of DCs.  相似文献   

10.
11.
Theiler's virus infection in the central nervous system (CNS) induces a demyelinating disease very similar to human multiple sclerosis. We have assessed cytokine gene activation upon Theiler's murine encephalomyelitis virus (TMEV) infection and potential mechanisms in order to delineate the early events in viral infection that lead to immune-mediated demyelinating disease. Infection of SJL/J primary astrocyte cultures induces selective proinflammatory cytokine genes (interleukin-12p40 [IL-12p40], IL-1, IL-6, tumor necrosis factor alpha, and beta interferon [IFN-beta]) important in the innate immune response to infection. We find that TMEV-induced cytokine gene expression is mediated by the NF-kappaB pathway based on the early nuclear NF-kappaB translocation and suppression of cytokine activation in the presence of specific inhibitors of the NF-kappaB pathway. Further studies show this to be partly independent of dsRNA-dependent protein kinase (PKR) and IFN-alpha/beta pathways. Altogether, these results demonstrate that infection of astrocytes and other CNS-resident cells by TMEV provides the early NF-kappaB-mediated signals that directly activate various proinflammatory cytokine genes involved in the initiation and amplification of inflammatory responses in the CNS known to be critical for the development of immune-mediated demyelination.  相似文献   

12.
The mechanisms underlying the development of disease during arenavirus infection are poorly understood. However, common to all hemorrhagic fever diseases is the involvement of macrophages as primary target cells, suggesting that the immune response in these cells may be of paramount importance during infection. Thus, in order to identify features of the immune response that contribute to arenavirus pathogenesis, we have examined the growth kinetics and cytokine profiles of two closely related New World arenaviruses, the apathogenic Tacaribe virus (TCRV) and the hemorrhagic fever-causing Junin virus (JUNV), in primary human monocytes and macrophages. Both viruses grew robustly in VeroE6 cells; however, TCRV titres were decreased by approximately 10 fold compared to JUNV in both monocytes and macrophages. Infection of both monocytes and macrophages with TCRV also resulted in the release of high levels of IL-6, IL-10 and TNF-α, while levels of IFN-α, IFN-β and IL-12 were not affected. However, we could show that the presence of these cytokines had no direct effect on growth of either TCRV of JUNV in macrophages. Further analysis also showed that while the production of IL-6 and IL-10 are dependent on viral replication, production of TNF-α also occurs after exposure to UV-inactivated TCRV particles and is thus independent of productive virus infection. Surprisingly, JUNV infection did not have an effect on any of the cytokines examined indicating that, in contrast to other viral hemorrhagic fever viruses, macrophage-derived cytokine production is unlikely to play an active role in contributing to the cytokine dysregulation observed in JUNV infected patients. Rather, these results suggest that an early, controlled immune response by infected macrophages may be critical for the successful control of infection of apathogenic viruses and prevention of subsequent disease, including systemic cytokine dysregulation.  相似文献   

13.
BackgroundAlstonia scholaris is a folk medicine used to treat cough, asthma and chronic obstructive pulmonary disease in China. Total alkaloids (TA) from A. scholaris exhibit anti-inflammatory properties in acute respiratory disease, which suggests their possible anti-inflammatory effect on influenza virus infection.PurposeTo assess the clinical use of TA by demonstrating their anti-influenza and anti-inflammatory effects and the possible mechanism underlying the effect of TA on influenza A virus (IAV) infection in vitro and to reveal the inhibitory effect of TA on lung immunopathology caused by IAV infection.MethodsAntiviral and anti-inflammatory activities were assessed in Madin-Darby canine kidney (MDCK) and A549 cells and U937-derived macrophages infected with influenza A/PR/8/34 (H1N1) virus. Proinflammatory cytokine levels were measured by real-time quantitative PCR and Bio-Plex assays. The activation of innate immune signaling induced by H1N1 virus in the absence or presence of TA was detected in A549 cells by Western blot. Furthermore, mice were infected intranasally with H1N1 virus and treated with TA (50, 25 and 12.5 mg/kg/d) or oseltamivir (60 mg/kg/d) for 5 days in vivo. The survival rates and body weight were recorded, and the viral titer, proinflammatory cytokine levels, innate immune cell populations and histopathological changes in the lungs were analyzed.ResultsTA significantly inhibited viral replication in A549 cells and U937-derived macrophages and markedly reduced cytokine and chemokine production at the mRNA and protein levels. Furthermore, TA blocked the activation of pattern recognition receptor (PRR)- and IFN-activated signal transduction in A549 cells. Critically, TA also increased the survival rate, reduced the viral titer, suppressed proinflammatory cytokine production and innate immune cell infiltration and improved lung histopathology in a lethal PR8 mouse model.ConclusionTA exhibits anti-viral and anti-inflammatory effects against IAV infection by interfering with PRR- and IFN-activated signal transduction.  相似文献   

14.
CD4(+) T cells directly participate in bacterial clearance through secretion of proinflammatory cytokines. Although viral clearance relies heavily on CD8(+) T cell functions, we sought to determine whether human CD4(+) T cells could also directly influence viral clearance through cytokine secretion. We found that IFN-gamma and TNF-alpha, secreted by IL-12-polarized Th1 cells, displayed potent antiviral effects against a variety of viruses. IFN-gamma and TNF-alpha acted directly to inhibit hepatitis C virus replication in an in vitro replicon system, and neutralization of both cytokines was required to block the antiviral activity that was secreted by Th1 cells. IFN-gamma and TNF-alpha also exerted antiviral effects against vesicular stomatitis virus infection, but in this case, functional type I IFN receptor activity was required. Thus, in cases of vesicular stomatitis virus infection, the combination of IFN-gamma and TNF-alpha secreted by human Th1 cells acted indirectly through the IFN-alpha/beta receptor. These results highlight the importance of CD4(+) T cells in directly regulating antiviral responses through proinflammatory cytokines acting in both a direct and indirect manner.  相似文献   

15.
Humans infected by the highly pathogenic H5N1 avian influenza viruses (HPAIV) present unusually high concentrations in serum of proinflammatory cytokines and chemokines, which are believed to contribute to the high pathogenicity of these viruses. The hemagglutinins (HAs) of avian influenza viruses preferentially bind to sialic acids attached through α2,3 linkages (SAα2,3) to the terminal galactose of carbohydrates on the host cell surface, while the HAs from human strains bind to α2,6-linked SA (SAα2,6). To evaluate the role of the viral receptor specificity in promoting innate immune responses in humans, we generated recombinant influenza viruses, one bearing the HA and neuraminidase (NA) genes from the A/Vietnam/1203/2004 H5N1 HPAIV in an influenza A/Puerto Rico/8/1934 (A/PR/8/34) backbone with specificity for SAα2,3 and the other a mutant virus (with Q226L and G228S in the HA) with preferential receptor specificity for SAα2,6. Viruses with preferential affinity for SAα2,3 induced higher levels of proinflammatory cytokines and interferon (IFN)-inducible genes in primary human dendritic cells (DCs) than viruses with SAα2,6 binding specificity, and these differences were independent of viral replication, as shown by infections with UV-inactivated viruses. Moreover, human primary macrophages and respiratory epithelial cells showed higher expression of proinflammatory genes after infection with the virus with SAα2,3 affinity than after infection with the virus with SAα2,6 affinity. These data indicate that binding to SAα2,3 by H5N1 HPAIV may be sensed by human cells differently than binding to SAα2,6, inducing an exacerbated innate proinflammatory response in infected individuals.  相似文献   

16.
付银  常惠芸  刘静  陈慧勇 《生命科学》2013,(11):1065-1070
口蹄疫病毒(FMDV)导致了偶蹄动物口蹄疫的发生,它是一类有着自身特点的RNA病毒。首先,FMDV衣壳蛋白VP1识别结合宿主细胞膜上的整联蛋白等受体,以内吞的方式进入细胞,利用宿主细胞成分完成病毒蛋白的合成。这些新合成的L^pro、2C和3C^pro等病毒致病因子进一步抑制宿主基因的转录和翻译,诱导细胞凋亡和白噬,并抑制干扰素介导的一系列先天性和获得性免疫反应。宿主则在病毒侵染细胞的初期,利用病毒识别受体等来识别病毒并诱导合成干扰素等细胞因子,介导多种免疫反应以清除病毒。病毒和宿主两者在持续的利用和较量中完成疾病的发生和痊愈等。其次,不断发现的病毒受体、结合基序、致病因子及宿主细胞的多种免疫调节因子将成为相关领域新的研究内容。综上,开发高效安全疫苗、增强自身免疫力及利用RNAi直接抑制病毒RNA等便成为现代FMDV防治的主要内容。  相似文献   

17.
18.
While pandemic 2009 H1N1 influenza A viruses were responsible for numerous severe infections in humans, these viruses do not typically cause corresponding severe disease in mammalian models. However, the generation of a virulent 2009 H1N1 virus following serial lung passage in mice has allowed for the modeling of human lung pathology in this species. Genetic determinants of mouse-adapted 2009 H1N1 viral pathogenicity have been identified, but the molecular and signaling characteristics of the host response following infection with this adapted virus have not been described. Here we compared the gene expression response following infection of mice with A/CA/04/2009 (CA/04) or the virulent mouse-adapted strain (MA-CA/04). Microarray analysis revealed that increased pathogenicity of MA-CA/04 was associated with the following: (i) an early and sustained inflammatory and interferon response that could be driven in part by interferon regulatory factors (IRFs) and increased NF-κB activation, as well as inhibition of the negative regulator TRIM24, (ii) early and persistent infiltration of immune cells, including inflammatory macrophages, and (iii) the absence of activation of lipid metabolism later in infection, which may be mediated by inhibition of nuclear receptors, including PPARG and HNF1A and -4A, with proinflammatory consequences. Further investigation of these signatures in the host response to other H1N1 viruses of various pathogenicities confirmed their general relevance for virulence of influenza virus and suggested that lung response to MA-CA/04 virus was similar to that following infection with lethal H1N1 r1918 influenza virus. This study links differential activation of IRFs, nuclear receptors, and macrophage infiltration with influenza virulence in vivo.  相似文献   

19.
Interferon production is an important defence against viral replication and its activation is an attractive therapeutic target. However, it has long been known that viruses perpetually evolve a multitude of strategies to evade these host immune responses. In recent years there has been an explosion of information on virusinduced alterations of the host immune response that have resulted from data-rich omics technologies. Unravelling how these systems interact and determining the overall outcome of the host response to viral infection will play an important role in future treatment and vaccine development. In this review we focus primarily on the interferon pathway and its regulation as well as mechanisms by which respiratory RNA viruses interfere with its signalling capacity.  相似文献   

20.
Interferon production is an important defence against viral replication and its activation is an attractive therapeutic target. However, it has long been known that viruses perpetually evolve a multitude of strategies to evade these host immune responses. In recent years there has been an explosion of information on virus-induced alterations of the host immune response that have resulted from data-rich omics technologies. Unravelling how these systems interact and determining the overall outcome of the host response to viral infection will play an important role in future treatment and vaccine development. In this review we focus primarily on the interferon pathway and its regulation as well as mechanisms by which respiratory RNA viruses interfere with its signalling capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号