首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Numerous diseases have been linked to a common pathogenic process called amyloidosis, whereby proteins or peptides clump together in the brain or body to form toxic soluble oligomers and/or insoluble fibres. An attractive strategy to develop therapies for these diseases is therefore to inhibit or reverse protein/peptide aggregation. A diverse range of small organic ligands have been found to act as aggregation inhibitors. Alternatively, the wild-type peptide can be derivatised so that it still binds to the amyloid target, but prevents further aggregation. This can be achieved by adding a bulky group or charged amino acid to either end of the peptide, or by incorporating proline residues or N-methylated amide groups.  相似文献   

2.
蛋白质和多肽发生错误折叠形成不可溶的淀粉样纤维的过程,与阿尔茨海默病、帕金森病等多种神经退行性疾病密切相关。这些疾病可导致认知能力下降以及运动缺陷等症状。虽然已有多种相关治疗方案处于临床试验中,但目前仍无明确有效的方法可治愈或长期减缓疾病的进展。探寻和研究抑制淀粉样聚集、识别并促进毒性聚集物清除的抑制剂分子是药物研发的重要策略之一。在不同类型的抑制剂中,多肽类抑制剂因具有高特异性、低毒性、多样性,以及修饰后的抗水解稳定性和血脑屏障通透性,有望成为候选药物分子。本文总结了针对阿尔茨海默病相关的Aβ和Tau蛋白以及帕金森病相关的α-synuclein蛋白淀粉样纤维化的多肽抑制剂研究进展。基于淀粉样纤维化核心序列及纤维核心结构进行合理设计,或通过随机筛选,均可获得多肽抑制剂。这些天然和非天然的多肽分子大多具有抑制淀粉样纤维化、解聚成熟纤维和降低细胞毒性的作用,其中一些多肽在退行性疾病动物模型实验中,显示出降低脑损伤和缓解认知及运动障碍的效果。这些研究揭示了多肽作为蛋白质错误折叠和聚集相关疾病药物的特点,为研发一类新的有效药物奠定了基础。  相似文献   

3.
beta-(25-35) is a synthetic derivative of beta-amyloid, the peptide that is believed to cause Alzheimer's disease. As it is highly toxic and forms fibrillar aggregates typical of beta-amyloid, it is suitable as a model for testing inhibitors of aggregation and toxicity. We demonstrate that N-methylated derivatives of beta-(25-35), which in isolation are soluble and non-toxic, can prevent the aggregation and inhibit the resulting toxicity of the wild type peptide. N-Methylation can block hydrogen bonding on the outer edge of the assembling amyloid. The peptides are assayed by Congo red and thioflavin T binding, electron microscopy, and a 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) toxicity assay on PC12 cells. One peptide (Gly(25) N-methylated) has properties similar to the wild type, whereas five have varying effects on prefolded fibrils and fibril assembly. In particular, beta-(25-35) with Gly(33) N-methylated is able to completely prevent fibril assembly and to reduce the toxicity of prefolded amyloid. With Leu(34) N-methylated, the fibril morphology is altered and the toxicity reduced. We suggest that the use of N-methylated derivatives of amyloidogenic peptides and proteins could provide a general solution to the problem of amyloid deposition and toxicity.  相似文献   

4.
A variety of peptides and peptide derivatives have been constructed using the “β-sheet core segment” of amyloid proteins as inhibitors of amyloidogenic fibrillation. A novel all-d-amino-acid from hIAPP β-sheet core segment (hIAPP 22–27) is demonstrated to inhibit hIAPP fibril formation efficiently both at the phospholipid membrane and in bulk solution. The inhibitor terminates hIAPP aggregation to the α-helical oligomeric intermediates at the membrane surface, whereas it stops the aggregation at the stage of β-sheet oligomeric intermediates in bulk solution. This is the first evidence that the inhibition mechanism of the inhibitor at membrane surface is significantly different from that in bulk solution.  相似文献   

5.
Abstract

Alzheimer’s disease (AD) is the most common form of age-related neurodegeneration occurs because of deposition of proteins in the form of extracellular plaques containing aggregated amyloid beta (Aβ) peptide and intracellular neurofibrillary tangles composed of aggregated microtubule-binding protein tau. Amyloid aggregation process can be enhanced by several familial AD-associated mutations in Aβ peptide. In this study, we have unravelled the interactions of 40 small molecule inhibitors with the Osaka-mutant of Aβ1–40 peptide at atomic level and characterized modes of their binding to mutant Aβ by docking approaches. We have also compared docking energies of these inhibitors with Osaka-mutant with those previously determined for the wild-type and Iowa-mutant peptides and discussed in light of the peptide conformations and non-covalent interactions. We have also discussed inhibition mechanisms of these three peptides. Our analyses revealed that these small molecules can efficiently inhibit Osaka-mutant. The binding modes of drugs with these three peptides are markedly different and so are the mechanisms of inhibition of these three peptides. Overall analysis of the data reveals that binding energy of Iowa-mutant drug complex is lowest and most stable which is followed wild-type peptide-drug complex followed by Osaka-mutant drug complex.

Communicated by Ramaswamy H. Sarma  相似文献   

6.
Amyloid aggregation and human disease are inextricably linked. Examples include Alzheimer disease, Parkinson disease, and type II diabetes. While seminal advances on the mechanistic understanding of these diseases have been made over the last decades, controlling amyloid fibril formation still represents a challenge, and it is a subject of active research. In this regard, chiral modifications have increasingly been proved to offer a particularly well-suited approach toward accessing to previously unknown aggregation pathways and to provide with novel insights on the biological mechanisms of action of amyloidogenic peptides and proteins. Here, we summarize recent advances on how the use of mirror-image peptides/proteins and d-amino acid incorporations have helped modulate amyloid aggregation, offered new mechanistic tools to study cellular interactions, and allowed us to identify key positions within the peptide/protein sequence that influence amyloid fibril growth and toxicity.  相似文献   

7.
The polypeptide hormone amylin forms amyloid deposits in Type 2 diabetes mellitus and a 10-residue fragment of amylin (amylin(20-29)) is commonly used as a model system to study this process. Studies of amylin(20-29) and several variant peptides revealed that low levels of deamidation can have a significant effect on the secondary structure and aggregation behavior of these molecules. Results obtained with a variant of amylin(20-29), which has the primary sequence SNNFPAILSS, are highlighted. This peptide is particularly interesting from a technical standpoint. In the absence of impurities the peptide does not spontaneously aggregate and is not amyloidogenic. This peptide can spontaneously deamidate, and the presence of less than 5% of deamidation impurities leads to the formation of aggregates that have the hallmarks of amyloid. In addition, small amounts of deamidated material can induce amyloid formation by the purified peptide. These results have fundamental implications for the definition of an amyloidogenic sequence and for the standards of purity of peptides and proteins used for studies of amyloid formation.  相似文献   

8.
Increasing evidence indicates that many peptides and proteins can be converted in vitro into highly organised amyloid structures, provided that the appropriate experimental conditions can be found. In this work, we define intrinsic propensities for the aggregation of individual amino acids and develop a method for identifying the regions of the sequence of an unfolded peptide or protein that are most important for promoting amyloid formation. This method is applied to the study of three polypeptides associated with neurodegenerative diseases, Abeta42, alpha-synuclein and tau. In order to validate the approach, we compare the regions of proteins that are predicted to be most important in driving aggregation, either intrinsically or as the result of mutations, with those determined experimentally. The knowledge of the location and the type of the "sensitive regions" for aggregation is important both for rationalising the effects of sequence changes on the aggregation of polypeptide chains and for the development of targeted strategies to combat diseases associated with amyloid formation.  相似文献   

9.
有些天然蛋白质可通过错误折叠形成淀粉样纤维,并进一步沉积导致淀粉样病变,被认为是许多重大人类疾病的病理基础。因此,阐明天然蛋白质错误折叠、聚集形成淀粉样纤维的分子机制,是预防、诊断和治疗相关疾病的关键。研究者们从天然蛋白质中鉴定出许多能够形成淀粉样纤维的关键短肽片段,即淀粉样短肽,对它们形成淀粉样纤维的能力及其在完整蛋白质聚集过程中的决定性作用进行深入研究。本文对近年来人类疾病相关淀粉样短肽的研究展开综述。首先,介绍鉴定淀粉样短肽的标准及其相应的研究方法和技术手段;并回顾近年来与一些重大人类疾病相关的淀粉样短肽,尤其是与神经退行性疾病相关淀粉样短肽的进展情况,对淀粉样短肽中出现频率较高的氨基酸残基及其可能的自组装原理进行总结分析;最后,展望这些淀粉样短肽作为靶点在相关疾病诊断和治疗方面的意义,并初步探讨它们作为新型生物材料在生物医学工程领域的应用前景。本文一方面为阐明天然蛋白质形成淀粉样沉淀的分子机制提供参考,另一方面也为相关疾病的治疗提供思路,同时也为新型生物材料的开发提出潜在的可能性。  相似文献   

10.
Knowledge of the detailed mechanism by which proteins such as human αB- crystallin and human lysozyme inhibit amyloid beta (Aβ) peptide aggregation is crucial for designing treatment for Alzheimer''s disease. Thus, unconstrained, atomistic molecular dynamics simulations in explicit solvent have been performed to characterize the Aβ17–42 assembly in presence of the αB-crystallin core domain and of lysozyme. Simulations reveal that both inhibitor proteins compete with inter-peptide interaction by binding to the peptides during the early stage of aggregation, which is consistent with their inhibitory action reported in experiments. However, the Aβ binding dynamics appear different for each inhibitor. The binding between crystallin and the peptide monomer, dominated by electrostatics, is relatively weak and transient due to the heterogeneous amino acid distribution of the inhibitor surface. The crystallin-bound Aβ oligomers are relatively long-lived, as they form more extensive contact surface with the inhibitor protein. In contrast, a high local density of arginines from lysozyme allows strong binding with Aβ peptide monomers, resulting in stable complexes. Our findings not only illustrate, in atomic detail, how the amyloid inhibitory mechanism of human αB-crystallin, a natural chaperone, is different from that of human lysozyme, but also may aid de novo design of amyloid inhibitors.  相似文献   

11.
Peptidic nanodiscs are useful membrane mimetic tools for structural and functional studies of membrane proteins, and membrane interacting peptides including amyloids. Here, we demonstrate anti-amyloidogenic activities of a nanodisc-forming 18-residue peptide (denoted as 4F), both in lipid-bound and lipid-free states by using Alzheimer's amyloid-beta (Aβ40) peptide as an example. Fluorescence-based amyloid fibrillation kinetic assays showed a significant delay in Aβ40 amyloid aggregation by the 4F peptide. In addition, 4F-encased lipid nanodiscs, at an optimal concentration of 4F (>20?μM) and nanodisc size (<10?nm), significantly affect amyloid fibrillation. A comparison of experimental results obtained from nanodiscs with that obtained from liposomes revealed a substantial inhibitory efficacy of 4F-lipid nanodiscs against Aβ40 aggregation and were also found to be suitable to trap Aβ40 intermediates. A combination of atomistic molecular dynamics simulations with NMR and circular dichroism experimental results exhibited a substantial change in Aβ40 conformation upon 4F binding through electrostatic and π–π interactions. Specifically, the 4F peptide was found to interfere with the central β-sheet-forming residues of Aβ40 through substantial hydrogen, π–π, and π–alkyl interactions. Fluorescence experiments and coarse-grained molecular dynamics simulations showed the formation of a ternary complex, where Aβ40 binds to the proximity of peptidic belt and membrane surface that deaccelerate amyloid fibrillation. Electron microscopy images revealed short and thick amyloid fibers of Aβ40 formed in the presence of 4F or 4F-lipid nanodsics. These findings could aid in the development of amyloid inhibitors as well as in stabilizing Aβ40 intermediates for high-resolution structural and neurobiological studies.  相似文献   

12.
Du HN  Li HT  Zhang F  Lin XJ  Shi JH  Shi YH  Ji LN  Hu J  Lin DH  Hu HY 《FEBS letters》2006,580(15):3657-3664
alpha-Synuclein (alpha-Syn), amyloid beta-protein and prion protein are among the amyloidogenic proteins that are associated with the neurodegenerative diseases. These three proteins share a homologous region with a consensus sequence mainly consisting of glycine, alanine and valine residues (accordingly named as the GAV motif), which was proposed to be the critical core for the fibrillization and cytotoxicity. To understand the role of the GAV motif in protein amyloidogenesis, we studied the effects of the homologous peptides corresponding to the sequence of GAV motif region (residues 66-74) on alpha-Syn aggregation. The result shows that these peptides can promote fibrillization of wild-type alpha-Syn and induce that of the charge-incorporated mutants but not the GAV-deficient alpha-Syn mutant. The acceleration of alpha-Syn aggregation by the homologous peptides is under a sequence-specific manner. The interplay between the GAV peptide and the core regions in alpha-Syn may accelerate the aggregation process and stabilize the fibrils. This finding provides clues for developing peptide mimics that could promote transforming the toxic oligomers or protofibrils into the inert mature fibrils.  相似文献   

13.
The tetrameric thyroxine transport protein transthyretin (TTR) forms amyloid fibrils upon dissociation and monomer unfolding. The aggregation of transthyretin has been reported as the cause of the life-threatening transthyretin amyloidosis. The standard treatment of familial cases of TTR amyloidosis has been liver transplantation. Although aggregation-preventing strategies involving ligands are known, understanding the mechanism of TTR aggregation can lead to additional inhibition approaches. Several models of TTR amyloid fibrils have been proposed, but the segments that drive aggregation of the protein have remained unknown. Here we identify β-strands F and H as necessary for TTR aggregation. Based on the crystal structures of these segments, we designed two non-natural peptide inhibitors that block aggregation. This work provides the first characterization of peptide inhibitors for TTR aggregation, establishing a novel therapeutic strategy.  相似文献   

14.
Amyloid fibrils are a hallmark of Alzheimer’s and prion diseases. In both pathologies fibrils are found associated to glycosaminoglycans, modulators of the aggregation process. Amyloid peptides and proteins with very poor sequence homologies originate very similar aggregates. This implies the possible existence of a common formation mechanism. A homologous structural motif has recently been described for the Alzheimer’s peptide Aβ(1-28) and the prion protein fragment PrP(185-208). We have studied the influence histidine residues and heparin on the aggregation process of both peptides and determined the possible amyloid characteristics of PrP(185-208), still unknown. The results show that PrP(185-208) forms amyloid aggregates in the presence of heparin. Histidines influence the aggregation kinetics, as in Aβ(1-28), although to a lesser extent. Other spectroscopic properties of the PrP(185-208) fragment are shown to be equivalent to those of other amyloid peptides and PrP(185-208) is shown to be cytotoxic using a neuroblastoma cell line.  相似文献   

15.
ABSTRACT: BACKGROUND: The amyloid-beta peptide (Abeta42) is the main component of the inter-neuronal amyloid plaques characteristic of Alzheimer's disease (AD). The mechanism by which Abeta42 and other amyloid peptides assemble into insoluble neurotoxic deposits is still not completely understood and multiple factors have been reported to trigger their formation. In particular, the presence of endogenous metal ions has been linked to the pathogenesis of AD and other neurodegenerative disorders. RESULTS: Here we describe a rapid and high-throughput screening method to identify molecules able to modulate amyloid aggregation. The approach exploits the inclusion bodies (IBs) formed by Abeta42 when expressed in bacteria. We have shown previously that these aggregates retain amyloid structural and functional properties. In the present work we demonstrate that their in vitro refolding is selectively sensitive to the presence of aggregation-promoting metal ions, allowing the detection of inhibitors of metal-promoted amyloid aggregation with potential therapeutic interest. CONCLUSIONS: Because IBs can be produced at high levels and easily purified, the method overcomes one of the main limitations in screens to detect amyloid modulators: the use of expensive and usually highly insoluble synthetic peptides.  相似文献   

16.
β-amyloid hypothesis is the predominant hypothesis in the study of pathogenesis of Alzheimer''s disease. This hypothesis claims that aggregation and neurotoxic effects of amyloid β (Aβ) is the common pathway in a variety of etiological factors for Alzheimer''s disease. Aβ peptide derives from amyloid precursor protein (APP). β-sheet breaker peptides can directly prevent and reverse protein misfolding and aggregation in conformational disorders. Based on the stereochemical structure of Aβ1-42 and aggregation character, we had designed a series of β-sheet breaker peptides in our previous work and screened out a 10-residue peptide β-sheet breaker peptide, H102. We evaluated the effects of H102 on expression of P-tau, several associated proteins, inflammatory factors and apoptosis factors, and examined the cognitive ability of APP transgenic mice by behavioral test. This study aims to validate the β-amyloid hypothesis and provide an experimental evidence for the feasibility of H102 treatment for Alzheimer''s disease.  相似文献   

17.
Amphotericin B has recently been suggested as an efficient inhibitor of amyloid peptide fibril formation; however its interactions with more neurotoxic, soluble forms of amyloid peptides have not been reported to date. Circular dichroism spectroscopy allowed for distinguishing between the binding and inhibition of aggregation events: amphotericin B distinctly interacts with both unordered and ordered, β-structure-rich soluble oligomeric forms of Aβ1-42 peptide, yet amphotericin B has no measurable impact neither on the secondary structure nor on time-dependent aggregation profile of the amyloid peptide.  相似文献   

18.

Background

Amyloid fibrils created by misfolding and aggregation of proteins are a major pathological feature in a variety of degenerative diseases. Therapeutic approaches including amyloid vaccines and anti-aggregation compounds in models of amyloidosis point to an important role for amyloid in disease pathogenesis. Amyloid deposits derived from the β-cell peptide islet amyloid polypeptide (IAPP or amylin) are a characteristic of type 2 diabetes and may contribute to loss of β-cells in this disease.

Methods

We developed a cellular model of rapid amyloid deposition using cultured human islets and observed a correlation between fibril accumulation and β-cell death. A series of overlapping peptides derived from IAPP was generated.

Results

A potent inhibitor (ANFLVH) of human IAPP aggregation was identified. This inhibitory peptide prevented IAPP fibril formation in vitro and in human islet cultures leading to a striking increase in islet cell viability.

Conclusions

These findings indicate an important contribution of IAPP aggregation to β-cell death in situ and point to therapeutic applications for inhibitors of IAPP aggregation in enhancing β-cell survival.

General significance

Anti-amyloid compounds could potentially reduce the loss of β-cell mass in type 2 diabetes and maintain healthy human islet cultures for β-cell replacement therapies.  相似文献   

19.
TDP-43 (transactive- response DNA binding protein) amazes structural biologist as its aberrant ubiquitinated cytosolic inclusions is largely involved in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). An important question in TDP-43 research is to identify the structural region mediating the formation of cytoplasmic pathological aggregates. In this study, we attempted to delineate the aggregation-prone sequences of the structural domain of TDP-43. Here, we investigated the self-assembly of peptides of TDP-43 using aggregation prediction algorithms, Zipper DB and AMYLPRED2. The three aggregation-prone peptides identified were from N-terminal domain (24GTVLLSTV31), and RNA recognition motifs, RRM1 (128GEVLMVQV135) and RRM2 (247DLIIKGIS254). Furthermore, the amyloid fibril forming propensities of these peptides were analyzed through different biophysical techniques and molecular dynamics simulation. Our study shows the different aggregation ability of conserved stretches in structural domain of TDP-43 that will possibly induce full-length aggregation of TDP-43 in vivo. The peptide form RRM2 demonstrates the higher intrinsic amyloid forming propensity and suggests that RRM2 might form the structural core of TDP-43 aggregation seen in vivo. The results of this study would help in designing peptide based inhibitors of TDP-43 aggregation.  相似文献   

20.
The pathway to amyloid fibril formation in proteins involves specific structural changes leading to the combination of misfolded intermediates into oligomeric assemblies. Recent NMR studies showed the presence of “turns” in amyloid peptides, indicating that turn formation may play an important role in the nucleation of the intramolecular folding and possible assembly of amyloid. Fully solvated all-atom molecular dynamics simulations were used to study the structure and dynamics of the apolipoprotein C-II peptide 56 to 76, associated with the formation of amyloid fibrils. The peptide populated an ensemble of turn structures, stabilized by hydrogen bonds and hydrophobic interactions enabling the formation of a strong hydrophobic core which may provide the conditions required to initiate aggregation. Two competing mechanisms discussed in the literature were observed. This has implications in understanding the mechanism of amyloid formation in not only apoC-II and its fragments, but also in other amyloidogenic peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号