首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specific and potent RNAi in the nucleus of human cells   总被引:13,自引:0,他引:13  
  相似文献   

2.
The rapid development of non-invasive imaging techniques and imaging reporters coincided with the enthusiastic response that the introduction of RNA interference (RNAi) techniques created in the research community. Imaging in experimental animals provides quantitative or semi-quantitative information regarding the biodistribution of small interfering RNAs and the levels of gene interference (i.e., knockdown of the target mRNA) in living animals. In this review we give a brief summary of the first imaging findings that have potential for accelerating the development and testing of new approaches that explore RNAi as a method for achieving loss-of-function effects in vivo and as a promising therapeutic tool.  相似文献   

3.
Tools for target identification and validation   总被引:3,自引:0,他引:3  
  相似文献   

4.
Currently, gene disruption by homologous recombination in embryonic stem cells is only feasible in mice. To circumvent this problem, we silenced mineralocorticoid receptor (MR) expression by RNA interference in knockdown rats generated through lentiviral transgenesis. Analysis of the F1 progeny at 3 wk of age revealed strongly decreased MR levels. This was specific for the targeted gene and related to the abundance of the short interfering RNA. Reminiscent of MR knockout mice, the transgenic rats showed a reduced body weight, elevated serum aldosterone levels, increased plasma renin activity, and altered expression of MR target genes. Some of these effects correlated with the degree to which MR mRNA expression was reduced. Whereas disruption of the MR by gene targeting in mice leads to postnatal death, our strategy also allowed obtaining adult knockdown rats with defects in hormone and electrolyte homeostasis resembling pseudohypoaldosteronism. In conclusion, this is the first example of a human disease model based on RNA interference in rats.  相似文献   

5.
6.
7.
Within the recent years, RNA interference (RNAi) has become an almost-standard method for in vitro knockdown of any target gene of interest. Now, one major focus is to further explore its potential in vivo, including the development of novel therapeutic strategies. From the mechanism, it becomes clear that small interfering RNAs (siRNAs) play a pivotal role in triggering RNAi. Thus, the efficient delivery of target gene-specific siRNAs is one major challenge in the establishment of therapeutic RNAi. Numerous studies, based on different modes of administration and various siRNA formulations and/or modifications, have already accumulated promising results. This applies to various animal models covering viral infections, cancer and multiple other diseases. Continuing efforts will lead to the development of efficient and “double-specific” drugs, comprising of siRNAs with high target gene specificity and of nanoparticles enhancing siRNA delivery and target organ specificity.  相似文献   

8.
RNA interference (RNAi) is widely used to study gene functions as a reverse genetic means from first-generation siRNA to second-generation short hairpin RNA (shRNA) or the newly developed microRNA (shRNA-miR). Here we report a gene knockdown vector system based on the mouse miR-21 hairpin structure. In this system, the pre-miRNA hairpin of the miR-21 gene was modified by replacing the 22-nucleotide mature sequence with shRNA sequences that target genes of interest, flanked by 160-bp upstream and 65-bp downstream sequences of the mouse pre-miR-21. We tested this system by knocking down the enhanced green fluorescence protein (EGFP) reporter gene using different vectors, in which shRNA-miR was driven by the polymerase II (pol II) promoter. We found that miR-21 hairpin-based shRNA-miR can be directly placed under pol II promoter, like UbC or CMV promoter to knockdown the gene of interest. To facilitate the wide application of the miR-21 hairpin-based gene knockdown system, we further knocked down the endogenous gene lamin (A/C), which showed that endogenous lamin A/C expression can be efficiently silenced using the miR-21 hairpin-based lentiviral vector. The miR-21 hairpin-based gene knockdown vector will provide a new genetic tool for gene functional studies in vitro and in vivo.  相似文献   

9.
RNA干扰(RNAinterference,RNAi)是指由21~23个核苷酸组成的双链RNA(dsRNA)所引发的生物细胞内同源基因转录后沉默的现象,是生物体在进化过程中普遍存在的一种基因调控机制。目前对由乙型肝炎病毒(HBV)引起的病毒性肝炎尚无令人满意的治疗效果,而RNA干扰技术的出现为各类慢性HBV感染的治疗开辟了新的途径。本文对RNA干扰抑制HBV复制及基因表达的研究现状、存在问题及应用前景进行了综述。  相似文献   

10.
The discovery of RNA interference (RNAi), an evolutionary conserved gene silencing mechanism that is triggered by double stranded RNA, has led to tremendous efforts to use this technology for basic research and new RNA therapeutics. RNAi can be induced via transfection of synthetic small interfering RNAs (siRNAs), which results in a transient knockdown of the targeted mRNA. For stable gene silencing, short hairpin RNA (shRNA) or microRNA (miRNA) constructs have been developed. In mammals and humans, the natural RNAi pathway is triggered via endogenously expressed miRNAs. The use of modified miRNA expression cassettes to elucidate fundamental biological questions or to develop therapeutic strategies has received much attention. Viral vectors are particularly useful for the delivery of miRNA genes to specific target cells. To date, many viral vectors have been developed, each with distinct characteristics that make one vector more suitable for a certain purpose than others. This review covers the recent progress in miRNA-based gene-silencing approaches that use viral vectors, with a focus on their unique properties, respective limitations and possible solutions. Furthermore, we discuss a related topic that involves the insertion of miRNA-target sequences in viral vector systems to restrict their cellular range of gene expression. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.  相似文献   

11.
12.
Electro-transfer of small interfering RNA ameliorated arthritis in rats   总被引:3,自引:0,他引:3  
RNA interference provides the powerful means of sequence-specific gene silencing. Particularly, small interfering RNA (siRNA) duplexes may be potentially useful for therapeutic molecular targeting of human diseases, although novel delivery systems should be devised to achieve efficient and organ-specific transduction of siRNA. In the present study, we demonstrated that electro-transfer of a siRNA-polyamine complex made efficient and specific gene knockdown possible in the articular synovium. Targeted suppression of the tumor necrosis factor-alpha gene through this procedure significantly ameliorated collagen-induced arthritis in rats. Our results suggest the potential feasibility of therapeutic intervention with RNA medicines for treatment of rheumatoid and other locomotor diseases.  相似文献   

13.
14.
15.
RNA interference (RNAi) has been used increasingly for reverse genetics in invertebrates and mammalian cells, and has the potential to become an alternative to gene knockout technology in mammals. Thus far, only RNA polymerase III (Pol III)-expressed short hairpin RNA (shRNA) has been used to make shRNA-expressing transgenic mice. However, widespread knockdown and induction of phenotypes of gene knockout in postnatal mice have not been demonstrated. Previous studies have shown that Pol II synthesizes micro RNAs (miRNAs)-the endogenous shRNAs that carry out gene silencing function. To achieve efficient gene knockdown in mammals and to generate phenotypes of gene knockout, we designed a construct in which a Pol II (ubiquitin C) promoter drove the expression of an shRNA with a structure that mimics human miRNA miR-30a. Two transgenic lines showed widespread and sustained shRNA expression, and efficient knockdown of the target gene Sod2. These mice were viable but with phenotypes of SOD2 deficiency. Bigenic heterozygous mice generated by crossing these two lines showed nearly undetectable target gene expression and phenotypes consistent with the target gene knockout, including slow growth, fatty liver, dilated cardiomyopathy, and premature death. This approach opens the door of RNAi to a wide array of well-established Pol II transgenic strategies and offers a technically simpler, cheaper, and quicker alternative to gene knockout by homologous recombination for reverse genetics in mice and other mammalian species.  相似文献   

16.
In the early period of 21st century, RNA interference (RNAi) had emerged as one of the most important discoveries. This highly conserved endogenous gene silencing mechanism has been largely exploited as a powerful tool to determine biological functions of each gene. Both direct introduction of chemically synthesized small interference RNA (siRNA) and a plasmid or viral vectors encoding for siRNA can allow especially stable RNA knockdown. Recently, it has been widely used in the production of therapeutic drugs against hepatitis or immuno-deficiency viruses in human beings. Here, we provide a brief overview of the RNAi mechanism and the technology of RNAi on ischemic injury.  相似文献   

17.
Although RNA interference as a tool for gene knockdown is a great promise for future applications, the specificity of small interfering RNA (siRNA)-mediated gene silencing needs to be thoroughly investigated. Most research regarding siRNA specificity has involved analysis of affected off-target genes instead of exploring the specificity of the siRNA itself. In this study we have developed an efficient method for generating a siRNA target library by combining a siRNA target validation vector with a nucleotide oligomix. We have used this library to perform an analysis of the silencing effects of a functional siRNA towards its target site with double-nucleotide mismatches. The results indicated that not only the positions of the mismatched base pair have an impact on silencing efficiency but also the identity of the mismatched nucleotide. Our data strengthen earlier observations of widespread siRNA off-target effects and shows that ~35% of the double-mutated target sites still causes knockdown efficiency of >50%. We also provide evidence that there may be substantial differences in knockdown efficiency depending on whether the mutations are positioned within the siRNA itself or in the corresponding target site.  相似文献   

18.
19.
RNA interference appears to be a potentially powerful tool for studies of genes of unknown function. However, differences in efficacy at different target sites remain problematic when small interfering RNA (siRNA) is used as an effector. Similar problems are associated with attempts at gene inactivation using antisense oligonucleotides (ODNs) and ribozymes. We performed a comparative analysis of the suppressive effects of three knockdown methods, namely, methods based on RNA interference (RNAi), antisense ODNs, and ribozymes, using a luciferase reporter system. Dose-response experiments revealed that the IC50 value for the siRNA was about 100-fold lower than that of the antisense ODN. Our results provide useful information about the positional effects in RNAi, which might help to improve the design of effective siRNAs.  相似文献   

20.
Short hairpin RNAs (shRNAs) are versatile tools for analyzing loss-of-function phenotypes in vitro and in vivo. However, their use for studying genes involved in proliferation and survival, which are potential therapeutic targets in cancer and other diseases, is confounded by the strong selective advantage of cells in which shRNA expression is inefficient. We therefore developed a toolkit that combines Tet-regulated miR30-shRNA technology, robust transactivator expression and two fluorescent reporters to track and isolate cells with potent target knockdown. We demonstrated that this system improves the study of essential genes and was sufficiently robust to eradicate aggressive cancer in mice by suppressing a single gene. Further, we applied this system for in vivo negative-selection screening with pooled shRNAs and propose a streamlined, inexpensive workflow that will facilitate the use of RNA interference (RNAi) for the identification and evaluation of essential therapeutic targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号