首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Plastids (the photosynthetic organelles of plants and algae) ultimately originated through an endosymbiosis between a cyanobacterium and a eukaryote. Subsequently, plastids spread to other eukaryotes by secondary endosymbioses that took place between a eukaryotic alga and a second eukaryote. Recently, evidence has mounted in favour of a single origin for plastids of apicomplexans, cryptophytes, dinoflagellates, haptophytes, and heterokonts (together with their non-photosynthetic relatives, collectively termed chromalveolates). As of yet, however, no single molecular marker has been described which supports a common origin for all of these plastids. One piece of the evidence for a single origin of chromalveolate plastids came from plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which originated by a gene duplication of the cytosolic form. However, no plastid GAPDH has been characterized from haptophytes, leaving an important piece of the puzzle missing. We have sequenced genes encoding cytosolic, mitochondrial-targeted, and plastid-targeted GAPDH proteins from a number of haptophytes and heterokonts, and found the haptophyte homologues to branch within the strongly supported clade of chromalveolate plastid-targeted GAPDH genes. Interestingly, plastid-targeted GAPDH genes from the haptophytes were more closely related to apicomplexan genes than was expected. Overall, the evolution of plastid-targeted GAPDH reinforces other data for a red algal ancestry of apicomplexan plastids, and raises a number of questions about the importance of plastid loss and the possibility of cryptic plastids in non-photosynthetic lineages such as ciliates.  相似文献   

3.
The discovery of a non-photosynthetic plastid genome in Plasmodium falciparum and other apicomplexans has provided a new drug target, but the evolutionary origin of the plastid has been muddled by the lack of characters, that typically define major plastid lineages. To clarify the ancestry of the plastid, we undertook a comprehensive analysis of all genomic characters shared by completely sequenced plastid genomes. Cladistic analysis of the pattern of plastid gene loss and gene rearrangements suggests that the apicomplexan plastid is derived from an ancestor outside of the green plastid lineage. Phylogenetic analysis of primary sequence data (DNA and amino acid characters) produces results that are generally independent of the analytical method, but similar genes (i.e., rpoB and rpoC) give similar topologies. The conflicting phylogenies in primary sequence data sets make it difficult to determine the the exact origin of the apicomplexan plastid and the apparent artifactual association of apicomplexan and euglenoid sequences suggests that DNA sequence data may be an inappropriate set of characters to address this phylogenetic question. At present we cannot reject our null hypothesis that the apicomplexan plastid is derived from a shared common ancestor between apicomplexans and dinoflagellates. During the analysis, we noticed that the Plasmodium tRNA-Met is probably tRNA-fMet and the tRNA-fMet is probably tRNA-Ile. We suggest that P. falciparum has lost the elongator type tRNA-Met and that similar to metazoan mitochondria there is only one species of methionine tRNA. In P. falciparum, this has been accomplished by recruiting the fMet-type tRNA to dually function in initiation and elongation. The tRNA-Ile has an unusual stem-loop in the variable region. The insertion in this region appears to have occurred after the primary origin of the plastid and further supports the monophyletic ancestory of plastids.  相似文献   

4.
The photosynthetic origin of apicomplexan parasites was proposed upon the discovery of a reduced non-photosynthetic plastid termed the apicoplast in their cells. Although it is clear that the apicoplast has evolved through a secondary endosymbiosis, its particular origin within the red or green plastid lineage remains controversial. The recent discovery of Chromera velia, the closest known photosynthetic relative to apicomplexan parasites, sheds new light on the evolutionary history of alveolate plastids. Here we review our knowledge on the evolutionary history of Apicomplexa and particularly their plastids, with a focus on the pathway by which they evolved from free-living heterotrophs through photoautotrophs to omnipresent obligatory intracellular parasites. New sequences from C. velia (histones H2A, H2B; GAPDH, TufA) and phylogenetic analyses are also presented and discussed here.  相似文献   

5.
Plastids (the photosynthetic organelles of plants and algae) originated through endosymbiosis between a cyanobacterium and a eukaryote and subsequently spread to other eukaryotes by secondary endosymbioses between two eukaryotes. Mounting evidence favors a single origin for plastids of apicomplexans, cryptophytes, dinoflagellates, haptophytes, and heterokonts (together with their nonphotosynthetic relatives, termed chromalveolates), but so far, no single molecular marker has been described that supports this common origin. One piece of evidence comes from plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which originated by a gene duplication of the cytosolic form. However, no plastid GAPDH has been characterized from haptophytes, leaving an important piece of the puzzle missing. We have sequenced genes encoding cytosolic, mitochondrion-targeted, and plastid-targeted GAPDH proteins from a number of haptophytes and heterokonts and found haptophyte homologs that branch within a strongly supported clade of chromalveolate plastid-targeted genes, being more closely related to an apicomplexan homolog than was expected. The evolution of plastid-targeted GAPDH supports red algal ancestry of apicomplexan plastids and raises a number of questions about the importance of plastid loss and the possibility of cryptic plastids in nonphotosynthetic lineages such as ciliates.  相似文献   

6.
Dinoflagellates are a trophically diverse group of protists with photosynthetic and non-photosynthetic members that appears to incorporate and lose endosymbionts relatively easily. To trace the gain and loss of plastids in dinoflagellates, we have sequenced the nuclear small subunit rRNA gene of 28 photosynthetic and four non-photosynthetic species, and produced phylogenetic trees with a total of 81 dinoflagellate sequences. Patterns of plastid gain, loss, and replacement were plotted onto this phylogeny. With the exception of the apparently early-diverging Syndiniales and Noctilucales, all non-photosynthetic dinoflagellates are very likely to have had photosynthetic ancestors with peridinin-containing plastids. The same is true for all dinoflagellates with plastids other than the peridinin-containing plastid: their ancestors have replaced one type of plastid for another, in some cases most likely through a non-photosynthetic intermediate. Eight independent instances of plastid loss and three of replacement can be inferred from existing data, but as more non-photosynthetic lineages are characterized these numbers will surely grow. Received: 25 September 2000 / Accepted: 24 April 2001  相似文献   

7.
8.
Plastids are the organelles of plants and algae that house photosynthesis and many other biochemical pathways. Plastids contain a small genome, but most of their proteins are encoded in the nucleus and posttranslationally targeted to the organelle. When plants and algae lose photosynthesis, they virtually always retain a highly reduced "cryptic" plastid. Cryptic plastids are known to exist in many organisms, although their metabolic functions are seldom understood. The best-studied example of a cryptic plastid is from the intracellular malaria parasite, Plasmodium, which has retained a plastid for the biosynthesis of fatty acids, isoprenoids, and heme by the use of plastid-targeted enzymes. To study a completely independent transformation of a photosynthetic plastid to a cryptic plastid in another alga-turned-parasite, we conducted an expressed sequence tag (EST) survey of Helicosporidium. This parasite has recently been recognized as a highly derived green alga. Based on phylogenetic relationships to other plastid homologues and the presence of N-terminal transit peptides, we have identified 20 putatively plastid-targeted enzymes that are involved in a wide variety of metabolic pathways. Overall, the metabolic diversity of the Helicosporidium cryptic plastid exceeds that of the Plasmodium plastid, as it includes representatives of most of the pathways known to operate in the Plasmodium plastid as well as many others. In particular, several amino acid biosynthetic pathways have been retained, including the leucine biosynthesis pathway, which was only recently recognized in plant plastids. These two parasites represent different evolutionary trajectories in plastid metabolic adaptation.  相似文献   

9.
The evolution of the plastid from a photosynthetic bacterial endosymbiont involved a dramatic reduction in the complexity of the plastid genome, with many genes either discarded or transferred to the nucleus of the eukaryotic host. However, this evolutionary process has not gone to completion and a subset of genes remains in all plastids examined to date. The various hypotheses put forward to explain the retention of the plastid genome have tended to focus on the need for photosynthetic organisms to retain a genetic system in the chloroplast, and they fail to explain why heterotrophic plants and algae, and the apicomplexan parasites all retain a genome in their non-photosynthetic plastids. Here we consider two additional explanations: the 'essential tRNAs' hypothesis and the 'transfer-window' hypothesis.  相似文献   

10.
Eugregarines are understudied apicomplexan parasites of invertebrates inhabiting marine, freshwater, and terrestrial environments. Most currently known terrestrial eugregarines have been described parasitizing the gut from less than 1% of total insect diversity, with a high likelihood that the remaining insect species are infected. Eugregarine diversity in orthopterans (grasshoppers, locusts, katydids, and crickets) is still little known. We carried out a survey of the eugregarines parasitizing the Mexican lubber grasshopper, Taeniopoda centurio, an endemic species to the northwest of Mexico. We described two new eugregarine species from the gut of the host: Amoebogregarina taeniopoda n. sp. and Quadruspinospora mexicana n. sp. Both species are morphologically dissimilar in their life‐cycle stages. Our SSU rDNA phylogenetic analysis showed that both species are phylogenetically distant to each other, even though they parasitize the same host. Amoebogregarina taeniopoda n. sp. clustered within the clade Gregarinoidea, being closely related to Amoebogregarina nigra from the grasshopper Melanoplus differentialis. Quadruspinospora mexicana n. sp. clustered within the clade Actinocephaloidea and grouped with Prismatospora evansi, a parasite from dragonfly naiads. Amoebogregarina taeniopoda n. sp. and Q. mexicana n. sp. represent the first record of eugregarines found to infect a species of the family Romaleidae.  相似文献   

11.
Prokaryotic histone-like proteins (Hlps) are abundant proteins found in bacterial and plastid nucleoids. Hlps are also found in the eukaryotic dinoflagellates and the apicomplexans, two major lineages of the Alveolata. It may be expected that Hlps of both groups were derived from the same ancestral Alveolates. However, our phylogenetic analyses suggest different origins for the dinoflagellate and the apicomplexan Hlps. The apicomplexan Hlps are affiliated with the cyanobacteria and probably originated from Hlps of the plastid genome. The dinoflagellate Hlps and the proteobacterial long Hlps form a clade that branch off from the node with the proteobacterial short Hlps.  相似文献   

12.
13.
14.
Gregarines constitute a large group of apicomplexans with diverse modes of nutrition and locomotion that are associated with different host compartments (e.g. intestinal lumena and coelomic cavities). A broad molecular phylogenetic framework for gregarines is needed to infer the early evolutionary history of apicomplexans as a whole and the evolutionary relationships between the diverse ultrastructural and behavioral characteristics found in intestinal and coelomic gregarines. To this end, we sequenced the SSU rRNA gene from (1) Lankesteria abbotti from the intestines of two Pacific appendicularians, (2) Pterospora schizosoma from the coelom of a Pacific maldanid polychaete, (3) Pterospora floridiensis from the coelom of a Gulf Atlantic maldanid polychaete and (4) Lithocystis sp. from the coelom of a Pacific heart urchin. Molecular phylogenetic analyses including the new sequences demonstrated that several environmental and misattributed sequences are derived from gregarines. The analyses also demonstrated a clade of environmental sequences that was affiliated with gregarines, but as yet none of the constituent organisms have been described at the ultrastructural level (apicomplexan clade I). Lankesteria spp. (intestinal parasites of appendicularians) grouped closely with other marine intestinal eugregarines, particularly Lecudina tuzetae, from polychaetes. The sequences from all three coelomic gregarines branched within a larger clade of intestinal eugregarines and were similarly highly divergent. A close relationship between Pterospora schizosoma (Pacific) and Pterospora floridiensis (Gulf Atlantic) was strongly supported by the data. Lithocystis sp. was more closely related to a clade of marine intestinal gregarines consisting of Lankesteria spp. and Lecudina spp. than it was to the Pterospora clade. These data suggested that coelomic parasitism evolved more than once from different marine intestinal eugregarines, although a larger taxon sample is needed to further explore this inference.  相似文献   

15.
Marine gregarines: evolutionary prelude to the apicomplexan radiation?   总被引:1,自引:0,他引:1  
Gregarine apicomplexans inhabit the intestines, coeloms and reproductive vesicles of invertebrates. An emphasis on specific ancestral characteristics in marine gregarines has given the group a reputation of being 'primitive.' Although some lineages have retained characteristics inferred to be ancestral for the group, and perhaps apicomplexans as a whole, most gregarines represent highly derived parasites with novel ultrastructural and behavioral adaptations. Many marine gregarines have become giants among single-celled organisms and have evolved ornate surface structures. A comparison of gregarine morphology, placed in a modern phylogenetic context, helps clarify the earliest stages of apicomplexan evolution, the origin of Cryptosporidium, and specific cases of convergent evolution within the group and beyond.  相似文献   

16.
This review offers a snapshot of our current understanding of the origin, biology, and metabolic significance of the non-photosynthetic plastid organelle found in apicomplexan parasites. These protists are of considerable medical and veterinary importance world-wide, Plasmodium spp., the causative agent of malaria being foremost in terms of human disease. It has been estimated that approximately 8% of the genes currently recognized by the malarial genome sequencing project (now nearing completion) are of bacterial/plastid origin. The bipartite presequences directing the products of these genes back to the plastid have provided fresh evidence that secondary endosymbiosis accounts for this organelle's presence in these parasites. Mounting phylogenetic evidence has strengthened the likelihood that the plastid originated from a red algal cell. Most importantly, we now have a broad understanding of several bacterial metabolic systems confined within the boundaries of the parasite plastid. The primary ones are type II fatty acid biosynthesis and isoprenoid biosynthesis. Some aspects of heme biosynthesis also might take place there. Retention of the plastid's relict genome and its still ill-defined capacity to participate in protein synthesis might be linked to an important house-keeping process, i.e. guarding the type II fatty acid biosynthetic pathway from oxidative damage. Fascinating observations have shown the parasite plastid does not divide by constriction as in typical plants, and that plastid-less parasites fail to thrive after invading a new cell. The modes of plastid DNA replication within the phylum also have provided surprises. Besides indicating the potential of the parasite plastid for therapeutic intervention, this review exposes many gaps remaining in our knowledge of this intriguing organelle. The rapid progress being made shows no sign of slackening.  相似文献   

17.
Although archigregarines are poorly understood intestinal parasites of marine invertebrates, they are critical for understanding the earliest stages in the evolution of the Apicomplexa. Previous studies suggest that archigregarines are a paraphyletic stem group from which other lineages of gregarines, and possibly all other groups of apicomplexans, evolved. However, substantiating this inference is difficult because molecular phylogenetic data from archigregarines, in particular, and other gregarines, in general, are severely limited. In an attempt to help fill gaps in our knowledge of archigregarine diversity and phylogeny, we set out to discover and characterize novel lineages of archigregarines with high-resolution light and scanning electron microscopy and analyses of small subunit (SSU) rDNA sequences derived from single-cell (SC) PCR techniques. Here, we describe two novel species of Selenidium, namely Selenidium idanthyrsae n. sp. and S. boccardiellae n. sp., and demonstrate the surface morphology and molecular phylogenetic position of the previously reported species S. cf. mesnili. We also describe a novel genus of archigregarine, Veloxidium leptosynaptae n. gen., n. sp., which branches with an environmental sequence and, together, forms the nearest sister lineage to a diverse clade of marine eugregarines (i.e. lecudinids and urosporids). This molecular phylogenetic result is consistent with the hypothesis that archigregarines are deeply paraphyletic within apicomplexans, and suggests that convergent evolution played an important role in shaping the diversity of eugregarine trophozoites.  相似文献   

18.
In an attempt to reconstruct early alveolate evolution, we have examined the phylogenetic position of colpodellids by analyzing small subunit rDNA sequences from Colpodella pontica Myl'nikov 2000 and Colpodella sp. (American Type Culture Collection 50594). All phylogenetic analyses grouped the colpodellid sequences together with strong support and placed them strongly within the Alveolata. Most analyses showed colpodellids as the sister group to an apicomplexan clade, albeit with weak support. Sequences from two perkinsids, Perkinsus and Parvilucifera, clustered together and consistently branched as the sister group to dinoflagellates as shown previously. These data demonstrate that colpodellids and perkinsids are plesiomorphically similar in morphology and help provide a phylogenetic framework for inferring the combination of character states present in the last common ancestor of dinoflagellates and apicomplexans. We can infer that this ancestor was probably a myzocytotic predator with two heterodynamic flagella, micropores, trichocysts, rhoptries, micronemes, a polar ring, and a coiled open-sided conoid. This ancestor also very likely contained a plastid, but it is presently not certain whether it was photosynthetic, and it is not clear whether extant perkinsids or colpodellids have retained the organelle.  相似文献   

19.
Plastids and mitochondria each arose from a single endosymbiotic event and share many similarities in how they were reduced and integrated with their host. However, the subsequent evolution of the two organelles could hardly be more different: mitochondria are a stable fixture of eukaryotic cells that are neither lost nor shuffled between lineages, whereas plastid evolution has been a complex mix of movement, loss and replacement. Molecular data from the past decade have substantially untangled this complex history, and we now know that plastids are derived from a single endosymbiotic event in the ancestor of glaucophytes, red algae and green algae (including plants). The plastids of both red algae and green algae were subsequently transferred to other lineages by secondary endosymbiosis. Green algal plastids were taken up by euglenids and chlorarachniophytes, as well as one small group of dinoflagellates. Red algae appear to have been taken up only once, giving rise to a diverse group called chromalveolates. Additional layers of complexity come from plastid loss, which has happened at least once and probably many times, and replacement. Plastid loss is difficult to prove, and cryptic, non-photosynthetic plastids are being found in many non-photosynthetic lineages. In other cases, photosynthetic lineages are now understood to have evolved from ancestors with a plastid of different origin, so an ancestral plastid has been replaced with a new one. Such replacement has taken place in several dinoflagellates (by tertiary endosymbiosis with other chromalveolates or serial secondary endosymbiosis with a green alga), and apparently also in two rhizarian lineages: chlorarachniophytes and Paulinella (which appear to have evolved from chromalveolate ancestors). The many twists and turns of plastid evolution each represent major evolutionary transitions, and each offers a glimpse into how genomes evolve and how cells integrate through gene transfers and protein trafficking.  相似文献   

20.
The phylum Apicomplexa encompasses a large number of intracellular protozoan parasites, including the causative agents of malaria (Plasmodium), toxoplasmosis (Toxoplasma), and many other human and animal diseases. Apicomplexa have recently been found to contain a relic, nonphotosynthetic plastid that has attracted considerable interest as a possible target for therapeutics. This plastid is known to have been acquired by secondary endosymbiosis, but when this occurred and from which type of alga it was acquired remain uncertain. Based on the molecular phylogeny of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes, we provide evidence that the apicomplexan plastid is homologous to plastids found in dinoflagellates-close relatives of apicomplexa that contain secondary plastids of red algal origin. Surprisingly, apicomplexan and dinoflagellate plastid-targeted GAPDH sequences were also found to be closely related to the plastid-targeted GAPDH genes of heterokonts and cryptomonads, two other groups that contain secondary plastids of red algal origin. These results address several outstanding issues: (1) apicomplexan and dinoflagellate plastids appear to be the result of a single endosymbiotic event which occurred relatively early in eukaryotic evolution, also giving rise to the plastids of heterokonts and perhaps cryptomonads; (2) apicomplexan plastids are derived from a red algal ancestor; and (3) the ancestral state of apicomplexan parasites was photosynthetic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号