首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Trypanosomes are protozoan parasites of class Kinetoplastida. Trypanosoma vivax is one of the organisms that can cause Nagana and Trypanosoma evansi can cause Surra. In Africa, Trypanosoma vivax is mainly transmitted by Glossina spp. (tsetse fly) but it can be transmitted mechanically by other blood-feeding dipters. Trypanosoma evansi is transmitted mechanically and non-dependent to tsetse fly. In this research, T. vivax and T. evansi among camels (Camelus dromedarius) in Yazd, Iran were identified by microscopy and molecular examinations but the sensitivity of microscopy was lower than molecular examinations. Trypanosoma vivax and T. evansi were observed in 4 out of 134 blood film samples (2.98%). The prevalence of Trypanosoma spp. among 134 male camels (C. dromedarius) based on molecular examinations was 30.6% (22.76–38.44% with 95% confidence interval), 25 out of 134 (18.65%) had co-infection of T. evansi and T. vivax, and 16 out of 134 (11.94%) had an infection of T. vivax alone. We provided the first confirmation of infection with T. vivax among camels in Iran, and also in Asia, which has important implications on our knowledge of the occurrence and possible spread of this pathogen at the global level. Investigations in other species such as cattle and sheep are strongly recommended.  相似文献   

2.
《遗传学报》2023,50(1):38-45
Camelids are the only mammals that can produce functional heavy-chain antibodies (HCAbs). Although HCAbs were discovered over 30 years ago, the antibody gene repertoire of Bactrian camels remains largely underexplored. To characterize the diversity of variable genes of HCAbs (VHHs), germline and rearranged VHH repertoires are constructed. Phylogenetics analysis shows that all camelid VHH genes are derived from a common ancestor and the nucleotide diversity of VHHs is similar across all camelid species. While species-specific hallmark sites are identified, the non-canonical cysteines specific to VHHs are distinct in Bactrian camels and dromedaries compared with alpacas. Though low divergence at the germline repertoire between wild and domestic Bactrian camels, higher expression of VHHs is observed in some wild Bactrian camels than that of domestic ones. This study not only adds our understanding of VHH repertoire diversity across camelids, but also provides useful resources for HCAb engineering.  相似文献   

3.
野双峰驼各分布区的生存环境差异及评价   总被引:9,自引:0,他引:9  
世界上野双峰驼(Camelus bactrianus ferus)目前仅分布于中国新疆境内及中蒙边境,即:中国新疆的塔克拉玛干沙漠、阿尔金山北麓、戛顺戈壁、中蒙边境及蒙古国西部的外阿尔泰戈壁。总数共计730~880头。目前已为极度濒危物种。本文对野驼在不同分布区由于生境及人类活动影响所造成的差异加以对比研究并进行评价,为野骆驼保护提供依据。  相似文献   

4.
L. Ming  L. Yi  R. Sa  Z. X. Wang  Z. Wang  R. Ji 《Animal genetics》2017,48(2):217-220
The Bactrian camel includes various domestic (Camelus bactrianus) and wild (Camelus ferus) breeds that are important for transportation and for their nutritional value. However, there is a lack of extensive information on their genetic diversity and phylogeographic structure. Here, we studied these parameters by examining an 809‐bp mtDNA fragment from 113 individuals, representing 11 domestic breeds, one wild breed and two hybrid individuals. We found 15 different haplotypes, and the phylogenetic analysis suggests that domestic and wild Bactrian camels have two distinct lineages. The analysis of molecular variance placed most of the genetic variance (90.14%, < 0.01) between wild and domestic camel lineages, suggesting that domestic and wild Bactrian camel do not have the same maternal origin. The analysis of domestic Bactrian camels from different geographical locations found there was no significant genetic divergence in China, Russia and Mongolia. This suggests a strong gene flow due to wide movement of domestic Bactrian camels.  相似文献   

5.
Hormone-sensitive lipase (HSL) is a key enzyme in animal fat metabolism and is involved in the rate-limiting step of catalyzing the decomposition of fat and cholesterol. It also plays an important regulatory role in maintaining seminiferous epithelial structure, androgen synthesis and primordial germ cell differentiation. We previously reported that HSL is involved the synthesis of steroids in Bactrian camels, although it is unclear what role it plays in testicular development. The present study was conducted to characterize the biological function and expression pattern of the HSL gene in the hypothalamic pituitary gonadal (HPG) axis and the development of testis in Bactrian camels. We analyzed cloning of the cDNA sequence of the HSL gene of Bactrian camels by RT-PCR, as well as the structural features of HSL proteins, using bioinformatics software, such as ProtParam, TMHMM, Signal P 4.1, SOPMA and MEGA 7.0. We used qRT-PCR, Western blotting and immunofluorescence staining to clarify the expression pattern of HSL in the HPG axis and testis of two-week-old (2W), two-year-old (2Y), four-year-old (4Y) and six-year-old (6Y) Bactrian camels. According to sequence analysis, the coding sequence (CDS) region of the HSL gene is 648 bp in length and encodes 204 amino acids. According to bioinformatics analysis, the nucleotide and amino acid sequence of Bactrian camel HSL are most similar to those of Camelus pacos and Camelus dromedarius, with the lowest sequence similarity with Mus musculus. In adult Bactrian camel HPG axis tissues, both HSL mRNA and protein expression were significantly higher in the testis than in other tissues (hypothalamus, pituitary and pineal tissues) (p < 0.05). The expression of mRNA in the testis increased with age and was the highest in six-year-old testis (p < 0.01). The protein expression levels of HSL in 2Y and 6Y testis were clearly higher than in 2W and 4Y testis tissues (p < 0.01). Immunofluorescence results indicate that the HSL protein was mainly localized in the germ cells, Sertoli cells and Leydig cells from Bactrian camel testis, and strong positive signals were detected in epididymal epithelial cells, basal cells, spermatocytes and smooth muscle cells, with partially expression in hypothalamic glial cells, pituitary suspensory cells and pineal cells. According to the results of gene ontology (GO) analysis enrichment, HSL indirectly regulates the anabolism of steroid hormones through interactions with various targets. Therefore, we conclude that the HSL gene may be associated with the development and reproduction of Bactrian camels in different stages of maturity, and these results will contribute to further understanding of the regulatory mechanisms of HSL in Bactrian camel reproduction.  相似文献   

6.
Hybridization between wild species and their domestic congeners often threatens the gene pool of the wild species. The last wild Bactrian camel (Camelus ferus) populations in Mongolia and China are examples of populations facing such a hybridization threat. To address this key issue in the conservation of wild camels, we analysed wild, hybrid and domestic Bactrian camels (Camelus bactrianus) originating from Mongolia, China and Austria. Through screening of an 804‐base‐pair mitochondrial fragment, we identified eight mitochondrial haplotypes and found high sequence divergence (1.9%) between C. ferus and C. bactrianus. On the basis of a mitochondrial DNA sequence fixed difference, we developed a diagnostic PCR restriction fragment length polymorphism (PCR‐RFLP) assay to differentiate between wild and domestic camel samples. We applied the assay to 81 individuals and confirmed the origin of all samples including five hybrids with known maternal ancestry. The PCR‐RFLP system was effective for both traditional (blood, skin) and non‐invasive samples (faeces, hair), as well as for museum specimens. Our results demonstrate high levels of mitochondrial differentiation between wild and domestic Bactrian camels and that maternal hybridization can be detected by a rapid and reliable PCR‐RFLP system.  相似文献   

7.
Dromedary camels (Camelus dromedarius) play a major economic role in many countries in Africa and Asia. Although they are resistant to harsh environmental conditions, they are susceptible to a wide range of zoonotic agents. This study aimed to provide an overview on the prevalence of selected zoonotic pathogens in blood and tissues of camels in central Iran. Blood, liver, portal lymph node, and brain were collected from 100 apparently healthy camels at a slaughterhouse in Qom city to assess the presence of DNA of Brucella spp., Trypanosoma spp., Coxiella burnetii, and Bartonella spp. PCR products were sequenced bidirectionally and phylogenetic analyses were performed. Eleven percent of camels tested positive for Brucella abortus (3%) and Trypanosoma evansi (8%). Coxiella burnetii and Bartonella spp. DNA was not detected. Our data demonstrate that camels from Iran contribute to the epidemiology of some zoonotic pathogens. Performing proper control strategies, such as vaccination of camels and humans in contact with them, test-and-slaughter policy, and education of the general population is necessary for minimizing the risk of zoonotic infection.  相似文献   

8.
Genotyping of Kazakh camels Camelus dromedarius (milk breed) (n = 18) and Camelus bactrianus (meat breed) (n = 18) by alpha-S1-casein (αs1-CN) and kappa-casein (κ-CN) loci was conducted using the PCR–RFLP analysis method. A new pair of primers was suggested for the amplification of the CSN3 gene fragment with subsequent cleavage of the reaction products by AluI restriction endonuclease in order to identify the gene genetic variants. DNA polymorphism was detected only for the kappa-casein locus; no genetic polymorphism for alpha-S1-casein gene was found in the studied populations. Analysis of the results of DNA fingerprinting demonstrated that the band sharing (BS) coefficient between the groups was low enough (0.13), and the genetic distance (D) between Dromedary and Bactrian breeds was 0.305. The results of genotyping of Bactrian and Dromedary Kazakh camel breeds by alpha-S1-casein, kappa-casein loci, and DNA fingerprinting indicate that the Dromedary breed female camels are more polymorphic as compared with Bactrian.  相似文献   

9.
Single-nucleotide polymorphisms (SNPs), microsatellites and copy number variation (CNV) were studied on the Y chromosome to understand the paternal origin and phylogenetic relationships for resource protection, rational development and utilization of the domestic Bactrian camel in China. Our sample set consisted of 94 Chinese domestic Bactrian camels from four regions (Inner Mongolia, Gansu, Qinghai and Xinjiang), we screened 29 Y-chromosome-specific loci for SNPs, analysed 40 bovine-derived microsatellite loci and measured CNVs of HSFY and SRY through Sanger sequencing, automated fluorescence-based microsatellite analysis and quantitative real-time PCR, respectively. A multicopy gene, SRY, was first found, and sequence variation was only detected in SRY in a screen of 29 loci in 13 DNA pools of individual camels. In addition, a TG repeat in the USP9Y gene was identified as the first polymorphic microsatellite in the camel Y chromosome, whereas microsatellite based on bovine sequences were not detected. The frequency of each allele varied among different populations. For the Nanjiang, Hexi and Alashan populations, a 243-bp allele was found. For the Sunite population, 241-bp, 243-bp and 247-bp alleles were detected, and the frequencies of these alleles were \(22.2\%\), \(44.5\%\) and \(33.3\%\), respectively; 241-bp and 243-bp alleles were found in other populations. Finally, CNVs in two Y-chromosomal genes were detected; CNV for HSFY and SRY ranged from 1 to 3 and from 1 to 9, respectively.  相似文献   

10.
Restriction site‐associated DNA sequencing (RAD‐seq) is one of the most effective high‐throughput sequencing technologies for SNP development and utilization and has been applied to studying the origin and evolution of various species. The domestic Bactrian camels play an important role in economic trade and cultural construction. They are precious species resources and indispensable animals in China's agricultural production. Recently, the rapid development of modern transportation and agriculture, and the deterioration of the environment have led to a sharp decline in the number of camels. Although there have been some reports on the evolution history of the domestic Bactrian camel in China, the origin, evolutionary relationship, and genetic diversity of the camels are unclear due to the limitations of sample size and sequencing technology. Therefore, 47 samples of seven domestic Bactrian camel species from four regions (Inner Mongolia, Gansu, Qinghai, and Xinjiang) were prepared for RAD‐seq analysis to study the evolutionary relationship and genetic diversity. In addition, seven domestic Bactrian camel species are located in different ecological zones, forming different characteristics and having potential development value. A total of 6,487,849 SNPs were genotyped. On the one hand, the filtered SNP information was used to conduct polymorphism mapping construction, LD attenuation analysis, and nucleotide diversity analysis. The results showed that the number of SNPs in Dongjiang camel was the highest, the LD coefficient decayed the fastest, and the nucleotide diversity was the highest. It indicates that Dongjiang camel has the highest genetic diversity. On the other hand, the filtered SNPs information was used to construct the phylogenetic tree, and FST analysis, inbreeding coefficient analysis, principal component analysis, and population structure analysis were carried out. The results showed that Nanjiang camel and Beijiang camels grouped together, and the other five Bactrian camel populations gathered into another branch. It may be because the mountains in the northern part of Xinjiang and the desert in the middle isolate the two groups from the other five groups.  相似文献   

11.
R. Ji  P. Cui  F. Ding  J. Geng  H. Gao  H. Zhang  J. Yu  S. Hu  H. Meng 《Animal genetics》2009,40(4):377-382
The evolutionary relationship between the domestic bactrian camel and the extant wild two-humped camel and the factual origin of the domestic bactrian camel remain elusive. We determined the sequence of mitochondrial cytb gene from 21 camel samples, including 18 domestic camels (three Camelus bactrianus xinjiang , three Camelus bactrianus sunite , three Camelus bactrianus alashan , three Camelus bactrianus red , three Camelus bactrianus brown and three Camelus bactrianus normal ) and three wild camels ( Camelus bactrianus ferus ). Our phylogenetic analyses revealed that the extant wild two-humped camel may not share a common ancestor with the domestic bactrian camel and they are not the same subspecies at least in their maternal origins. Molecular clock analysis based on complete mitochondrial genome sequences indicated that the sub-speciation of the two lineages had begun in the early Pleistocene, about 0.7 million years ago. According to the archaeological dating of the earliest known two-humped camel domestication (5000–6000 years ago), we could conclude that the extant wild camel is a separate lineage but not the direct progenitor of the domestic bactrian camel. Further phylogenetic analysis suggested that the bactrian camel appeared monophyletic in evolutionary origin and that the domestic bactrian camel could originate from a single wild population. The data presented here show how conservation strategies should be implemented to protect the critically endangered wild camel, as it is the last extant form of the wild tribe Camelina.  相似文献   

12.
The tradition of animal husbandry in the context of a nomadic lifestyle has been of great significance in the Mongolian society. Both Bactrian camels and horses have been invaluable for the survival and development of human activities in the harsh arid environment of the Mongolian steppe. As camels offer unique and sustainable opportunities for livestock production in marginal agro‐ecological zones, we investigated the current genetic diversity of three local Mongolian camel breeds and compared their levels of variation with common native Mongolian camels distributed throughout the country. Based on mitochondrial and nuclear markers, we found levels of genetic diversity in Mongolian populations similar to that reported for Chinese Bactrian camels and for dromedaries. Little differentiation was detected between single breeds, except for a small group originating from the northwestern Mongolian Altai. We found neither high inbreeding levels in the different breeds nor evidence for a population decline. Although the Mongolian camel census size has severely declined over the past 20 years, our analyses suggest that there still exists a stable population with adequate genetic variation for continued sustainable utilization.  相似文献   

13.
Blood samples from camels, sheep, goats and cattle from six Regions in Saudi Arabia were examined for blood parasites. Asir Region camels were disinfected while those of the Eastern, Jazan, Northern Frontiers, Riyadh and Tabouk Regions were infected with Trypanosoma evansi (5–40%), those of Riyadh and the Eastern Regions were infected with Dipetalonema evansi (1–6%) and those of the Eastern, Jazan and Riyadh Regions were infected with Eperythrozoon species (8–20%). Sheep and goats of all tested regions were infected with Theilaria hirci (4–20% and 6–14%, respectively), Theilaria ovis (5–19% and 6–24%, respectively) and Eperthrozoon ovis (2–9% and 2–8%, respectively). Sheep of the Eastern and Northern Frontiers Regions were also infected with Anaplasma ovis (2%) and also those of the Eastern Region were infected with Babesia motasi (4%) as well. Cattle of Asir and Eastern Regions were infected with Anaplasma marginale (1–3.4%) and those of the Eastern, Jazan and Riyadh Regions were infected with Theileria annulata (11.3–25%) and Eperthrozoon wenyoni (1–4%). Moreover, Jazan cattle were infected with Babesia bigemina (6%) and a benign Theileria species (27%). Some of these parasites are recorded in new localities indicating that they are spreading in the country. Also, this is the first report in Saudi Arabia of D. evansi in camels, A. ovis and B. motasi in sheep and A. marginale and B. bigemina in cattle. These parasites may be introduced into the country with infected livestock infested with the vectors of these parasites. The suspected vectors of the detected parasites in Saudi Arabia is discussed. Follow up surveys of blood parasites are recommended to assess their distribution and infection rates in the livestock of all Regions of Saudi Arabia, to make plans for control measures against their vectors.  相似文献   

14.
Despite the widespread problem with surra (Trypanosoma evansi) in livestock, there are no published studies on its impact on host populations, probably because of the large financial and time cost involved in performing longitudinal studies. During 2002-6, a cross-sectional survey for T. evansi infection involving 1732 buffaloes from 71 villages in southern Philippines was carried out. Other livestock animals (horses, cattle and goats) in every surveyed village were also tested for infection with T. evansi but domestic buffaloes were the primary survey target. Seroprevalence ranged from 6% to 21% and 13% to 100% for buffaloes in low and high risk areas, respectively. Key demographic parameters were estimated from the age structured distributions of the sampled buffalo population for each sex. All areas were dominated by females (69%) and the annual calving rate for areas of 100% and low seroprevalence was 15% and 47%, respectively. Males were removed at a relatively high annual rate of 27% in all areas. In the main reproductive years (4-10) female removal/mortality was <1% and 10% for low and high risk areas, respectively. Older females were removed/died at a rate similar to males regardless of area. In high risk areas there were consistently more 2-year than 1-year old females and the reverse was true for the low risk areas. This implies that females were imported to the high risk areas for breeding. By assuming a stable age structure and similar size populations in each area, it was estimated that 28% of female calves need to be moved from low to high risk areas to maintain the observed age structure. In high risk areas, surra imposes significant financial losses due to reduced fertility, high mortality/removal rate and the necessity to import replacement buffaloes.  相似文献   

15.

Background

Trypanosoma (T.) evansi is a dyskinetoplastic variant of T. brucei that has gained the ability to be transmitted by all sorts of biting flies. T. evansi can be divided into type A, which is the most abundant and found in Africa, Asia and Latin America and type B, which has so far been isolated only from Kenyan dromedary camels. This study aimed at the isolation and the genetic and phenotypic characterisation of type A and B T. evansi stocks from camels in Northern Ethiopia.

Methodology/principal findings

T. evansi was isolated in mice by inoculation with the cryopreserved buffy coat of parasitologically confirmed animals. Fourteen stocks were thus isolated and subject to genotyping with PCRs targeting type-specific variant surface glycoprotein genes, mitochondrial minicircles and maxicircles, minisatellite markers and the F1-ATP synthase γ subunit gene. Nine stocks corresponded to type A, two stocks were type B and three stocks represented mixed infections between A and B, but not hybrids. One T. evansi type A stock was completely akinetoplastic. Five stocks were adapted to in vitro culture and subjected to a drug sensitivity assay with melarsomine dihydrochloride, diminazene diaceturate, isometamidium chloride and suramin. In vitro adaptation induced some loss of kinetoplasts within 60 days. No correlation between drug sensitivity and absence of the kinetoplast was observed. Sequencing the full coding sequence of the F1-ATP synthase γ subunit revealed new type-specific single nucleotide polymorphisms and deletions.

Conclusions/significance

This study addresses some limitations of current molecular markers for T. evansi genotyping. Polymorphism within the F1-ATP synthase γ subunit gene may provide new markers to identify the T. evansi type that do not rely on variant surface glycoprotein genes or kinetoplast DNA.  相似文献   

16.
Cellular interleukin-10 (IL-10) gene from the peripheral blood mononuclear cells of the healthy Dromedary camel (Camelus dromedarius) and viral IL-10 (vIL-10) from the skin scabs of the Dromedary camels infected with contagious ecthyma (a parapoxviral infection in the camels) were amplified by polymerase chain reaction, cloned and characterized. Sequence analysis revealed that the open reading frame (ORF) of dromedarian camel IL-10 is 537 bp in length, encoding 178 amino acid polypeptide while open reading frame of vIL-10 from camel is 561 bp, encoding 187 amino acid polypeptide. The Dromedary camel IL-10 exhibited 62.6% and 68.5% sequence identity at the nucleotide and amino acid level, respectively, with vIL-10 from camel. Sequence analysis also revealed that the Dromedary camel IL-10 shared 99.4% and 98.3% identity at the nucleotide and amino acid level, respectively, with the Bactrian camel (Camelus bactrianus). But vIL-10 from camel shared 84.7% and 83.4% sequence identity at the nucleotide and amino acid level, respectively, with vIL-10 from reindeer (Rangifer tarandus), which is a ruminant species belonging to the order Artiodactyla. The present study was conducted to evaluate the evolutionary origin of the camel parapoxvirus with parapoxviruses of cattle and sheep and the resultant sequence analysis revealed that camel parapoxvirus is closely related to cattle parapoxvirus than sheep parapoxvirus (Orf virus).  相似文献   

17.
《Journal of Asia》2023,26(1):102023
Endosymbionts have gained prominence as a potential tool for biological control strategies in reducing vector-borne diseases. This study aimed to evaluate the presence of Arsenophonus, Spiroplasma, and Rickettsia endosymbionts in wild specimens of phlebotomine sand flies, as well as in culicids collected in different regions of Colombia. Analyses were conducted through conventional PCR, Sanger sequencing of the 16S rRNA gene, and phylogenetic analyses. Individuals from among 946 phlebotomine sand flies and 143 mosquitoes were selected for taxonomic identification confirmed through the analysis of the cytochrome oxidase subunit I gene sequences. Results showed the presence of Arsenophonus bacteria in samples of Lutzomyia longipalpis, Psychodopygus panamensis, and Pintomyia evansi. Arsenophonus sequences associated with Lu. longipalpis and Ps. panamensis are phylogenetically located near to sequences of louse flies, with K2P genetic distances of 0.006. In contrast, sequences obtained from Pi. evansi are phylogenetically located near Arsenophonus nasoniae (K2P 0.001–0.014). Other sequences of endosymbionts similar to Arsenophonus with high K2P genetic distances (0.056–0.097), when compared to different reference strains of this endosymbiont, were also found in other samples of Lu. longipalpis and Ae. aegypti. To the best of our knowledge, this is the first successful attempt to detect and elucidate the phylogenetic relationship of Arsenophonus in phlebotomine sand flies, yet its role within these insect vectors remains to be fully determined; therefore, the importance of entomological surveys that help better understand its behavior and potential use as a control agent is required to enable the proactive reduction of sand fly populations.  相似文献   

18.
In a series of tritrophic-level interaction experiments, the effect of selected host plants of the spider mites, Tetranychus evansi and Tetranychus urticae, on Neozygites floridana was studied by evaluating the attachment of capilliconidia, presence of hyphal bodies in the infected mites, mortality from fungal infection, mummification and sporulation from fungus-killed mite cadavers. Host plants tested for T. evansi were tomato, cherry tomato, eggplant, nightshade, and pepper while host plants tested for T. urticae were strawberry, jack bean, cotton and Gerbera. Oviposition rate of the mites on each plant was determined to infer host plant suitability while host-switching determined antibiosis effect on fungal activity. T. evansi had a high oviposition on eggplant, tomato and nightshade but not on cherry tomato and pepper. T. urticae on jack bean resulted in a higher oviposition than on strawberry, cotton and Gerbera. Attachment of capilliconidia to the T. evansi body, presence of hyphal bodies in infected T. evansi and mortality from fungal infection were significantly higher on pepper, nightshade and tomato. The highest level of T. evansi mummification was observed on tomato. T. evansi cadavers from tomato and eggplant produced more primary conidia than those from cherry tomato, nightshade and pepper. Switching N. floridana infected T. evansi from one of five Solanaceous host plants to tomato had no prominent effect on N. floridana performance. For T. urticae, strawberry and jack bean provided the best N. floridana performance when considering all measured parameters. Strawberry also had the highest primary conidia production. This study shows that performance of N. floridana can vary with host plants and may be an important factor for the development of N. floridana epizootics.  相似文献   

19.
Trypanosoma evansi is a mammal generalist protozoon which causes negative effects on health and productivity in bovine and equine herds in South America, Europe, Asia and Africa. By molecular methods, we screened the presence of that parasite together with other trypanosome species in 105 bats of 10 species collected in arid zones of northern Venezuela. The first molecular approach was fluorescent fragment length barcoding (FFLB), which relies on amplification of relative small regions of rRNA genes (four loci) and fluorescence detection. By FFLB, 17 samples showed patterns of possible trypanosomatid infections. These samples were used to test presence of trypanosomes by PCR using the following DNA markers: V7–V8 SSU rRNA, gGAPDH and kDNA minicircle regions. Only in one individual of the nectar-feeding bat, Leptonycteris curasoae, we were able to amplify 1000 bp of the trypanosome kDNA minicircle. That PCR product was sequenced and the parasite species was determined by NCBI-BLAST and phylogenetic analysis. Both analyses showed that the minicircle sequence corresponds to Trypanosoma evansi. The phylogenetic analysis of the sequence obtained in this study clustered with a T. evansi sequence obtained in a Venezuelan capybara, Hydrochoerus hydrochaeris, and distant of others two T. evansi sequences obtained in a Colombian capybara and horse. This result supports the hypothesis of multiple origins of T. evansi in South America.  相似文献   

20.
The aim of this study was to evaluate female camels affected with ovarian hydrobursitis (n = 31) for hematological and biochemical findings and for bacterial and protozoal infections. Blood samples were obtained and surgical ablation of the affected bursa was performed. Bursal fluid, follicular fluid, and serum were subjected to hormonal and biochemical analyses. Bursal fluids were cultured and colonies were identified using BioMérieux Vitek two compact system. Passive haemagglutination test was used for detection of Trypanosoma evansi. Indirect ELISA technique was carried out for detection of anti-Hydatid cysts anti-bodies. Neutrophilia was found in the affected animals (P = 0.01) with tendencies for monocytosis (P = 0.06) and eosinophelia (P = 0.05). Bursal fluid had a tendency for high estradiol-17β concentration compared to blood serum (P = 0.07). Progesterone and cholesterol concentrations were similar in bursal fluid, follicular fluid and serum. Total protein, phosphorus, and magnesium concentrations were greater (P < 0.05) in the bursal fluid than in serum. Oligella urethralis, Alloiococcus otitis, Granulicatella adicens, Escherichia coli, Sphingobacterium thalpophilum, Streptococcus sanguinis, Aeromonas salmonicida, Pseudomonas stutzeri, Staphylococcus warneri, Staphylococcus hominis, and Rhizobium radiobacter were isolated from 46.7% of bursal fluids. T. evansi was positive in 9.7% of cases. None were positive for hydatid cyst. Accordingly, we suggest that the ovarian hydrobursitis syndrome is initially an inflammatory process and the accumulated bursal fluid is partially originated from follicular fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号