首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Invasive mesopredators are responsible for the decline of many species of native mammals worldwide. Feral cats have been causally linked to multiple extinctions of Australian mammals since European colonization. While feral cats are found throughout Australia, most research has been undertaken in arid habitats, thus there is a limited understanding of feral cat distribution, abundance, and ecology in Australian tropical rainforests. We carried out camera‐trapping surveys at 108 locations across seven study sites, spanning 200 km in the Australian Wet Tropics. Single‐species occupancy analysis was implemented to investigate how environmental factors influence feral cat distribution. Feral cats were detected at a rate of 5.09 photographs/100 days, 11 times higher than previously recorded in the Australian Wet Tropics. The main environmental factors influencing feral cat occupancy were a positive association with terrain ruggedness, a negative association with elevation, and a higher affinity for rainforest than eucalypt forest. These findings were consistent with other studies on feral cat ecology but differed from similar surveys in Australia. Increasingly harsh and consistently wet weather conditions at higher elevations, and improved shelter in topographically complex habitats may drive cat preference for lowland rainforest. Feral cats were positively associated with roads, supporting the theory that roads facilitate access and colonization of feral cats within more remote parts of the rainforest. Higher elevation rainforests with no roads could act as refugia for native prey species within the critical weight range. Regular monitoring of existing roads should be implemented to monitor feral cats, and new linear infrastructure should be limited to prevent encroachment into these areas. This is pertinent as climate change modeling suggests that habitats at higher elevations will become similar to lower elevations, potentially making the environment more suitable for feral cat populations.  相似文献   

2.
Globally, non-native ungulates threaten native biodiversity, alter biotic and abiotic factors regulating ecological processes, and incur significant economic costs via herbivory, rooting, and trampling. Removal of non-native ungulates is an increasingly common and crucial first step in conserving and restoring native forests. However, removal is often controversial and there is currently little information on plant community responses to this management action. Here, we examine the response of native and non-native understory vegetation in paired sites inside and outside of exclosures across a 6.5–18.5 year chronosequence of feral pig (Sus scrofa) removal from canopy-intact Hawaiian tropical montane wet forest. Stem density and cover of native plants, species richness of ground-rooted native woody plants, and abundance of native plants of conservation interest were all significantly higher where feral pigs had been removed. Similarly, the area of exposed soil was substantially lower and cover of litter and bryophytes was greater with feral pig removal. Spatial patterns of recruitment were also strongly affected. Whereas epiphytic establishment was similar between treatments, the density of ground-rooted woody plants was four times higher with feral pig removal. Abundance of invasive non-native plants also increased at sites where they had established prior to feral pig removal. We found no patterns in any of the measured variables with time, suggesting that commonly occurring species recover within 6.5 years of feral pig removal. Recovery of species of conservation interest, however, was highly site specific and limited to areas that possessed remnant populations at the time of removal, indicating that some species take much longer (>18.5 years) to recover. Feral pig removal is the first and most crucial step for conservation of native forests in this area, but subsequent management should also include control of non-native invasive plants and outplanting native species of conservation interest that fail to recruit naturally.  相似文献   

3.
Populations of feral horses (Equus ferus caballus) in the western United States have increased during the past decade, consequently affecting co-occurring wildlife habitat. Feral horses may influence 2 native wildlife species, greater sage-grouse (Centrocercus urophasianus; sage-grouse) and pronghorn (Antilocapra americana) through mechanisms of habitat alteration and competition. Wyoming, USA, contains the largest populations of pronghorn and sage-grouse of any state and also has the highest degree of range overlap between feral horses and these species. Consequently, the effects that horses may have on pronghorn and sage-grouse populations in Wyoming have implications at local, state, and population-wide levels. Managers need information concerning habitat selection and space use overlap among these species to develop appropriate management strategies; yet this information is absent for most feral horse management areas. To address this knowledge need, we attached global positioning system (GPS) transmitters to horses, pronghorn, and sage-grouse within the greater Bureau of Land Management–Adobe Town Herd Management Area in southern Wyoming and northern Colorado, USA, between 2017 and 2021 to evaluate habitat selection and space use of all species during 3 biologically relevant seasons: spring (Apr–Jun; sage-grouse breeding, nesting, and early-brood rearing; pronghorn late gestation and early parturition), summer (Jul–Oct; sage-grouse summer and late-brood rearing; pronghorn late parturition and breeding), and winter (Nov–Mar; non-breeding season). Feral horses selected flatter slopes and shorter mean shrub height across all seasons and were closer to water in spring and summer. Pronghorn habitat selection was similar to horses, but they also avoided oil and gas well pads year-round. During spring, sage-grouse selected greater herbaceous cover, flatter slopes, and areas farther from well pads. In summer, sage-grouse selected greater mean shrub height, flatter slopes, and were closer to water. In winter, sage-grouse selected flatter slopes and areas with greater vegetation production during the preceding summer. Our results indicate strong year-round overlap in space use between horses and pronghorn, whereas overlap between horses and sage-grouse is greatest during the summer in this region. Consequently, managers should recognize the potential for horses to influence habitat quality of pronghorn and sage-grouse in the region.  相似文献   

4.
Feral populations of domesticated crops can establish through two nonmutually exclusive pathways: hybridization with native relatives and recruitment of and recombination between known cultivars. The extent and relative importance of these pathways is not known, especially for woody fruit crops. Here, we examined the evolutionary origins of feral populations of Malus domestica (domestic apple) in southern Canada using a population genetic analysis. We characterized genotypes of 578 putative feral apple trees and evaluated them in relation to genotypes of 156 commercial cultivars, 28 non‐native, ornamental crabapples and 47 native Malus coronaria trees using 14 microsatellite markers. No feral trees were genetic admixtures between domestic and native Malus; however, a minority of trees were admixed with introduced ornamental Malus. Feral trees and commercial cultivars both occurred in two major genetic groups and seven subgroups distributed throughout all commercial growing regions. A total of 42 cultivars, both heritage and currently grown, occurred in probable parental pairs for feral trees, with nine heritage varieties accounting for 72% of parental assignments. We conclude that feral apples in southern Canada are not products of hybridization with native M. coronaria but we cannot exclude ornamental apple species as contributing to the naturalization process. Nonhybrid feral domestic apples have multiple origins, with a prominent signature of early heritage cultivars. These lineages have spread and coexist throughout Ontario, rather than being derived strictly from local sources.  相似文献   

5.
6.
The domestic cat has been introduced on most islands worldwide, where it has established feral populations and is currently known to be one of the worst invasive mammalian predators. Predation is the strongest deleterious effect of cats on wildlife, inducing a direct negative impact on population size and dynamics, breeding success and changes in species assemblages. Direct predation is not the only damaging impact on native wildlife, since cats can be responsible for other poorly-documented underlying ecological impacts, like competition, hybridization, disease transmission, ecological process alteration, and behavioral change. Here, we pinpoint relevant examples of these ecological impacts, by searching for accurate data from published literature. We used electronic databases covering most of the world islands where the effects of cats were documented. Knowledge of these impacts can be of great importance to preserve insular ecosystem functions and persistence of endangered native species. We emphasize that direct predation processes should not be the only factor considered in the management of invasive cats on islands.  相似文献   

7.
For many ecosystems, feral horses are increasingly becoming an important if not dominant component of ungulate biomass and hence influence on community dynamics. Yet we still know little of how horses contribute to key ecological interactions including predator-prey and indirect competitive relationships at a community level. Notably, feral species like horses can exhibit life-history traits that differ from that of native (mainly artiodactyl) herbivore competitors. Artificial selection for traits like increased, early, or extended reproduction that have yet to be reversed by natural selection, coupled with naturally selected differences in anatomy and behavior, in addition to unique management objectives for horses compared to other species, means that the dynamics of feral horse populations are not likely to align with what might be expected of other large herbivores. Unexpected population dynamics and inherent biological asymmetries between native ungulates and feral horses may therefore influence the former via direct competition for shared resources and through enemy-mediated interactions like apparent competition. In several localities feral horses now co-exist with multiple native prey species, some of which are in decline or are species at risk. Compounding risks to native species from direct or indirect competitive exclusion by horses is the unique nature and socio-political context of feral horse management, which tends towards allowing horse populations to be limited largely by natural, density-dependent factors. We summarize the inherent asymmetries between feral horse biology and that of other ungulate prey species with consequences for conservation, focusing on predator-prey and emerging indirect interactions in multi-prey systems, and highlight future directions to address key knowledge gaps in our understanding of how feral horses may now be contributing to the (re)structuring of food webs. Observations of patterns of rapid growth and decline, and associated skews in sex ratios of feral horse populations, indicate a heightened potential for indirect interactions among large ungulate prey species, where there is a prevalence of feral horses as preferred prey, particularly where native prey are declining. In places like western North America, we expect predator-prey interactions involving feral horses to become an increasingly important factor in the conservation of wildlife. This applies not only to economically or culturally important game species but also at-risk species, both predators (e.g., wolves [Canis lupus], grizzly bears [Ursus arctos]) and prey (e.g., woodland caribou [Rangifer tarandus caribou]), necessitating an ecological understanding of the role of horses in natural environments that goes beyond that of population control. © 2021 The Wildlife Society.  相似文献   

8.
Feral rye (Secale cereale) is a serious, introduced weed of dry land agricultural regions of the western United States. It closely resembles cultivated cereal rye (Secale cereale cereale L.) with the exception of having a shattering seed head. Feral rye may have originated from hybridization of cultivated rye with mountain rye, Secale strictum, as past studies of northern Californian populations suggest, or directly from volunteer cultivated rye. We characterized the genetic structure of feral rye populations across a broad geographical range and reexamined evidence for hybrid origin versus direct evolution from domesticated cultivars. Eighteen feral populations were examined from three climatically distinct regions in the western United States. Seven cultivars, four mountain rye accessions, and one wild annual relative (Secale cereale ancestrale) were included in our analysis as possible progenitors of feral rye. Individual plants were scored for 14 allozyme and three microsatellite loci. Estimates of genetic diversity in feral populations were relatively high compared to those of the possible progenitors, suggesting that the weed had not undergone a genetic bottleneck. Weed populations had no geographical structure at either a broad or a local scale, suggesting idiosyncratic colonization and gene-flow histories at each site. Feral rye populations were no more closely related to mountain rye than cultivars were. They were, however, weakly clustered as a distinct lineage relative to cultivars. Our results do not support an interspecific hybrid origin for feral rye, but do suggest that the sampled populations of feral rye share a common ancestry that may explain its weedy nature.  相似文献   

9.
Ecological impacts of feral pigs in the Hawaiian Islands   总被引:1,自引:0,他引:1  
The foraging habits of exotic ungulate species can directly and indirectly affect native plant and animal distribution and abundance patterns. Most of the studies on feral pig interactions with other biota in the Hawaiian Islands have been published as difficult to access reports to governmental and nongovernmental organizations, graduate student theses, and a few in peer reviewed journals. In this paper we discuss the origins of pig introductions to Hawaii, their feralization process, population expansion, and interactions with native and non-native biota. We also consider the environmental effects triggered by pigs on local ecosystems and biotic communities. Feral pig activities can reduce the abundance of native plant species, enhance conditions for the establishment of invasive non-indigenous plants, and perhaps indirectly negatively impact native forest bird species. Pig foraging and traveling patterns may also lead to physical alteration of ecosystems by increasing soil erosion that may lead to watershed degradation. However, much remains to be learned about the strength and significance of aforementioned interactions and their long-term effects on Hawaiian biota and ecosystems due to some confounding events. Elucidating the dynamics and long-term ecological effects generated by pigs is a crucial step towards increasing our understanding of and more effectively managing biotic interactions.  相似文献   

10.
11.
Scavenging plays a vital role in maintaining ecosystem health and contributing to ecological functions; however, research in this sub‐discipline of ecology is underutilized in developing and implementing wildlife conservation and management strategies. We provide an examination of the literature and recommend priorities for research where improved understanding of scavenging dynamics can facilitate the development and refinement of applied wildlife conservation and management strategies. Due to the application of scavenging research broadly within ecology, scavenging studies should be implemented for informing management decisions. In particular, a more direct link should be established between scavenging dynamics and applied management programs related to informing pharmaceutical delivery and population control through bait uptake for scavenging species, prevention of unintentional poisoning of nontarget scavenging species, the epidemiological role that scavenging species play in disease dynamics, estimating wildlife mortalities, nutrient transfer facilitated by scavenging activity, and conservation of imperiled facultative scavenging species. This commentary is intended to provide information on the paucity of data in scavenging research and present recommendations for further studies that can inform decisions in wildlife conservation and management. Additionally, we provide a framework for decision‐making when determining how to apply scavenging ecology research for management practices and policies. Due to the implications that scavenging species have on ecosystem health, and their overall global decline as a result of anthropic activities, it is imperative to advance studies in the field of scavenging ecology that can inform applied conservation and management programs.  相似文献   

12.
Abstract: Feral pigs (Sus scrofa) have caused considerable damage where they have been introduced around the world. At Pinnacles National Monument, California, USA, managers were concerned that feral pigs were damaging wetland habitats, reducing oak regeneration, competing with native wildlife, and dispersing nonnative plant species through soil disturbance. To address these threats the National Park Service constructed an exclosure around 57 km2 of monument land and through cooperation with the Institute for Wildlife Studies eradicated all feral pigs within the area. Trapping, ground-hunting, hunting dogs, and Judas techniques were used to remove feral pigs. Trapping techniques removed most pigs, but a combination of techniques was required to cause eradication. A series of bait sites and transects across the monument helped focus removal efforts and facilitated detection of the last remaining feral pigs in the exclosure. Consistent funding and cooperation from the National Park Service allowed for a seamless and comprehensive program that provided intensive removal of feral pigs. The successful eradication of feral pigs at Pinnacles National Monument should encourage managers in other areas to implement future control or eradication programs.  相似文献   

13.
《新西兰生态学杂志》2011,19(2):203-207
The diets of feral pigs and feral goats shot on the main Auckland Island in 1989 are described from analyses of stomach and rumen contents. Feral goats ate at least 50 species of plants, but only three, Metrosideros umbellata, Chionochloa antarctica, and Durvillea antarctica made up over 50% by dried weight of the food eaten. Feral pigs ate a mixed plant and animal diet, of which plants made up 61% of the diet, with the megaherb Anisotome antipoda being the largest dietary item at 38% by dried weight. The animals eaten by pigs were mostly annelids, at 26% by dry weight of their diet, and there was little evidence of predation or scavenging on birds. Goats have subsequently been eradicated from the island, but feral pigs remain arguably a potential threat to current conservation values and certainly an impediment to any restoration of the island's natural values.  相似文献   

14.
Introduced mammalian predators have had significant impacts on many native prey species. Although control of such predators for conservation management is becoming increasingly commonplace, it is often undertaken at a relatively small scale in relation to the overall predator population. Processes such as immigration mean that it remains difficult to determine the effectiveness of control measures. We investigated the impacts of feral ferret Mustela furo removal on the entire feral ferret population on Rathlin Island, UK. Removal of ferrets prior to breeding led to a substantial increase in the post-dispersal population through the enhanced survival of juveniles. Despite increased numbers, overwinter survival remained high, potentially aided by the reduced territoriality shown by this feral species compared to wild carnivores. The response of this ferret population to control is a further illustration of the complex ecological processes and outcomes arising from the anthropogenic disruption of wildlife populations. It highlights how partial or localised management may prove ineffective, and at worst might exacerbate the problems that management was designed to avert.  相似文献   

15.
The feral Goat (Capra hircus) has successfully exploited a range of landscapes around the world with occurrences of overabundance resulting in significant damage to ecological values. In forested ecosystems in Australia, there are currently limited means to control the species when compared to the range of management techniques available for other pest animals. To redress this deficiency, we designed a feed structure combined with commercially available salt blocks to attract goats to set locations in a forested study area. Structures that exploited differences in the pedal morphology (foot size and shape) of native herbivores (kangaroos and wallabies) and ungulates (feral goats and deer) were found to be highly target‐specific, with feral goats freely able to access salt blocks, whilst nontarget native species were effectively excluded. Other introduced ungulate species, Fallow Deer (Dama dama) and Red Deer (Cervus elaphus), successfully accessed salt blocks in feed structures but at a considerably lower rate than feral goats. The capacity to present a range of bait types within a target‐specific feed structure, once matched with a humane toxicant, could provide land managers with an additional cost‐effective lethal control tool for future management of feral ungulates, particularly goats.  相似文献   

16.
Feral oilseed rape populations on roadsides and along other semi-natural habitats contribute to the uncertainty regarding the potential risk of transgene escape from genetically modified (GM) oilseed rape to wild or weedy populations. Knowledge about the underlying mechanism of establishment, persistence, and the evolutionary potential of feral populations is a prerequisite for a successful risk assessment and of high policy relevance. We analysed the origin, persistence, and genetic variation of feral oilseed rape populations in northwest Germany based on a field survey (2004–2007) and nuclear microsatellite markers. A maximum-likelihood approach was used to allocate individuals of feral populations to their source varieties and to hybrids between these varieties. The majority (72%) of the analysed sites was inhabited by oilseed rape for at least 2 years. The proportion of feral populations setting seeds varied between years (30–48%) and was higher than in comparable studies. Within-population genetic diversity of feral oilseed rape populations was higher than that of the common grown varieties studied. Repeated escapes of different varieties and hybridisation between these varieties were identified as the most important sources of genetic variation in feral oilseed rape populations. Up to four different source varieties were identified in feral populations. The detection of three hybrids between different varieties indicates that feral oilseed rape populations may persist via self-recruitment. Our results highlight the evolutionary potential of feral oilseed rape populations and have consequences for approaches to regulate the coexistence of genetically modified and non-GM oilseed rape varieties in the same region. Feral populations may serve as stepping stones for intraspecific and interspecific gene flow and can promote persistence of transgenes outside cultivation. The likelihood of introgressive interspecific hybridisation depends on the abundance of crossing partners, which may vary strongly from region to region.  相似文献   

17.
Mammalian carnivore populations are often intensively managed, either because the carnivore in question is endangered, or because it is viewed as a pest and is subjected to control measures, or both. Most management programmes treat carnivore species in isolation. However, there is a large and emerging body of evidence to demonstrate that populations of different carnivores interact with each other in a variety of complex ways. Thus, the removal or introduction of predators to or from a system can often affect other species in ways that are difficult to predict. Wildlife managers must consider such interactions when planning predator control programmes. Integrated predator control will require a greater understanding of the complex relationships between species. In many parts of the world, sympatric species of carnivores have coexisted over an evolutionary time scale so that niche differentiation has occurred, and competition is difficult to observe. Australia has experienced numerous introductions during the past 200 years, including those of the red fox (Vulpes vulpes) and the feral cat (Felis catus). These species now exist in sympatry with native mammalian predators, providing ecologists with the opportunity to study their interactions without the confounding effects of coevolution. Despite an increasing body of observational evidence for complex interactions among native and introduced predators in Australia, few studies have attempted to clarify these relationships experimentally, and the interactions remain largely unacknowledged. A greater understanding of these interactions would provide ecologists and wildlife managers world-wide with the ability to construct robust predictive models of carnivore communities, and to identify their broader effects on ecosystem functioning. We suggest that future research should focus on controlled and replicated predator removal or addition experiments. The dingo (Canis lupus dingo), as a likely keystone species, should be a particular focus of attention.  相似文献   

18.
Cats are among the most successful and damaging invaders on islands and a significant driver of extinction and endangerment. Better understanding of their ecology can improve effective management actions such as eradication. We reviewed 72 studies of insular feral cat diet from 40 islands worldwide. Cats fed on a wide range of species from large birds and medium sized mammals to small insects with at least 248 species consumed (27 mammals, 113 birds, 34 reptiles, 3 amphibians, 2 fish and 69 invertebrates). Three mammals, 29 birds and 3 reptiles recorded in the diet of cats are listed as threatened by the IUCN. However, a few species of introduced mammals were the most frequent prey, and on almost all islands mammals and birds contributed most of the daily food intake. Latitude was positively correlated with the predation of rabbits and negatively with the predation of reptiles and invertebrates. Distance from landmass was positively correlated with predation on birds and negatively correlated with the predation of reptiles. The broad range of taxa consumed by feral cats on islands suggests that they have the potential to impact almost any native species, even the smallest ones under several grams, that lack behavioral, morphological or life history adaptations to mammalian predators. Insular feral cat??s reliance on introduced mammals, which evolved with cat predation, suggests that on many islands, populations of native species have already been reduced.  相似文献   

19.
Many high-elevation lakes in designated wilderness are stocked with native and nonnative fish by state fish and game agencies to provide recreational fishing opportunities. In several areas, this practice has become controversial with state wildlife managers who support historical recreational use of wilderness, federal wilderness managers who assert that stocking compromises some of the ecological and social values of wilderness, and different public groups that support one or the other position. Herein we examine this controversy from the perspective of the 1964 Wilderness Act, its judicial interpretation, the policies of the federal agencies, and formal agreements between federal and state agencies. Although some state stocking programs restore native fish populations, other programs may compromise some of the ecological and social values of wilderness areas. Further, although current federal regulations recognize state authority for fish stocking, judicial interpretation gives federal agencies the authority for direct involvement in decisions regarding fish stocking in wilderness. Where there are differences of opinion between state and federal managers, this judicial interpretation strongly points to the need for improved cooperation, communication, and coordination between state wildlife managers and federal wilderness managers to balance recreational fishing opportunities and other wildlife management activities with wilderness values. Received 28 March 2000; Accepted 16 August 2000.  相似文献   

20.
Feral Horse (Equus caballus) impacts in northern Kosciuszko National Park, New South Wales, Australia are directly occurring in habitat of the nationally threatened Broad‐toothed Rat (Mastacomys fuscus). This species is endemic primarily to the mountain regions of south‐eastern mainland Australia and Tasmania, with a disjunct population at Barrington Tops. The Broad‐toothed Rat's preferred habitat is being increasingly impacted by browsing and trampling associated with the expansion of feral horse populations. This study surveyed 180 sites supporting preferred habitat for this species to determine Broad‐toothed Rat presence and relative abundance in relation to the level of feral horse impacts within the reserve. There was a significant negative relationship between feral horse impacts and both Broad‐toothed Rat presence and abundance. No scats were identified at localities where feral horse impacts were severe, and at moderate horse impact sites, there was a proportion (34%) without scats found. Locations with low horse impacts had little impact on Broad‐toothed Rat occurrence. As feral horse populations increase, Broad‐toothed Rat populations may be further impacted. Such impacts will be due to the loss of vegetation cover from feral horse trampling and grazing, making animals more vulnerable to predation by predators or impacting on their ability to disperse to more suitable habitat. Habitat remnants and vegetation corridors along drainage lines require protection from feral horses to prevent localized extinctions of Broad‐toothed Rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号