首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PurposeIn this article, we propose a novel, semi-automatic segmentation method to process 3D MR images of the prostate using the Bhattacharyya coefficient and active band theory with the goal of providing technical support for computer-aided diagnosis and surgery of the prostate.MethodsOur method consecutively segments a stack of rotationally resectioned 2D slices of a prostate MR image by assessing the similarity of the shape and intensity distribution in neighboring slices. 2D segmentation is first performed on an initial slice by manually selecting several points on the prostate boundary, after which the segmentation results are propagated consecutively to neighboring slices. A framework of iterative graph cuts is used to optimize the energy function, which contains a global term for the Bhattacharyya coefficient with the help of an auxiliary function. Our method does not require previously segmented data for training or for building statistical models, and manual intervention can be applied flexibly and intuitively, indicating the potential utility of this method in the clinic.ResultsWe tested our method on 3D T2-weighted MR images from the ISBI dataset and PROMISE12 dataset of 129 patients, and the Dice similarity coefficients were 90.34 ± 2.21% and 89.32 ± 3.08%, respectively. The comparison was performed with several state-of-the-art methods, and the results demonstrate that the proposed method is robust and accurate, achieving similar or higher accuracy than other methods without requiring training.ConclusionThe proposed algorithm for segmenting 3D MR images of the prostate is accurate, robust, and readily applicable to a clinical environment for computer-aided surgery or diagnosis.  相似文献   

2.
Manual segmentation of articular cartilage from knee joint 3D magnetic resonance images (MRI) is a time consuming and laborious task. Thus, automatic methods are needed for faster and reproducible segmentations. In the present study, we developed a semi-automatic segmentation method based on radial intensity profiles to generate 3D geometries of knee joint cartilage which were then used in computational biomechanical models of the knee joint. Six healthy volunteers were imaged with a 3T MRI device and their knee cartilages were segmented both manually and semi-automatically. The values of cartilage thicknesses and volumes produced by these two methods were compared. Furthermore, the influences of possible geometrical differences on cartilage stresses and strains in the knee were evaluated with finite element modeling. The semi-automatic segmentation and 3D geometry construction of one knee joint (menisci, femoral and tibial cartilages) was approximately two times faster than with manual segmentation. Differences in cartilage thicknesses, volumes, contact pressures, stresses, and strains between segmentation methods in femoral and tibial cartilage were mostly insignificant (p > 0.05) and random, i.e. there were no systematic differences between the methods. In conclusion, the devised semi-automatic segmentation method is a quick and accurate way to determine cartilage geometries; it may become a valuable tool for biomechanical modeling applications with large patient groups.  相似文献   

3.
Spinal cord segmentation is a developing area of research intended to aid the processing and interpretation of advanced magnetic resonance imaging (MRI). For example, high resolution three-dimensional volumes can be segmented to provide a measurement of spinal cord atrophy. Spinal cord segmentation is difficult due to the variety of MRI contrasts and the variation in human anatomy. In this study we propose a new method of spinal cord segmentation based on one-dimensional template matching and provide several metrics that can be used to compare with other segmentation methods. A set of ground-truth data from 10 subjects was manually-segmented by two different raters. These ground truth data formed the basis of the segmentation algorithm. A user was required to manually initialize the spinal cord center-line on new images, taking less than one minute. Template matching was used to segment the new cord and a refined center line was calculated based on multiple centroids within the segmentation. Arc distances down the spinal cord and cross-sectional areas were calculated. Inter-rater validation was performed by comparing two manual raters (n = 10). Semi-automatic validation was performed by comparing the two manual raters to the semi-automatic method (n = 10). Comparing the semi-automatic method to one of the raters yielded a Dice coefficient of 0.91 +/- 0.02 for ten subjects, a mean distance between spinal cord center lines of 0.32 +/- 0.08 mm, and a Hausdorff distance of 1.82 +/- 0.33 mm. The absolute variation in cross-sectional area was comparable for the semi-automatic method versus manual segmentation when compared to inter-rater manual segmentation. The results demonstrate that this novel segmentation method performs as well as a manual rater for most segmentation metrics. It offers a new approach to study spinal cord disease and to quantitatively track changes within the spinal cord in an individual case and across cohorts of subjects.  相似文献   

4.
《IRBM》2023,44(3):100747
ObjectivesThe accurate preoperative segmentation of the uterus and uterine fibroids from magnetic resonance images (MRI) is an essential step for diagnosis and real-time ultrasound guidance during high-intensity focused ultrasound (HIFU) surgery. Conventional supervised methods are effective techniques for image segmentation. Recently, semi-supervised segmentation approaches have been reported in the literature. One popular technique for semi-supervised methods is to use pseudo-labels to artificially annotate unlabeled data. However, many existing pseudo-label generations rely on a fixed threshold used to generate a confidence map, regardless of the proportion of unlabeled and labeled data.Materials and MethodsTo address this issue, we propose a novel semi-supervised framework called Confidence-based Threshold Adaptation Network (CTANet) to improve the quality of pseudo-labels. Specifically, we propose an online pseudo-labels method to automatically adjust the threshold, producing high-confident unlabeled annotations and boosting segmentation accuracy. To further improve the network's generalization to fit the diversity of different patients, we design a novel mixup strategy by regularizing the network on each layer in the decoder part and introducing a consistency regularization loss between the outputs of two sub-networks in CTANet.ResultsWe compare our method with several state-of-the-art semi-supervised segmentation methods on the same uterine fibroids dataset containing 297 patients. The performance is evaluated by the Dice similarity coefficient, the precision, and the recall. The results show that our method outperforms other semi-supervised learning methods. Moreover, for the same training set, our method approaches the segmentation performance of a fully supervised U-Net (100% annotated data) but using 4 times less annotated data (25% annotated data, 75% unannotated data).ConclusionExperimental results are provided to illustrate the effectiveness of the proposed semi-supervised approach. The proposed method can contribute to multi-class segmentation of uterine regions from MRI for HIFU treatment.  相似文献   

5.
ObjectiveComparison of a fully-automated segmentation method that uses compartmental volume information to a semi-automatic user-guided and FDA-approved segmentation technique.MethodsNineteen patients with a recently diagnosed and histologically confirmed glioblastoma (GBM) were included and MR images were acquired with a 1.5 T MR scanner. Manual segmentation for volumetric analyses was performed using the open source software 3D Slicer version 4.2.2.3 (www.slicer.org). Semi-automatic segmentation was done by four independent neurosurgeons and neuroradiologists using the computer-assisted segmentation tool SmartBrush® (referred to as SB), a semi-automatic user-guided and FDA-approved tumor-outlining program that uses contour expansion. Fully automatic segmentations were performed with the Brain Tumor Image Analysis (BraTumIA, referred to as BT) software. We compared manual (ground truth, referred to as GT), computer-assisted (SB) and fully-automated (BT) segmentations with regard to: (1) products of two maximum diameters for 2D measurements, (2) the Dice coefficient, (3) the positive predictive value, (4) the sensitivity and (5) the volume error.ResultsSegmentations by the four expert raters resulted in a mean Dice coefficient between 0.72 and 0.77 using SB. BT achieved a mean Dice coefficient of 0.68. Significant differences were found for intermodal (BT vs. SB) and for intramodal (four SB expert raters) performances. The BT and SB segmentations of the contrast-enhancing volumes achieved a high correlation with the GT. Pearson correlation was 0.8 for BT; however, there were a few discrepancies between raters (BT and SB 1 only). Additional non-enhancing tumor tissue extending the SB volumes was found with BT in 16/19 cases. The clinically motivated sum of products of diameters measure (SPD) revealed neither significant intermodal nor intramodal variations. The analysis time for the four expert raters was faster (1 minute and 47 seconds to 3 minutes and 39 seconds) than with BT (5 minutes).ConclusionBT and SB provide comparable segmentation results in a clinical setting. SB provided similar SPD measures to BT and GT, but differed in the volume analysis in one of the four clinical raters. A major strength of BT may its independence from human interactions, it can thus be employed to handle large datasets and to associate tumor volumes with clinical and/or molecular datasets ("-omics") as well as for clinical analyses of brain tumor compartment volumes as baseline outcome parameters. Due to its multi-compartment segmentation it may provide information about GBM subcompartment compositions that may be subjected to clinical studies to investigate the delineation of the target volumes for adjuvant therapies in the future.  相似文献   

6.
Background and ObjectiveThe development, control and optimisation of new x-ray breast imaging modalities could benefit from a quantitative assessment of the resulting image textures. The aim of this work was to develop a software tool for routine radiomics applications in breast imaging, which will also be available upon request.MethodsThe tool (developed in MATLAB) allows image reading, selection of Regions of Interest (ROI), analysis and comparison. Requirements towards the tool also included convenient handling of common medical and simulated images, building and providing a library of commonly applied algorithms and a friendly graphical user interface. Initial set of features and analyses have been selected after a literature search. Being open, the tool can be extended, if necessary.ResultsThe tool allows semi-automatic extracting of ROIs, calculating and processing a total of 23 different metrics or features in 2D images and/or in 3D image volumes. Computations of the features were verified against computations with other software packages performed with test images. Two case studies illustrate the applicability of the tool – (i) features on a series of 2D ‘left’ and ‘right’ CC mammograms acquired on a Siemens Inspiration system were computed and compared, and (ii) evaluation of the suitability of newly proposed and developed breast phantoms for x-ray-based imaging based on reference values from clinical mammography images. Obtained results could steer the further development of the physical breast phantoms.ConclusionsA new image analysis toolbox was realized and can now be used in a multitude of radiomics applications, on both clinical and test images.  相似文献   

7.
PurposeTo develop an automatic multimodal method for segmentation of parotid glands (PGs) from pre-registered computed tomography (CT) and magnetic resonance (MR) images and compare its results to the results of an existing state-of-the-art algorithm that segments PGs from CT images only.MethodsMagnetic resonance images of head and neck were registered to the accompanying CT images using two different state-of-the-art registration procedures. The reference domains of registered image pairs were divided on the complementary PG regions and backgrounds according to the manual delineation of PGs on CT images, provided by a physician. Patches of intensity values from both image modalities, centered around randomly sampled voxels from the reference domain, served as positive or negative samples in the training of the convolutional neural network (CNN) classifier. The trained CNN accepted a previously unseen (registered) image pair and classified its voxels according to the resemblance of its patches to the patches used for training. The final segmentation was refined using a graph-cut algorithm, followed by the dilate-erode operations.ResultsUsing the same image dataset, segmentation of PGs was performed using the proposed multimodal algorithm and an existing monomodal algorithm, which segments PGs from CT images only. The mean value of the achieved Dice overlapping coefficient for the proposed algorithm was 78.8%, while the corresponding mean value for the monomodal algorithm was 76.5%.ConclusionsAutomatic PG segmentation on the planning CT image can be augmented with the MR image modality, leading to an improved RT planning of head and neck cancer.  相似文献   

8.

Purpose

To develop EdgeSelect, a semi-automatic method for the segmentation of retinal layers in spectral domain optical coherence tomography images, and to compare the segmentation results with a manual method.

Methods

SD-OCT (Heidelberg Spectralis) scans of 28 eyes (24 patients with diabetic macular edema and 4 normal subjects) were imported into a customized MATLAB application, and were manually segmented by three graders at the layers corresponding to the inner limiting membrane (ILM), the inner segment/ellipsoid interface (ISe), the retinal/retinal pigment epithelium interface (RPE), and the Bruch''s membrane (BM). The scans were then segmented independently by the same graders using EdgeSelect, a semi-automated method allowing the graders to guide/correct the layer segmentation interactively. The inter-grader reproducibility and agreement in locating the layer positions between the manual and EdgeSelect methods were assessed and compared using the Wilcoxon signed rank test.

Results

The inter-grader reproducibility using the EdgeSelect method for retinal layers varied from 0.15 to 1.21 µm, smaller than those using the manual method (3.36–6.43 µm). The Wilcoxon test indicated the EdgeSelect method had significantly better reproducibility than the manual method. The agreement between the manual and EdgeSelect methods in locating retinal layers ranged from 0.08 to 1.32 µm. There were small differences between the two methods in locating the ILM (p = 0.012) and BM layers (p<0.001), but these were statistically indistinguishable in locating the ISe (p = 0.896) and RPE layers (p = 0.771).

Conclusions

The EdgeSelect method resulted in better reproducibility and good agreement with a manual method in a set of eyes of normal subjects and with retinal disease, suggesting that this approach is feasible for OCT image analysis in clinical trials.  相似文献   

9.
ObjectiveThe treatment of lung adenocarcinomas is conditioned by the presence of certain genetic abnormalities. Certain quantitative parameters obtained from FDG PET-CT, at the voxel scale, provide tumour shape and texture characteristics and might predict their mutational status. Our objective was to determine the impact of the segmentation method in the characterization of lung adenocarcinomas in FDG PET-CT.MethodsForty-nine patients with pulmonary adenocarcinomas were retrospectively included, with their initial FDG PET-CT image. The studied tumours were big, heterogeneous and difficult to segment automatically. The automatic FLAB algorithm was used with and without manual adjustment. The parameters were extracted and compared to the ALK, PDL1, and KRAS status, in order to compare the performances of the two segmentation methods. Their performance was determined by the ROC curve method.ResultsSeveral parameters were significant to predict genetic status (AUC > 0.65). The best performing parameters were different according to the genes studied and according to the resampling methods used. The results were less dependent on resampling in automatic segmentation without manual adjustment. The best performing parameters were volume dependent parameters for segmentation with manual adjustment, and texture parameters for automatic segmentation without adjustment.ConclusionThe study of texture parameters is more efficient in automatic segmentation that is not manually adjusted, and it is advantageous to use a manual adjustment when studying volume-dependent parameters in the case of very heterogeneous tumors.  相似文献   

10.
PurposeTo investigate the robustness of PET radiomic features (RF) against tumour delineation uncertainty in two clinically relevant situations.MethodsTwenty-five head-and-neck (HN) and 25 pancreatic cancer patients previously treated with 18F-Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT)-based planning optimization were considered. Seven FDG-based contours were delineated for tumour (T) and positive lymph nodes (N, for HN patients only) following manual (2 observers), semi-automatic (based on SUV maximum gradient: PET_Edge) and automatic (40%, 50%, 60%, 70% SUV_max thresholds) methods. Seventy-three RF (14 of first order and 59 of higher order) were extracted using the CGITA software (v.1.4). The impact of delineation on volume agreement and RF was assessed by DICE and Intra-class Correlation Coefficients (ICC).ResultsA large disagreement between manual and SUV_max method was found for thresholds ≥50%. Inter-observer variability showed median DICE values between 0.81 (HN-T) and 0.73 (pancreas). Volumes defined by PET_Edge were better consistent with the manual ones compared to SUV40%. Regarding RF, 19%/19%/47% of the features showed ICC < 0.80 between observers for HN-N/HN-T/pancreas, mostly in the Voxel-alignment matrix and in the intensity-size zone matrix families. RFs with ICC < 0.80 against manual delineation (taking the worst value) increased to 44%/36%/61% for PET_Edge and to 69%/53%/75% for SUV40%.ConclusionsAbout 80%/50% of 72 RF were consistent between observers for HN/pancreas patients. PET_edge was sufficiently robust against manual delineation while SUV40% showed a worse performance. This result suggests the possibility to replace manual with semi-automatic delineation of HN and pancreas tumours in studies including PET radiomic analyses.  相似文献   

11.

Objective

To present and validate a semi-automatic segmentation protocol to enable an accurate 3D reconstruction of the mandibular condyles using cone beam computed tomography (CBCT).

Materials and Methods

Approval from the regional medical ethics review board was obtained for this study. Bilateral mandibular condyles in ten CBCT datasets of patients were segmented using the currently proposed semi-automatic segmentation protocol. This segmentation protocol combined 3D region-growing and local thresholding algorithms. The segmentation of a total of twenty condyles was performed by two observers. The Dice-coefficient and distance map calculations were used to evaluate the accuracy and reproducibility of the segmented and 3D rendered condyles.

Results

The mean inter-observer Dice-coefficient was 0.98 (range [0.95–0.99]). An average 90th percentile distance of 0.32 mm was found, indicating an excellent inter-observer similarity of the segmented and 3D rendered condyles. No systematic errors were observed in the currently proposed segmentation protocol.

Conclusion

The novel semi-automated segmentation protocol is an accurate and reproducible tool to segment and render condyles in 3D. The implementation of this protocol in the clinical practice allows the CBCT to be used as an imaging modality for the quantitative analysis of condylar morphology.  相似文献   

12.
Obtaining in vivo human brain tissue volumetrics from MRI is often complicated by various technical and biological issues. These challenges are exacerbated when significant brain atrophy and age-related white matter changes (e.g. Leukoaraiosis) are present. Lesion Explorer (LE) is an accurate and reliable neuroimaging pipeline specifically developed to address such issues commonly observed on MRI of Alzheimer''s disease and normal elderly. The pipeline is a complex set of semi-automatic procedures which has been previously validated in a series of internal and external reliability tests1,2. However, LE''s accuracy and reliability is highly dependent on properly trained manual operators to execute commands, identify distinct anatomical landmarks, and manually edit/verify various computer-generated segmentation outputs.LE can be divided into 3 main components, each requiring a set of commands and manual operations: 1) Brain-Sizer, 2) SABRE, and 3) Lesion-Seg. Brain-Sizer''s manual operations involve editing of the automatic skull-stripped total intracranial vault (TIV) extraction mask, designation of ventricular cerebrospinal fluid (vCSF), and removal of subtentorial structures. The SABRE component requires checking of image alignment along the anterior and posterior commissure (ACPC) plane, and identification of several anatomical landmarks required for regional parcellation. Finally, the Lesion-Seg component involves manual checking of the automatic lesion segmentation of subcortical hyperintensities (SH) for false positive errors.While on-site training of the LE pipeline is preferable, readily available visual teaching tools with interactive training images are a viable alternative. Developed to ensure a high degree of accuracy and reliability, the following is a step-by-step, video-guided, standardized protocol for LE''s manual procedures.  相似文献   

13.
AimPhilips recently integrated PlanIQ with Autoplan® in Pinnacle3 TPS (V16.2). The objective of the present work is to quantitatively demonstrate how this integration improves the plan quality.BackgroundPinnacle3 Autoplan® is the tool that generates the treatment plans with clinically acceptable plan quality with less manual intervention. In the recent past, a new tool called PlanIQ (Sun Nuclear Corp.) was introduced for a priori estimation of the best possible sparing of an organ at risk (OAR) for a given patient anatomy. Philips has recently integrated PlanIQ tool with Autoplan® for a seamless and efficient planning workflow.Materials and methodsWe have performed this evaluation in Pinnacle3 TPS (V.16.2) for the VMAT treatment technique. All plans were created using Varian True beam machine with the dual arc technique. Basically, we created two sets of VMAT plans using 6 MV photons. In the first set of VMAT plans (AP_RTOG), we used OAR goals from either RTOG guidelines to perform optimization using Autoplan®. Subsequently, we exported the same dataset to the PlanIQ system to perform feasibility analysis on the OAR goals. These newly obtained OAR goals from PlanIQ were used to generate the other set of plans (AP_PlanIQ plans). We compared the dosimetric results from these two sets of plans in five cases, such as brain, head & neck, lung, abdomen and prostate.ResultsWe compared the dosimetric results for AP_RTOG and AP_PlanIQ plans. We used RTOG guidelines to evaluate the plans and observed that while both sets of plans were meeting the RTOG guidelines in terms of OAR sparing, the AP_PlanIQ plans were significantly better in terms of OAR sparing as compared to AP_RTOG plans without any compromise in the target coverage.ConclusionThe results indicate that, although Autoplan helps achieve the user-defined goals without much manual intervention, the plan quality (OAR sparing) can be significantly improved without taking many iterative steps when PlanIQ suggested clinical goals are used in the Autoplan-based optimization.Advances in knowledgeAt present, there are no published material available about the efficacy of the integration of PlanIQ with Autoplanning®. In the present work, our objective is to evaluate the improvements in plan quality resulting from this integration.  相似文献   

14.
Background and AimsIn addition to terrestrial laser scanning (TLS), mobile laser scanning (MLS) is increasingly arousing interest as a technique which provides valuable 3-D data for various applications in forest research. Using mobile platforms, the 3-D recording of large forest areas is carried out within a short space of time. Vegetation structure is described by millions of 3-D points which show an accuracy in the millimetre range and offer a powerful basis for automated vegetation modelling. The successful extraction of single trees from the point cloud is essential for further evaluations and modelling at the individual-tree level, such as volume determination, quantitative structure modelling or local neighbourhood analyses. However, high-precision automated tree segmentation is challenging, and has so far mostly been performed using elaborate interactive segmentation methods.MethodsHere, we present a novel segmentation algorithm to automatically segment trees in MLS point clouds, applying distance adaptivity as a function of trajectory. In addition, tree parameters are determined simultaneously. In our validation study, we used a total of 825 trees from ten sample plots to compare the data of trees segmented from MLS data with manual inventory parameters and parameters derived from semi-automatic TLS segmentation.Key ResultsThe tree detection rate reached 96 % on average for trees with distances up to 45 m from the trajectory. Trees were almost completely segmented up to a distance of about 30 m from the MLS trajectory. The accuracy of tree parameters was similar for MLS-segmented and TLS-segmented trees.ConclusionsBesides plot characteristics, the detection rate of trees in MLS data strongly depends on the distance to the travelled track. The algorithm presented here facilitates the acquisition of important tree parameters from MLS data, as an area-wide automated derivation can be accomplished in a very short time.  相似文献   

15.
PurposeTo develop a deep learning-based metal artifact reduction (DL-MAR) method using unpaired data and to evaluate its dosimetric impact in head and neck intensity-modulated radiation therapy (IMRT) compared with the water density override method.MethodsThe data set comprised the data of 107 patients who underwent radiotherapy. Fifteen patients with dental fillings were used as the test data set. The computed tomography (CT) images of the remaining 92 patients were divided into two domains: the metal artifact and artifact-free domains. CycleGAN was used for domain translation. The artifact index of the DL-MAR images was compared with that of the original uncorrected (UC) CT images. The dose distributions of the DL-MAR and UC plans were created by comparing the reference clinical plan with the water density override method (water plan) in each dataset. Dosimetric deviation in the oral cavity from the water plan was evaluated.ResultsThe artifact index of the DL-MAR images was significantly smaller than that of the UC images in all patients (13.2 ± 4.3 vs. 267.3 ± 113.7). Compared with the reference water plan, dose differences of the UC plans were greater than those of the DL-MAR plans. DL-MAR images provided dosimetric results that were more similar to those of the water plan than the UC plan.ConclusionsWe developed a fast DL-MAR method using CycleGAN for head and neck IMRT. The proposed method could provide consistent dose calculation against metal artifact and improve the efficiency of the planning process by eliminating manual delineation.  相似文献   

16.
We describe a protocol for fully automated detection and segmentation of asymmetric, presumed excitatory, synapses in serial electron microscopy images of the adult mammalian cerebral cortex, taken with the focused ion beam, scanning electron microscope (FIB/SEM). The procedure is based on interactive machine learning and only requires a few labeled synapses for training. The statistical learning is performed on geometrical features of 3D neighborhoods of each voxel and can fully exploit the high z-resolution of the data. On a quantitative validation dataset of 111 synapses in 409 images of 1948×1342 pixels with manual annotations by three independent experts the error rate of the algorithm was found to be comparable to that of the experts (0.92 recall at 0.89 precision). Our software offers a convenient interface for labeling the training data and the possibility to visualize and proofread the results in 3D. The source code, the test dataset and the ground truth annotation are freely available on the website http://www.ilastik.org/synapse-detection.  相似文献   

17.

Rationale

Accurate measurement of subsolid pulmonary nodules (SSN) is becoming increasingly important in the management of these nodules. SSNs were previously quantified with time-consuming manual measurements. The aim of the present study is to test the feasibility of semi-automatic SSNs measurements and to compare the results to the manual measurements.

Methods

In 33 lung cancer screening participants with 33 SSNs, the nodules were previously quantified by two observers manually. In the present study two observers quantified these nodules by using semi-automated nodule volumetry software. Nodules were quantified for effective diameter, volume and mass. The manual and semi-automatic measurements were compared using Bland-Altman plots and paired T tests. Observer agreement was calculated as an intraclass correlation coefficient. Data are presented as mean (SD).

Results

Semi-automated measurements were feasible in all 33 nodules. Nodule diameter, volume and mass were 11.2 (3.3) mm, 935 (691) ml and 379 (311) milligrams for observer 1 and 11.1 (3.7) mm, 986 (797) ml and 399 (344) milligrams for observer 2, respectively. Agreement between observers and within observer 1 for the semi-automatic measurements was good with an intraclass correlation coefficient >0.89. For observer 1 and observer 2, measured diameter was 8.8% and 10.3% larger (p<0.001), measured volume was 24.3% and 26.5% larger (p<0.001) and measured mass was 10.6% and 12.0% larger (p<0.001) with the semi-automatic program compared to the manual measurements.

Conclusion

Semi-automated measurement of the diameter, volume and mass of SSNs is feasible with good observer agreement. Semi-automated measurement makes quantification of mass and volume feasible in daily practice.  相似文献   

18.
BackgroundDevelopment of noninvasive molecular assays to improve disease diagnosis and patient monitoring is a critical need. In renal transplantation, acute rejection (AR) increases the risk for chronic graft injury and failure. Noninvasive diagnostic assays to improve current late and nonspecific diagnosis of rejection are needed. We sought to develop a test using a simple blood gene expression assay to detect patients at high risk for AR.ConclusionsThe kSORT blood QPCR assay is a noninvasive tool to detect high risk of AR of renal transplants.Please see later in the article for the Editors'' Summary  相似文献   

19.
BackgroundTo examine 1) the rate of lung cancer screening (LCS) utilization in a large healthcare system in South Carolina; 2) associations of urbanicity and travel time with LCS utilization.MethodsLCS-eligible patients from 2019 were identified. The outcome was LCS utilization. The exposures were zip-code level urbanicity and travel time from the centroid of zip-code area to the nearest screening site (<10,10-<20, ≥20 min). Covariates included age, sex, race, marital status, insurance, body mass index, chronic obstructive pulmonary disease, Charlson Comorbidity Index (0, 1, 2, ≥3), and zip-code level median income. Chi-square tests and logistic regressions were employed.ResultsThe analysis included 6930 patients, among whom 1432 (20.66%) received LCS. After adjusting for covariates, living in a non-metropolitan area (adjusted odds ratio: 0.32; 95% confidence interval: 0.26–0.40) and having longer travel time (0.80 [0.65–0.98] and 0.68 [0.54–0.86] for 10-<20 and ≥20 min travel time, respectively, compared to <10 min travel time) were significantly associated with lower odds of LCS utilization.ConclusionsThe LCS utilization rate of a healthcare system was about 20% in 2019. Living in non-metropolitan areas or having longer travel time to LCS site were associated with lower LCS utilization.  相似文献   

20.
《IRBM》2022,43(6):640-657
ObjectivesImage segmentation plays an important role in the analysis and understanding of the cellular process. However, this task becomes difficult when there is intensity inhomogeneity between regions, and it is more challenging in the presence of the noise and clustered cells. The goal of the paper is propose an image segmentation framework that tackles the above cited problems.Material and methodsA new method composed of two steps is proposed: First, segment the image using B-spline level set with Region-Scalable Fitting (RSF) active contour model, second apply the Watershed algorithm based on new object markers to refine the segmentation and separate clustered cells. The major contributions of the paper are: 1) Use of a continuous formulation of the level set in the B-spline basis, 2) Develop the energy function and its derivative by introducing the RSF model to deal with intensity inhomogeneity, 3) For the Watershed, propose a relevant choice of markers that considers the cell properties.ResultsExperimental results are performed on widely used synthetic images, in addition to simulated and real biological images, without and with additive noise. They attest the high quality of segmentation of the proposed method in terms of quantitative and qualitative evaluation.ConclusionThe proposed method is able to tackle many difficulties at the same time: overlapped intensities, noise, different cell sizes and clustered cells. It provides an efficient tool for image segmentation especially biological ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号