首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dengue and chikungunya are acute viral infections with overlapping clinical symptoms. Both diseases are transmitted by common mosquito vectors resulting in their co‐circulation in a region. Molecular and serological tests specific for both dengue and chikungunya infections were performed on 87 acute phase blood samples collected from patients with suspected dengue/chikungunya infections in Delhi from September to December, 2011. RT‐PCR and IgM ELISA were performed to detect dengue virus (DENV) and chikungunya virus (CHIKV). NS1 and IgG ELISA were also performed to detect DENV specific antigen and secondary DENV infection. DENV infection was detected in 49%, CHIKV infection in 29% and co‐infection with DENV and CHIKV in 10% of the samples by RT‐PCR. DENV serotypes 1, 2 and 3 were detected in this study. Nine DENV‐1 strains, six DENV‐2 strains and 20 CHIKV strains were characterized by DNA sequencing and phylogenetic analysis of their respective envelope protein genes. DENV‐1 strains grouped in the American African genotype, DENV‐2 strains in the Cosmopolitan genotype and CHIKV strains in the East Central South African genotype by phylogenetic analysis. This is one of the few studies reporting the phylogeny of two dengue virus serotypes (DENV‐1 and DENV‐2) and CHIKV. Surveillance and monitoring of DENV and CHIKV strains are important for design of strategies to control impending epidemics.  相似文献   

2.
Little is known about the mechanism of flavivirus genome encapsidation. Here, functional elements of the dengue virus (DENV) capsid (C) protein were investigated. Study of the N-terminal region of DENV C has been limited by the presence of overlapping cis-acting RNA elements within the protein-coding region. To dissociate these two functions, we used a recombinant DENV RNA with a duplication of essential RNA structures outside the C coding sequence. By the use of this system, the highly conserved amino acids FNML, which are encoded in the RNA cyclization sequence 5'CS, were found to be dispensable for C function. In contrast, deletion of the N-terminal 18 amino acids of C impaired DENV particle formation. Two clusters of basic residues (R5-K6-K7-R9 and K17-R18-R20-R22) were identified as important. A systematic mutational analysis indicated that a high density of positive charges, rather than particular residues at specific positions, was necessary. Furthermore, a differential requirement of N-terminal sequences of C for viral particle assembly was observed in mosquito and human cells. While no viral particles were observed in human cells with a virus lacking the first 18 residues of C, DENV propagation was detected in mosquito cells, although to a level about 50-fold less than that observed for a wild-type (WT) virus. We conclude that basic residues at the N terminus of C are necessary for efficient particle formation in mosquito cells but that they are crucial for propagation in human cells. This is the first report demonstrating that the N terminus of C plays a role in DENV particle formation. In addition, our results suggest that this function of C is differentially modulated in different host cells.  相似文献   

3.
Analogous to observations in RNA viruses such as human immunodeficiency virus, genetic variation associated with intrahost dengue virus (DENV) populations has been postulated to influence viral fitness and disease pathogenesis. Previous attempts to investigate intrahost genetic variation in DENV characterized only a few viral genes or a limited number of full-length genomes. We developed a whole-genome amplification approach coupled with deep sequencing to capture intrahost diversity across the entire coding region of DENV-2. Using this approach, we sequenced DENV-2 genomes from the serum of 22 Nicaraguan individuals with secondary DENV infection and captured ~75% of the DENV genome in each sample (range, 40 to 98%). We identified and quantified variants using a highly sensitive and specific method and determined that the extent of diversity was considerably lower than previous estimates. Significant differences in intrahost diversity were detected between genes and also between antigenically distinct domains of the Envelope gene. Interestingly, a strong association was discerned between the extent of intrahost diversity in a few genes and viral clade identity. Additionally, the abundance of viral variants within a host, as well as the impact of viral mutations on amino acid encoding and predicted protein function, determined whether intrahost variants were observed at the interhost level in circulating Nicaraguan DENV-2 populations, strongly suggestive of purifying selection across transmission events. Our data illustrate the value of high-coverage genome-wide analysis of intrahost diversity for high-resolution mapping of the relationship between intrahost diversity and clinical, epidemiological, and virological parameters of viral infection.  相似文献   

4.
Clyde K  Harris E 《Journal of virology》2006,80(5):2170-2182
Dengue virus is a positive-strand RNA virus and a member of the genus Flavivirus, which includes West Nile, yellow fever, and tick-borne encephalitis viruses. Flavivirus genomes are translated as a single polyprotein that is subsequently cleaved into 10 proteins, the first of which is the viral capsid (C) protein. Dengue virus type 2 (DENV2) and other mosquito-borne flaviviruses initiate translation of C from a start codon in a suboptimal context and have multiple in-frame AUGs downstream. Here, we show that an RNA hairpin structure in the capsid coding region (cHP) directs translation start site selection in human and mosquito cells. The ability of the cHP to direct initiation from the first start codon is proportional to its thermodynamic stability, is position dependent, and is sequence independent, consistent with a mechanism in which the scanning initiation complex stalls momentarily over the first AUG as it begins to unwind the cHP. The cHP of tick-borne flaviviruses is not maintained in a position to influence start codon selection, which suggests that this coding region cis element may serve another function in the flavivirus life cycle. Here, we demonstrate that the DENV2 cHP and both the first and second AUGs of C are necessary for efficient viral replication in human and mosquito cells. While numerous regulatory elements have been identified in the untranslated regions of RNA viral genomes, we show that the cHP is a coding-region RNA element that directs start codon selection and is required for viral replication.  相似文献   

5.
Dengue virus (DENV) is the causative agent of the most prevalent arthropod-borne viral disease, thus representing a significant global health burden. Because of its limited coding capacity, DENV exploits components and pathways of the host cell to assure productive replication. In the past few years, important insights into this intimate interaction between DENV and the host cell have been gained. These include the identification of the ER-associated degradation pathway, autophagy, the unfolded protein response or lipid droplets that all play a crucial role for efficient DENV replication. In addition, strategies used by the virus to combat innate antiviral responses have been unraveled. Improving our understanding of the DENV-host cell relation will facilitate our attempts to develop efficient antiviral strategies.  相似文献   

6.
Abstract

Dengue virus (DENV) C protein is essential for viral assembly. DENV C protein associates with intracellular membranes through a conserved hydrophobic domain and accumulates around endoplasmic reticulum-derived lipid droplets which could provide a platform for capsid formation during assembly. In a previous work we described a region in DENV C protein which induced a nearly complete membrane rupture of several membrane model systems, which was coincident with the theoretically predicted highly hydrophobic region of the protein. In this work we have carried out a study of the binding to and interaction with model biomembranes of a peptide corresponding to this DENV C region, DENV2C6. We show that DENV2C6 partitions into phospholipid membranes, is capable of rupturing membranes even at very low peptide-to-lipid ratios and its membrane-activity is modulated by lipid composition. These results identify an important region in the DENV C protein which might be directly implicated in the DENV life cycle through the modulation of membrane structure.  相似文献   

7.
Dengue is the most common arthropod-borne viral (Arboviral) illness in humans. The genetic features concerning the codon usage of dengue virus (DENV) were analyzed by the relative synonymous codon usage, the effective number of codons and the codon adaptation index. The evolutionary distance between DENV and the natural hosts (Homo sapiens, Pan troglodytes, Aedes albopictus and Aedes aegypti) was estimated by a novel formula. Finally, the synonymous codon usage preference for the translation initiation region of this virus was also analyzed. The result indicates that the general trend of the 59 synonymous codon usage of the four genotypes of DENV are similar to each other, and this pattern has no link with the geographic distribution of the virus. The effect of codon usage pattern of Aedes albopictus and Aedes aegypti on the formation of codon usage of DENV is stronger than that of the two primates. Turning to the codon usage preference of the translation initiation region of this virus, some codons pairing to low tRNA copy numbers in the two primates have a stronger tendency to exist in the translation initiation region than those in the open reading frame of DENV. Although DENV, like other RNA viruses, has a high mutation to adapt its hosts, the regulatory features about the synonymous codon usage have been ‘branded’ on the translation initiation region of this virus in order to hijack the translational mechanisms of the hosts.  相似文献   

8.
9.
Sylvatic dengue viruses (DENV) are transmitted in an enzootic cycle between nonhuman primates and arboreal Aedes mosquitoes in Southeast Asia and West Africa. Although previous analyses have revealed the evolutionary processes among endemic (human) DENV, little is known about viral evolution in the sylvatic cycle. Through an analysis of 14 complete coding regions of sylvatic Dengue type 2 virus sampled over a 33-year period, we show that both the rate of evolutionary change and the pattern of natural selection are similar among endemic and sylvatic DENV, although the latter have a uniquely high frequency of positive selection in the NS4B protein gene. Our findings support a recent cross-species transmission event and suggest the possibility of future DENV reemergence from the sylvatic cycle.  相似文献   

10.
Dengue virus (DENV 1-4) represents the major emerging arthropod-borne viral infection in the world. Currently, there is neither an available vaccine nor a specific treatment. Hence, there is a need of antiviral drugs for these viral infections; we describe the prediction of short interfering RNA (siRNA) as potential therapeutic agents against the four DENV serotypes. Our strategy was to carry out a series of multiple alignments using ClustalX program to find conserved sequences among the four DENV serotype genomes to obtain a consensus sequence for siRNAs design. A highly conserved sequence among the four DENV serotypes, located in the encoding sequence for NS4B and NS5 proteins was found. A total of 2,893 complete DENV genomes were downloaded from the NCBI, and after a depuration procedure to identify identical sequences, 220 complete DENV genomes were left. They were edited to select the NS4B and NS5 sequences, which were aligned to obtain a consensus sequence. Three different servers were used for siRNA design, and the resulting siRNAs were aligned to identify the most prevalent sequences. Three siRNAs were chosen, one targeted the genome region that codifies for NS4B protein and the other two; the region for NS5 protein. Predicted secondary structure for DENV genomes was used to demonstrate that the siRNAs were able to target the viral genome forming double stranded structures, necessary to activate the RNA silencing machinery.  相似文献   

11.
The coding region for the structural and nonstructural polypeptides of the type A12 foot-and-mouth disease virus genome has been identified by nucleotide sequencing of cloned DNA derived from the viral RNA. In addition, 704 nucleotides in the 5' untranslated region between the polycytidylic acid tract and the probable initiation codon of the first translated gene, P16-L, have been sequenced. This region has several potential initiation codons, one of which appears to be a low-frequency alternate initiation site. The coding region encompasses 6,912 nucleotides and ends in a single termination codon, UAA, located 96 nucleotides upstream from a 3'-terminal polyadenylic acid tract. Microsequencing of radiolabeled in vivo and in vitro translation products identified the genome position of the major foot-and-mouth disease virus proteins and the cleavage sites recognized by the putative viral protease and an additional protease(s), probably of cellular origin, to generate primary and functional foot-and-mouth disease virus polypeptides.  相似文献   

12.
13.
14.
Dengue virus (DENV) interacts with host cellular factors to construct a more favorable environment for replication, and the interplay between DENV and the host cellular cytoskeleton may represent one of the potential antiviral targeting sites. However, the involvement of cellular vimentin intermediate filaments in DENV replication has been explored less. Here, we revealed the direct interaction between host cellular vimentin and DENV nonstructural protein 4A (NS4A), a known component of the viral replication complex (RC), during DENV infection using tandem affinity purification, coimmunoprecipitation, and scanning electron microscopy. Furthermore, the dynamics of vimentin-NS4A interaction were demonstrated by using confocal three-dimensional (3D) reconstruction and proximity ligation assay. Most importantly, we report for the first time the discovery of the specific region of NS4A that interacts with vimentin lies within the first 50 amino acid residues at the cytosolic N-terminal domain of NS4A (N50 region). Besides identifying vimentin-NS4A interaction, vimentin reorganization and phosphorylation by calcium calmodulin-dependent protein kinase II occurs during DENV infection, signifying that vimentin reorganization is important in maintaining and supporting the DENV RCs. Interestingly, we found that gene silencing of vimentin by small interfering RNA induced a significant alteration in the distribution of RCs in DENV-infected cells. This finding further supports the crucial role of intact vimentin scaffold in localizing and concentrating DENV RCs at the perinuclear site, thus facilitating efficient viral RNA replication. Collectively, our findings implicate the biological and functional significance of vimentin during DENV replication, as we propose that the association of DENV RCs with vimentin is mediated by DENV NS4A.  相似文献   

15.
Dengue virus (DENV) infection of an individual human or mosquito host produces a dynamic population of closely-related sequences. This intra-host genetic diversity is thought to offer an advantage for arboviruses to adapt as they cycle between two very different host species, but it remains poorly characterized. To track changes in viral intra-host genetic diversity during horizontal transmission, we infected Aedes aegypti mosquitoes by allowing them to feed on DENV2-infected patients. We then performed whole-genome deep-sequencing of human- and matched mosquito-derived DENV samples on the Illumina platform and used a sensitive variant-caller to detect single nucleotide variants (SNVs) within each sample. >90% of SNVs were lost upon transition from human to mosquito, as well as from mosquito abdomen to salivary glands. Levels of viral diversity were maintained, however, by the regeneration of new SNVs at each stage of transmission. We further show that SNVs maintained across transmission stages were transmitted as a unit of two at maximum, suggesting the presence of numerous variant genomes carrying only one or two SNVs each. We also present evidence for differences in selection pressures between human and mosquito hosts, particularly on the structural and NS1 genes. This analysis provides insights into how population drops during transmission shape RNA virus genetic diversity, has direct implications for virus evolution, and illustrates the value of high-coverage, whole-genome next-generation sequencing for understanding viral intra-host genetic diversity.  相似文献   

16.
17.
Dengue virus (DENV) non-structural (NS) 4A is a membrane protein essential for viral replication. The N-terminal region of NS4A contains several helices interacting with the cell membrane and the C-terminal region consists of three potential transmembrane regions. The secondary structure of the intact NS4A is not known as the previous structural studies were carried out on its fragments. In this study, we purified the full-length NS4A of DENV serotype 4 into dodecylphosphocholine (DPC) micelles. Solution NMR studies reveal that NS4A contains six helices in DPC micelles. The N-terminal three helices are amphipathic and interact with the membrane. The C-terminal three helices are embedded in micelles. Our results suggest that NS4A contains three transmembrane helices. Our studies provide for the first time structural information of the intact NS4A of DENV and will be useful for further understanding its role in viral replication.  相似文献   

18.
Dengue virus (DENV) relies on host factors to complete its life cycle in its mosquito host for subsequent transmission to humans. DENV first establishes infection in the midgut of Aedes aegypti and spreads to various mosquito organs for lifelong infection. Curiously, studies have shown that infectious DENV titers peak and decrease thereafter in the midgut despite relatively stable viral genome levels. However, the mechanisms that regulate this decoupling of infectious virion production from viral RNA replication have never been determined. We show here that the ubiquitin proteasome pathway (UPP) plays an important role in regulating infectious DENV production. Using RNA interference studies, we show in vivo that knockdown of selected UPP components reduced infectious virus production without altering viral RNA replication in the midgut. Furthermore, this decoupling effect could also be observed after RNAi knockdown in the head/thorax of the mosquito, which otherwise showed direct correlation between infectious DENV titer and viral RNA levels. The dependence on the UPP for successful DENV production is further reinforced by the observed up-regulation of key UPP molecules upon DENV infection that overcome the relatively low expression of these genes after a blood meal. Collectively, our findings indicate an important role for the UPP in regulating DENV production in the mosquito vector.  相似文献   

19.
The 5′ untranslated region (5′UTR) of the dengue virus (DENV) genome contains two defined elements essential for viral replication. At the 5′ end, a large stem-loop (SLA) structure functions as the promoter for viral polymerase activity. Next to the SLA, there is a short stem-loop that contains a cyclization sequence known as the 5′ upstream AUG region (5′UAR). Here, we analyzed the secondary structure of the SLA in solution and the structural requirements of this element for viral replication. Using infectious DENV clones, viral replicons, and in vitro polymerase assays, we defined two helical regions, a side stem-loop, a top loop, and a U bulge within SLA as crucial elements for viral replication. The determinants for SLA-polymerase recognition were found to be common in different DENV serotypes. In addition, structural elements within the SLA required for DENV RNA replication were also conserved among different mosquito- and tick-borne flavivirus genomes, suggesting possible common strategies for polymerase-promoter recognition in flaviviruses. Furthermore, a conserved oligo(U) track present downstream of the SLA was found to modulate RNA synthesis in transfected cells. In vitro polymerase assays indicated that a sequence of at least 10 residues following the SLA, upstream of the 5′UAR, was necessary for efficient RNA synthesis using the viral 3′UTR as template.  相似文献   

20.
Dengue virus (DENV) is the leading cause of mosquito-borne viral illness and death in humans. Like many viruses, DENV has evolved potent mechanisms that abolish the antiviral response within infected cells. Nevertheless, several in vivo studies have demonstrated a key role of the innate immune response in controlling DENV infection and disease progression. Here, we report that sensing of DENV infected cells by plasmacytoid dendritic cells (pDCs) triggers a robust TLR7-dependent production of IFNα, concomitant with additional antiviral responses, including inflammatory cytokine secretion and pDC maturation. We demonstrate that unlike the efficient cell-free transmission of viral infectivity, pDC activation depends on cell-to-cell contact, a feature observed for various cell types and primary cells infected by DENV, as well as West Nile virus, another member of the Flavivirus genus. We show that the sensing of DENV infected cells by pDCs requires viral envelope protein-dependent secretion and transmission of viral RNA. Consistently with the cell-to-cell sensing-dependent pDC activation, we found that DENV structural components are clustered at the interface between pDCs and infected cells. The actin cytoskeleton is pivotal for both this clustering at the contacts and pDC activation, suggesting that this structural network likely contributes to the transmission of viral components to the pDCs. Due to an evolutionarily conserved suboptimal cleavage of the precursor membrane protein (prM), DENV infected cells release uncleaved prM containing-immature particles, which are deficient for membrane fusion function. We demonstrate that cells releasing immature particles trigger pDC IFN response more potently than cells producing fusion-competent mature virus. Altogether, our results imply that immature particles, as a carrier to endolysosome-localized TLR7 sensor, may contribute to regulate the progression of dengue disease by eliciting a strong innate response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号