首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The aim of this study was to dosimetrically compare three total body irradiation (TBI) techniques which can be delivered by a standard linear accelerator, and to deduce which one is preferable. Specifically, Extended Source to Surface Distance (SSD) Field-in-Field (FiF), Extended SSD Volumetric Modulated Arc Therapy (VMAT), and Standard SSD VMAT TBI techniques were dosimetrically evaluated. Percent depth dose and dose profile measurements were made under treatment conditions for each specified technique. After having generated treatment plans with a treatment planning system (TPS), dose homogeneity and critical organ doses were investigated on a Rando phantom using radiochromic films and optically stimulated luminescence dosimeters (OSLDs). TBI dose of 12 Gy in six fractions was prescribed for each technique. The gamma index (5%/5 mm) was used for the analysis of radiochromic films. Passing rates for Extended SSD FiF, Extended SSD VMAT and Standard SSD VMAT techniques were found to be 90%, 87% and 94%, respectively. OSLD measurements were within?±?5% agreement with TPS calculations for the first two techniques whereas the agreement was found to be within?±?3% for the Standard SSD VMAT technique. TPS calculations demonstrated that mean lung doses in the first two techniques were around 8.5 Gy while it was kept around 7 Gy in Standard SSD VMAT. It is concluded that Standard SSD VMAT is superior in sparing the lung tissue while all three TBI techniques are feasible in clinical practice with acceptable dose homogeneity. In the absence of VMAT-based treatment planning, Extended SSD FiF would be a reasonable choice compared to other conventional techniques.

  相似文献   

2.
PurposeTo investigate the performances of two commercial treatment planning systems (TPS) for Volumetric Modulated Arc Therapy (VMAT) optimization regarding prostate cancer. The TPS were compared in terms of dose distributions, treatment delivery parameters and quality control results.Materials and methodsFor ten patients, two VMAT plans were generated: one with Monaco TPS (Elekta) and one with Pinnacle TPS (Philips Medical Systems). The total prescribed dose was 78 Gy delivered in one 360° arc with a Synergy® linear accelerator equipped with a MLCi2®.ResultsVMAT with Monaco provided better homogeneity and conformity indexes but lower mean dose to PTVs than Pinnacle. For the bladder wall (p = 0.019), the femoral heads (p = 0.017), and healthy tissues (p = 0.005), significantly lower mean doses were found using Monaco. For the rectal wall, VMAT with Pinnacle provided a significantly (p = 0.047) lower mean dose, and lower dose into 50% of the volume (p = 0.047) compared to Monaco. Despite a greater number of monitor units (factor 1.5) for Monaco TPS, the total treatment time was equivalent to that of Pinnacle. The treatment delivery parameter analysis showed larger mean MLC area for Pinnacle and lower mean dose rate compared to Monaco. The quality control results gave a high passing rate (>97.4%) for the gamma index for both TPS but Monaco provided slightly better results.ConclusionFor prostate cancer patients, VMAT treatment plans obtained with Monaco and Pinnacle offered clinically acceptable dose distributions. Further investigations are in progress to confirm the performances of the two TPS for irradiating more complex volumes.  相似文献   

3.
ObjectivesTo verify the dosimetric accuracy of treatment plans in high dose rate (HDR) brachytherapy by using Gafchromic EBT2 film and to demonstrate the adequacy of dose calculations of a commercial treatment planning system (TPS) in a heterogeneous medium.MethodsAbsorbed doses at chosen points in anatomically different tissue equivalent phantoms were measured using Gafchromic EBT2 film. In one case, tandem ovoid brachytherapy was performed in a homogeneous cervix phantom, whereas in the other, organ heterogeneities were introduced in a phantom to replicate the upper thorax for esophageal brachytherapy treatment. A commercially available TPS was used to perform treatment planning in each case and the EBT2 films were irradiated with the HDR Ir-192 brachytherapy source.ResultsFilm measurements in the cervix phantom were found to agree with the TPS calculated values within 3% in the clinically relevant volume. In the thorax phantom, the presence of surrounding heterogeneities was not seen to affect the dose distribution in the volume being treated, whereas, a little dose perturbation was observed at the lung surface. Doses to the spinal cord and to the sternum bone were overestimated and underestimated by 14.6% and 16.5% respectively by the TPS relative to the film measurements. At the trachea wall facing the esophagus, a dose reduction of 10% was noticed in the measurements.ConclusionsThe dose calculation accuracy of the TPS was confirmed in homogeneous medium, whereas, it was proved inadequate to produce correct dosimetric results in conditions of tissue heterogeneity.  相似文献   

4.
PurposeWe have established a high-throughput Gafchromic film dosimetry protocol for narrow kilovoltage beams in homogeneous and heterogeneous media for small-animal radiotherapy applications. The kV beam characterization is based on extensive Gafchromic film dosimetry data acquired in homogeneous and heterogeneous media. An empirical model is used for parameterization of depth and off-axis dependence of measured data.MethodsWe have modified previously published methods of film dosimetry to suit the specific tasks of the study. Unlike film protocols used in previous studies, our protocol employs simultaneous multi-channel scanning and analysis of up to nine Gafchromic films per scan. A scanner and background correction were implemented to improve accuracy of the measurements. Measurements were taken in homogeneous and inhomogeneous phantoms at 220 kVp and a field size of 5 × 5 mm2. The results were compared against Monte Carlo simulations.ResultsDose differences caused by variations in background signal were effectively removed by the corrections applied. Measurements in homogeneous phantoms were used to empirically characterize beam data in homogeneous and heterogeneous media. Film measurements in inhomogeneous phantoms and their empirical parameterization differed by about 2%–3%. The model differed from MC by about 1% (water, lung) to 7% (bone). Good agreement was found for measured and modelled off-axis ratios.ConclusionsEBT2 films are a valuable tool for characterization of narrow kV beams, though care must be taken to eliminate disturbances caused by varying background signals. The usefulness of the empirical beam model in interpretation and parameterization of film data was demonstrated.  相似文献   

5.
AimThe aim of this study is to commission and validate Dolphin-Compass dosimetry as a patient-specific Quality Assurance (QA) device.BackgroundThe advancement of radiation therapy in terms of highly conformal delivery techniques demands a novel method of patient-specific QA. Dolphin-Compass system is a dosimetry solution capable of doing different QA in radiation therapy.Materials and methodsDolphin, air-vented ionization detector array mounted on Versa-HD Linear Accelerator (LINAC) was used for measurements. The Compass is a dose computation algorithm which requires modelling of LINAC head similar to other Treatment Planning Systems (TPS). The dosimetry system was commissioned after measuring the required beam data. The validation was performed by comparison of treatment plans generated in Monaco TPS against the measurement data. Different types of simple, complex, static and dynamic radiation fields and highly conformal treatment plans of patients were used in this study.ResultsFor all field sizes, point doses obtained from Dolphin-Compass dosimetry were in good agreement with the corresponding TPS calculated values in most of the regions, except the penumbra, outside field and at build-up depth. The results of gamma passing rates of measurements by using different Multi-leaf Collimator patterns and Intensity Modulated Radiation Therapy fluence were also found to be in good correlation with the corresponding TPS values.ConclusionsThe commissioning and validation of dosimetry was performed with the help of various fields, MLC patterns and complex treatment plans. The present study also evaluated the efficiency of the 3D dosimetry system for the QA of complex treatment plans.  相似文献   

6.
PurposeTo assess the dosimetric impact of a patient positioning device for prone breast radiotherapy and assess the accuracy of a treatment planning system (TPS) in predicting this impact.MethodsBeam attenuation and build-up dose perturbations, quantified by ionization chamber and radiochromic film dosimetry, were evaluated for 3 components of the patient positioning device: the carbon fiber baseplate, the support cushions and the support wedge for the contralateral breast. Dose calculations were performed using the XVMC dose engine implemented in the Monaco TPS. All components were included during planning CT acquisition.ResultsBeam attenuation amounted to 7.57% (6 MV) and 5.33% (15 MV) for beams obliquely intersecting the couchtop–baseplate combination. Beams traversing large sections of the support wedge were attenuated by 12.28% (6 MV) and 9.37% (15 MV). For the support cushion foam, beam attenuation remained limited to 0.11% (6 MV) and 0.08% (15 MV) per centimeter thickness. A substantial loss of dose build-up was detected when irradiating through any of the investigated components. TPS dose calculations accurately predicted beam attenuation by the baseplate and support wedge. A manual density overwrite was needed to model attenuation by the support cushion foam. TPS dose calculations in build-up regions differed considerably from measurements for both open beams and beams traversing the device components.ConclusionsIrradiating through the components of the positioning device resulted in a considerable degradation of skin sparing. Inclusion of the device components in the treatment planning CT allowed to accurately model the most important attenuation effect, but failed to accurately predict build-up doses.  相似文献   

7.
Purpose/objectiveThe objective of this study was to verify the accuracy of treatment plans of stereotactic body radiation therapy (SBRT) and to verify the feasibility of the use of Monte Carlo (MC) as quality control (QC) on a daily basis.Material/methodsUsing EGSnrc, a MC model of Agility™ linear accelerator was created. Various measurements (Percentage depth dose (PDD), Profiles and Output factors) were done for different fields sizes from 1x1 up to 40x40 (cm2). An iterative model optimization was performed to achieve adequate parameters of MC simulation. 40 SBRT patient’s dosimetry plans were calculated by Monaco™ 3.1.1. CT images, RT-STRUCT and RT-PLAN files from Monaco™ being used as input for Moderato MC code. Finally, dose volume histogram (DVH) and paired t-tests for each contour were used for dosimetry comparison of the Monaco™ and MC.ResultsValidation of MC model was successful, as <2% difference comparing to measurements for all field’s sizes. The main energy of electron source incident on the target was 5.8 MeV, and the full width at half maximum (FWHM) of Gaussian electron source were 0.09 and 0.2 (cm) in X and Y directions, respectively. For 40 treatment plan comparisons, the minimum absolute difference of mean dose of planning treatment planning (PTV) was 0.1% while the maximum was 6.3%. The minimum absolute difference of Max dose of PTV was 0.2% while the maximum was 8.1%.ConclusionSBRT treatment plans of Monaco agreed with MC results. It possible to use MC for treatment plans verifications as independent QC tool.  相似文献   

8.
AimTo study the dosimetric impact of statistical uncertainty (SU) per plan on Monte Carlo (MC) calculation in Monaco? treatment planning system (TPS) during volumetric modulated arc therapy (VMAT) for three different clinical cases.BackgroundDuring MC calculation SU is an important factor to decide dose calculation accuracy and calculation time. It is necessary to evaluate optimal acceptance of SU for quality plan with reduced calculation time.Materials and methodsThree different clinical cases as the lung, larynx, and prostate treated using VMAT technique were chosen. Plans were generated with Monaco? V5.11 TPS with 2% statistical uncertainty. By keeping all other parameters constant, plans were recalculated by varying SU, 0.5%, 1%, 2%, 3%, 4%, and 5%. For plan evaluation, conformity index (CI), homogeneity index (HI), dose coverage to PTV, organ at risk (OAR) dose, normal tissue receiving dose ≥5 Gy and ≥10 Gy, integral dose (NTID), calculation time, gamma pass rate, calculation reproducibility and energy dependency were analyzed.ResultsCI and HI improve as SU increases from 0.5% to 5%. No significant dose difference was observed in dose coverage to PTV, OAR doses, normal tissue receiving dose ≥5 Gy and ≥10 Gy and NTID. Increase of SU showed decrease in calculation time, gamma pass rate and increase in PTV max dose. No dose difference was seen in calculation reproducibility and dependent on energy.ConclusionFor VMAT plans, SU can be accepted from 1% to 3% per plan with reduced calculation time without compromising plan quality and deliverability by accepting variations in point dose within the target.  相似文献   

9.
PurposeKilovoltage flat-panel imaging systems are used for cone-beam Computed Tomography (CBCT) and digital Tomosynthesis (DTS). Hereby, the presence of scatter and relatively large dose from imaging are challenging factors. In this study a phenomenological beam model was developed to characterize imager response to imaging beams with a bow-tie filter (Varian OBI system).Materials and methodThe kilovoltage beam model was based on dose ratio formalism and thus was using standard concepts of megavoltage dose calculation such as scatter factors, tissue maximum ratio and off-axis ratio. Primary and scatter (head and phantom scatter) were modeled with three Gaussian kernels. Parameters were based on measured transmission images for slabs of solid water of different total thickness and various jaw settings.ResultsThe beam model was used to evaluate contributions from primary, secondary and tertiary contributions for different geometrical objects such as cylinders and step-like phantoms. Theoretical predictions of radiographs using the model for known objects are consistent with the measurements.ConclusionSecondary and tertiary contributions were interpreted as scatter and can be subtracted from CBCT projections based on the analytical model. Therefore our model can provide a basis for improvement of image quality (less artifacts due to scatter, better contrast and resolution) in CBCT reconstruction.  相似文献   

10.

Aim

The aim of this study is to evaluate performance of ArcCHECK diode array detector for the volumetric modulated arc therapy (VMAT) patient specific quality assurance (QA). VMAT patient specific QA results were correlated with ion chamber measurement. Dose response of the ArcCHECK detector was studied.

Background

VMAT delivery technique improves the dose distribution. It is complex in nature and requires proper QA before its clinical implementation. ArcCHECK is a novel three dimensional dosimetry system.

Materials and methods

Twelve retrospective VMAT plans were calculated on ArcCHECK phantom. Point dose and dose map were measured simultaneously with ion chamber (IC-15) and ArcCHECK diode array detector, respectively. These measurements were compared with their respective TPS calculated values.

Results

The ion chamber measurements are in good agreement with TPS calculated doses. Mean difference between them is 0.50% with standard deviation of 0.51%. Concordance correlation coefficient (CCC) obtained for ion chamber measurements is 0.9996. These results demonstrate a strong correlation between the absolute dose predicted by our TPS and the measured dose. The CCC between ArcCHECK doses and TPS predictions on the CAX was found to be 0.9978. In gamma analysis of dose map, the mean passing rate was 98.53% for 3% dose difference and 3 mm distance to agreement.

Conclusions

The VMAT patient specific QA with an ion chamber and ArcCHECK phantom are consistent with the TPS calculated dose. Statistically good agreement was observed between ArcCHECK measured and TPS calculated. Hence, it can be used for routine VMAT QA.  相似文献   

11.
PurposeAutomated treatment planning is a new frontier in radiotherapy. The Auto-Planning module of the Pinnacle3 treatment planning system (TPS) was evaluated for liver stereotactic body radiation therapy treatments.MethodsTen cases were included in the study. Six plans were generated for each case by four medical physics experts. The first two planned with Pinnacle TPS, both with manual module (MP) and Auto-Planning one (AP). The other two physicists generated two plans with Monaco TPS (VM). Treatment plan comparisons were then carried on the various dosimetric parameters of target and organs at risk, monitor units, number of segments, plan complexity metrics and human resource planning time. The user dependency of Auto-Planning was also tested and the plans were evaluated by a trained physician.ResultsStatistically significant differences (Anova test) were observed for spinal cord doses, plan average beam irregularity, number of segments, monitor units and human planning time. The Fisher-Hayter test applied to these parameters showed significant statistical differences between AP e MP for spinal cord doses and human planning time; between MP and VM for monitor units, number of segments and plan irregularity; for all those between AP and VM. The two plans created by different planners with AP were similar to each other.ConclusionsThe plans created with Auto-Planning were comparable to the manually generated plans. The time saved in planning enables the planner to commit more resources to more complex cases. The independence of the planner enables to standardize plan quality.  相似文献   

12.
PurposeCommercial algorithms used in Radiotherapy include approximations that are generally acceptable. However their limits can be seen when confronted with small fields and low-density media. These conditions exist during the treatment of lung cancers with Stereotactic Body Radiation Therapy (SBRT) achieved with the “Deep Inspiration Breath Hold” (DIBH) technique. A Monte Carlo (MC) model of a linear accelerator was used to assess the performance of two algorithms (Varian Acuros and AAA) in these conditions. This model is validated using phantoms with different densities. Lastly, results for SBRT cases are compared to both Acuros and AAA.MethodsA Varian TrueBeam linac was modeled using GATE/Geant4 and validated by comparing dose distributions for simple fields to measurements in water and in heterogeneous phantoms composed of PMMA and two types of cork (corresponding to lung densities during free-breathing and DIBH). Experimental measurements are also compared to AAA and Acuros. Finally, results of Acuros/AAA are compared to MC for a clinical case (SBRT during DIBH).ResultsBased on 1D gamma index comparisons with measurements in water, the TrueBeam model was validated (>97% of points passed this test). In heterogeneous phantoms, and in particular for small field sizes, very low density (0.12 g.cm−3) and at the edge of the field, MC model was still in good agreement with measurements whilst AAA and Acuros showed discrepancies. With the patient CT, similar differences between MC and AAA/Acuros were observed for static fields but disappeared using an SBRT arc field.ConclusionsOur MC model is validated and limits of commercial algorithms are shown in very low densities.  相似文献   

13.
PurposeAt our institute, a transit back-projection algorithm is used clinically to reconstruct in vivo patient and in phantom 3D dose distributions using EPID measurements behind a patient or a polystyrene slab phantom, respectively. In this study, an extension to this algorithm is presented whereby in air EPID measurements are used in combination with CT data to reconstruct ‘virtual’ 3D dose distributions. By combining virtual and in vivo patient verification data for the same treatment, patient-related errors can be separated from machine, planning and model errors.Methods and materialsThe virtual back-projection algorithm is described and verified against the transit algorithm with measurements made behind a slab phantom, against dose measurements made with an ionization chamber and with the OCTAVIUS 4D system, as well as against TPS patient data. Virtual and in vivo patient dose verification results are also compared.ResultsVirtual dose reconstructions agree within 1% with ionization chamber measurements. The average γ-pass rate values (3% global dose/3 mm) in the 3D dose comparison with the OCTAVIUS 4D system and the TPS patient data are 98.5 ± 1.9%(1SD) and 97.1 ± 2.9%(1SD), respectively. For virtual patient dose reconstructions, the differences with the TPS in median dose to the PTV remain within 4%.ConclusionsVirtual patient dose reconstruction makes pre-treatment verification based on deviations of DVH parameters feasible and eliminates the need for phantom positioning and re-planning. Virtual patient dose reconstructions have additional value in the inspection of in vivo deviations, particularly in situations where CBCT data is not available (or not conclusive).  相似文献   

14.
15.
BackgroundThe comparison between profiles during the commissioning of the treatment planning system is an essential procedure. It is impossible to designate a field size for off-axis, wedged, and FFF beams directly by using the definition of the on-axis symmetric field size. This work proposes the use of different characteristic points as indicators of the field size for commissioning and QA purposes. This work aimed to search for the beam profile’s characteristic points and use them for the TPS commissioning purposes.Materials and methodsThe proposal is to use profile inflection points as the beam profile characteristic points. The usage of dedicated software allowed for comparing distances between inflection points and between points of 50% intensity. For the off-axis, wedged, and FFF fields, comparisons were made to the nominal field sizes.ResultsDistances between inflection points proved to be different by less than 1 mm from nominal field sizes for all kinds of investigated beams.ConclusionsInflection points are convenient for comparing the off-axis, wedged, and FFF field sizes because of their independence from profile normalization. With finite accuracy, the inflection points could be used for the above kind of beam sizes designation.  相似文献   

16.
AimThe aim of this study is to verify the Prowess Panther jaws-only intensity modulated radiation therapy (JO-IMRT) treatment planning (TP) by comparing the TP dose distributions for head-and-neck (H&N) cancer with the ones simulated by Monte Carlo (MC).BackgroundTo date, dose distributions planned using JO-IMRT for H&N patients were found superior to the corresponding three-dimensional conformal radiotherapy (3D-CRT) plans. Dosimetry of the JO-IMRT plans were also experimentally verified using an ionization chamber, MapCHECK 2, and Octavius 4D and good agreements were shown.Materials and methodsDose distributions of 15 JO-IMRT plans of nasopharyngeal patients were recalculated using the EGSnrc Monte Carlo code. The clinical photon beams were simulated using the BEAMnrc. The absorbed dose to patients treated by fixed-field IMRT was computed using the DOSXYZnrc. The simulated dose distributions were then compared with the ones calculated by the Collapsed Cone Convolution (CCC) algorithm on the TPS, using the relative dose error comparison and the gamma index using global methods implemented in PTW-VeriSoft with 3%/3 mm, 2%/2 mm, 1%/1 mm criteria.ResultsThere is a good agreement between the MC and TPS dose. The average gamma passing rates were 93.3 ± 3.1%, 92.8 ± 3.2%, 92.4 ± 3.4% based on the 3%/3 mm, 2%/2 mm, 1%/1 mm criteria, respectively.ConclusionsAccording to the results, it is concluded that the CCC algorithm was adequate for most of the IMRT H&N cases where the target was not immediately adjacent to the critical structures.  相似文献   

17.
18.
PurposeTo assess out-of-field doses in radiotherapy treatments of paediatric patients, using Monte Carlo methods to implement a new model of the linear accelerator validated against measurements and developing a voxelized anthropomorphic paediatric phantom.MethodsCT images of a physical anthropomorphic paediatric phantom were acquired and a dosimetric planning using a TPS was obtained. The CT images were used to perform the voxelization of the physical phantom using the ImageJ software and later implemented in MCNP. In order to validate the Monte Carlo model, dose measurements of the 6 MV beam and Linac with 120 MLC were made in a clinical setting, using ionization chambers and a water phantom. Afterwards TLD measurements in the physical anthropomorphic phantom were performed in order to assess the out-of-field doses in the eyes, thyroid, c-spine, heart and lungs.ResultsThe Monte Carlo model was validated for in-field and out-of-field doses with average relative differences below 3%. The average relative differences between TLD measurements and Monte Carlo is 14,3% whilst the average relative differences between TLD and TPS is 55,8%. Moreover, organs up to 22.5 cm from PTV center show TLD and MCNP6 relative differences and TLD and TPS relative differences up to 21.2% and 92.0%, respectively.ConclusionsOur study provides a novel model that could be used in clinical research, namely in dose evaluation outside the treatment fields. This is particularly relevant, especially in pediatric patients, for studying new radiotherapy treatment techniques, since it can be used to estimate the development of secondary tumours.  相似文献   

19.
PurposeIn this work, the potential of an innovative “edgeless” silicon diode was evaluated as a response to the still unmet need of a reliable tool for plan dosimetry verification of very high dose, non-coplanar, patient-specific radiosurgery treatments. In order to prove the effectiveness of the proposed technology, we focused on radiosurgical treatments for functional disease like tremor or pain.MethodsThe edgeless diodes response has been validated with respect to clinical practice standard detectors by reproducing the reference dosimetry data adopted for the Treatment Planning System. In order to evaluate the potential for radiosurgery patient-specific treatment plan verification, the anthropomorphic phantom Alderson RANDO has been adopted along with three edgeless sensors, one placed in the centre of the Planning Target Volume, one superiorly and one inferiorly.ResultsThe reference dosimetry data obtained from the edgeless detectors are within 2.6% for output factor, off-axis ratio and well within 2% for tissue phantom ratio when compared to PTW 60,018 diode. The edgeless detectors measure a dose discrepancy of approximately 3.6% from the mean value calculated by the TPS. Larger discrepancies are obtained in very steep gradient dose regions when the sensors are placed outside the PTV.ConclusionsThe angular independent edgeless diode is proposed as an innovative dosimeter for patient quality assurance of brain functional disorders and other radiosurgery treatments. The comparison of the diode measurements with TPS calculations confirms that edgeless diodes are suitable candidates for patient-specific dosimetric verification in very high dose ranges delivered by non-isocentric stereotactic radiosurgery modalities.  相似文献   

20.
PurposeThe purpose of this study was to develop and validate a Monte Carlo (MC) simulation tool for patient dose assessment for a 320 detector-row CT scanner, based on the recommendations of International Commission on Radiological Protection (ICRP). Additionally, the simulation was applied on four clinical acquisition protocols, with and without automatic tube current modulation (TCM).MethodsThe MC simulation was based on EGS4 code and was developed specifically for a 320 detector-row cone-beam CT scanner. The ICRP adult reference phantoms were used as patient models. Dose measurements were performed free-in-air and also in four CTDI phantoms: 150 mm and 350 mm long CT head and CT body phantoms. The MC program was validated by comparing simulations results with these actual measurements acquired under the same conditions. The measurements agreed with the simulations across all conditions within 5%. Patient dose assessment was performed for four clinical axial acquisitions using the ICRP adult reference phantoms, one of them using TCM.ResultsThe results were nearly always lower than those obtained from other dose calculator tools or published in other studies, which were obtained using mathematical phantoms in different CT systems. For the protocol with TCM organ doses were reduced by between 28 and 36%, compared to the results obtained using a fixed mA value.ConclusionsThe developed simulation program provides a useful tool for assessing doses in a 320 detector-row cone-beam CT scanner using ICRP adult reference computational phantoms and is ready to be applied to more complex protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号