首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:研究罗勒多糖对博莱霉素诱导肺纤维化小鼠肺组织病理的影响。方法:将40只C57BL/6J雄性小鼠随机分为假手术组,模型组,罗勒多糖高、中、低剂量组。模型组和罗勒多糖组小鼠,气管注射博来霉素(1.5mg/kg),诱导其肺纤维化,假手术组注射等量生理盐水同法造模。罗勒多糖组小鼠每天用100、50、25mg/kg罗勒多糖,假手术组、模型组小鼠同法给药相应剂量的生理盐水,每天给药。造模28d后处死小鼠,肺组织病理切片进行HE和Masson染色,观察肺泡炎和肺纤维化程度,ELISA检测肺组织羟脯氨酸含量。结果:与模型组相比,罗勒多糖不同剂量组小鼠肺组织胶原染色明显减少,肺泡间隔增厚程度较轻,区域性实质性病变少见,炎症细胞浸润减少,纤维化程度均有所减轻,羟脯氨酸含量下降,中、高剂量组优于低剂量组。结论:罗勒多糖能减轻博莱霉素诱导肺纤维化小鼠肺组织炎症和肺纤维化程度,是一种潜在的可用于特发性肺纤维化(IPF)治疗的中药提取物。  相似文献   

2.
脂肪酶是一种广泛应用的水解酶类。脂肪酶的表面展示技术不仅是脂肪酶蛋白质工程中一种有效的高通量筛选方法,而且展示的脂肪酶与自由酶相比具备更高的温度稳定性、有机溶剂稳定性等优点,其作为全细胞催化剂与传统的固定化脂肪酶相比也具备诸多优点。脂肪酶表面展示的宿主包括噬菌体、细菌以及酵母等,本文将分别介绍这三种宿主中脂肪酶表面展示的概况以及其作为高通量筛选和全细胞等方面的应用。  相似文献   

3.
A high-throughput screening methodology tailored to the discovery of ligands for known and orphan proteins is presented. With this method, labeling of neither target protein nor screened compounds is required, as the ligands are affinity selected by incubation of the protein with mixtures of compounds in aqueous binding buffer. Unbound small-molecular-weight compounds are removed from the target protein:ligand complex by rapid size-exclusion chromatography in the 96-well format. The protein fraction is analyzed subsequently by liquid chromatography-mass spectrometry for detection and identification of the bound ligand. This screening method was validated with known protein:ligand model systems and optimized for selection of high-affinity binders in an industrial screening environment. All sample handling steps and the analytics are rapid, robust, and largely automated, adopting this technology to the needs of present high-throughput screening processes. This affinity-selection technology, termed SpeedScreen, is currently an integral part of our lead discovery process.  相似文献   

4.
The drug discovery process pursued by major pharmaceutical companies for many years starts with target identification followed by high-throughput screening (HTS) with the goal of identifying lead compounds. To accomplish this goal, significant resources are invested into automation of the screening process or HTS. Robotic systems capable of handling thousands of data points per day are implemented across the pharmaceutical sector. Many of these systems are amenable to handling cell-based screening protocols as well. On the other hand, as companies strive to develop innovative products based on novel mechanisms of action(s), one of the current bottlenecks of the industry is the target validation process. Traditionally, bioinformatics and HTS groups operate separately at different stages of the drug discovery process. The authors describe the convergence and integration of HTS and bioinformatics to perform high-throughput target functional identification and validation. As an example of this approach, they initiated a project with a functional cell-based screen for a biological process of interest using libraries of small interfering RNA (siRNA) molecules. In this protocol, siRNAs function as potent gene-specific inhibitors. siRNA-mediated knockdown of the target genes is confirmed by TaqMan analysis, and genes with impacts on biological functions of interest are selected for further analysis. Once the genes are confirmed and further validated, they may be used for HTS to yield lead compounds.  相似文献   

5.
龙燕  刘然  梁恒宇  刘天罡 《微生物学报》2018,58(7):1298-1308
【目的】乳酸链球菌素(nisin)是一种天然生物活性抗菌肽,对包括食品腐败菌和致病菌在内的许多革兰氏阳性菌具有强烈的抑制作用,而用作食品的防腐剂。本研究通过建立高通量筛选方法,实现高效快速省力的高产菌株筛选,为工业上筛选高产菌株提供研究方案。【方法】通过对Lactococcus lactis ATCC11454菌株进行紫外诱变,获得2511株突变株。利用Biomek FXP自动工作站建立96微孔板的高通量筛选方法,突变株经高通量挑选、菌种培养及菌液稀释后,加入到生长至对数中期的藤黄微球菌中,采用改进后的比浊法快速检测nisin生物活性。用此方法对突变株进行初筛、复筛后可得到nisin高产菌株,并通过摇瓶发酵评估高通量筛选方法。【结果】确定比浊法检测的条件为:nisin活性稀释在10–25 IU/m L范围内,与藤黄微球菌反应2 h后检测藤黄微球菌的菌体量(OD600)。2511株突变株经过2轮高通量筛选,最终获得约50株产量提升的菌株,对其中8株进行摇瓶精确测量,显示产量均有提高,并且其中一株产量提升了30%,成功建立了高通量筛选nisin高产菌株的方法。【结论】利用比浊检测法,在其基础上成功建立高通量筛选高产nisin菌的方法,经过初筛复筛,整个周期由1人耗时5 d即可完成2511株突变株的筛选工作。相较于传统的选育方法,高通量筛选具有快速、稳定、高效的特点,提高了筛选效率,缩短了选育周期,是工业上筛选高产nisin菌的有效手段。  相似文献   

6.
For strain improvement, robust and scalable high-throughput cultivation systems as well as simple and rapid high-throughput detection methods are crucial. However, most of the screening methods for lactic acid bacteria (LAB) strains were conducted in shake flasks and detected by high-performance liquid chromatography (HPLC), making the screening program laborious, time-consuming and costly. In this study, an integrated strategy for high-throughput screening of high l-lactic acid-productivity strains by Bacillus coagulans in deep-well microtiter plates (MTPs) was developed. The good agreement of fermentation results obtained in the MTPs platform with shake flasks confirmed that 24-well U-bottom MTPs could well alternate shake flasks for cell cultivation as a scale-down tool. The high-throughput pH indicator (bromocresol green) and l-lactate oxidase (LOD) assays were subsequently developed to qualitatively and quantitatively analyze l-lactic acid concentration. Together with the color halos method, the pH indicator assay and LOD assay, the newly developed three-step screening strategy has greatly accelerated the screening process for LAB strains with low cost. As a result, two high l-lactic acid-productivity mutants, IH6 and IIIB5, were successfully screened out, which presented, respectively, 42.75 and 46.10 % higher productivities than that of the parent strain in a 5-L bioreactor.  相似文献   

7.
Cell-based assays are widely used in high-throughput screening to determine the effects of toxicants and drugs on their biological targets. To enable a functional genomics modeling of gene-environment interactions, quantitative assays are required both for gene expression and for the phenotypic responses to environmental challenge. To address this need, we describe an automated high-throughput methodology that provides phenotypic profiling of the cellular responses to environmental stress in Saccharomyces cerevisiae. Standardized assay conditions enable the use of a single metric value to quantify yeast microculture growth curves. This assay format allows precise control of both genetic and environmental determinants of the cellular responses to oxidative stress, a common mechanism of environmental insult. These yeast-cell-based assays are validated with hydrogen peroxide, a simple direct-acting oxidant. Phenotypic profiling of the oxidative stress response of a yap1 mutant strain demonstrates the mechanistic analysis of genetic susceptibility to oxidative stress. As a proof of concept for analysis of more complex gene-environment interactions, we describe a combinatorial assay design for phenotypic profiling of the cellular responses to tert-butyl hydroperoxide, a complex oxidant that is actively metabolized by its target cells. Thus, the yeast microculture assay format supports comprehensive applications in toxicogenomics.  相似文献   

8.
Background: Since biological systems are complex and often involve multiple types of genomic relationships, tensor analysis methods can be utilized to elucidate these hidden complex relationships. There is a pressing need for this, as the interpretation of the results of high-throughput experiments has advanced at a much slower pace than the accumulation of data.Results: In this review we provide an overview of some tensor analysis methods for biological systems.Conclusions: Tensors are natural and powerful generalizations of vectors and matrices to higher dimensions and play a fundamental role in physics, mathematics and many other areas. Tensor analysis methods can be used to provide the foundations of systematic approaches to distinguish significant higher order correlations among the elements of a complex systems via finding ensembles of a small number of reduced systems that provide a concise and representative summary of these correlations.  相似文献   

9.
The development of preclinical models amenable to live animal bioactive compound screening is an attractive approach to discovering effective pharmacological therapies for disorders caused by misfolded and aggregation-prone proteins. In general, however, live animal drug screening is labor and resource intensive, and has been hampered by the lack of robust assay designs and high throughput work-flows. Based on their small size, tissue transparency and ease of cultivation, the use of C. elegans should obviate many of the technical impediments associated with live animal drug screening. Moreover, their genetic tractability and accomplished record for providing insights into the molecular and cellular basis of human disease, should make C. elegans an ideal model system for in vivo drug discovery campaigns. The goal of this study was to determine whether C. elegans could be adapted to high-throughput and high-content drug screening strategies analogous to those developed for cell-based systems. Using transgenic animals expressing fluorescently-tagged proteins, we first developed a high-quality, high-throughput work-flow utilizing an automated fluorescence microscopy platform with integrated image acquisition and data analysis modules to qualitatively assess different biological processes including, growth, tissue development, cell viability and autophagy. We next adapted this technology to conduct a small molecule screen and identified compounds that altered the intracellular accumulation of the human aggregation prone mutant that causes liver disease in α1-antitrypsin deficiency. This study provides powerful validation for advancement in preclinical drug discovery campaigns by screening live C. elegans modeling α1-antitrypsin deficiency and other complex disease phenotypes on high-content imaging platforms.  相似文献   

10.
Combinatorial biosynthesis for drug development   总被引:2,自引:0,他引:2  
Combinatorial biosynthesis can refer to any strategy for the genetic engineering of natural product biosynthesis to obtain new molecules, including the use of genetics for medicinal chemistry. However, it also implies the possibility that large libraries of complex compounds might be produced to feed a modern high-throughput screening operation. This review focuses on the multi-modular enzymes that produce polyketides, nonribosomal peptides, and hybrid polyketide-peptide compounds, which are the enzymes that appear to be most amenable to truly combinatorial approaches. The recent establishment of a high-throughput strategy for testing the activity of many non-natural combinations of modules from these enzymes should help speed the advance of this technology.  相似文献   

11.
Single-bead analysis in combinatorial chemistry   总被引:2,自引:0,他引:2  
Notable limitations have previously prevented the wide application of split synthesis. However, recent developments in highly condensed and miniaturized biological screening and single-bead analysis methods have argued for a revival of split combinatorial synthesis. Although there are still many challenges, we are now in a much better position to accomplish high-throughput analysis and screening of one-bead-one-compound libraries.  相似文献   

12.
A key trend in high-throughput screening is assay miniaturization to control reagent costs and increase throughput. For this purpose, liquid-handling devices are used that transfer nano-to low-microliter volumes into all currently used microtiter well plates. One drawback of many available dispenser and pipetting systems are high dead volumes. Therefore, the authors were looking for an easy and simple solution to modify their standard liquid-handling device, PerkinElmer's FlexDrop Precision IV, allowing for a dead volume reduction to receive maximum benefit from miniaturized assay formats. Internal reservoirs were developed and constructed by Schering's Technical Development Laboratory (TDL), which are directly connected to the dispenser banks of FlexDrop without tubing. Using these newly built reservoirs, the dead volume was decreased by a factor of 5 in comparison to the manufacturer's reservoirs without compromising liquid-handling parameters such as accuracy and precision. The modified system displayed a high robustness and reliability under routine high-throughput screening conditions.  相似文献   

13.
We present a toolbox for high-throughput screening of image-based Caenorhabditis elegans phenotypes. The image analysis algorithms measure morphological phenotypes in individual worms and are effective for a variety of assays and imaging systems. This WormToolbox is available through the open-source CellProfiler project and enables objective scoring of whole-worm high-throughput image-based assays of C. elegans for the study of diverse biological pathways that are relevant to human disease.  相似文献   

14.
Biological systems by default involve complex components with complex relationships. To decipher how biological systems work, we assume that one needs to integrate information over multiple levels of complexity. The songbird vocal communication system is ideal for such integration due to many years of ethological investigation and a discreet dedicated brain network. Here we announce the beginnings of a songbird brain integrative project that involves high-throughput, molecular, anatomical, electrophysiological and behavioral levels of analysis. We first formed a rationale for inclusion of specific biological levels of analysis, then developed high-throughput molecular technologies on songbird brains, developed technologies for combined analysis of electrophysiological activity and gene regulation in awake behaving animals, and developed bioinformatic tools that predict causal interactions within and between biological levels of organization. This integrative brain project is fitting for the interdisciplinary approaches taken in the current songbird issue of the Journal of Comparative Physiology A and is expected to be conducive to deciphering how brains generate and perceive complex behaviors.  相似文献   

15.
Randomized strain and pathway engineering are critical to improving microbial cell factory performance, calling for the development of high-throughput screening and selection systems. To facilitate this effort, we have developed two 96-well plate format colorimetric assays for reliable quantification of various ketones and aldehydes from culture supernatants, based on either a vanillin-acetone reaction or the 2,4-dinitrophenylhydrazine (2,4-DNPH) reagent. The vanillin-acetone assay enabled accurate and selective measurement of acetone titers up to 2 g l−1 in a minimal culture medium. The 2,4-DNPH-based assay can be used for a wide range of aldehydes and ketones, shown here through the optimization of conditions for 15 different compounds. Both assays were implemented to improve acetone production from different substrates by an engineered Escherichia coli strain. The fast and user-friendly colorimetric assays proposed here open the potential for iterative rounds of (automated) strain and pathway engineering and screening, facilitating the efforts towards further boosting production titers of industrially relevant ketones and aldehydes.  相似文献   

16.
枯草芽孢杆菌是主要的核黄素工业生产菌之一,高通量筛选技术是选育获得高产核黄素菌株的关键环节。为实现工业菌种选育与高通量筛选技术相结合,对流式细胞分选、液滴微流控分选和96孔板筛选在核黄素工业菌株筛选中的应用进行了研究,并对96孔板筛选方法进行了优化。在流式细胞分析中,来源于同一株工业菌的低产菌株P1与高产菌株R1的细胞荧光与核黄素产量不成正相关。在液滴微流控分析中,P1和R1的发酵液上清荧光与核黄素产量成正相关,然而液滴分选后活细胞的数量很少。在96孔板筛选实验中,振荡培养后P1和R1的发酵液荧光分别为22 264 a.u.、28 647 a.u.;静置培养后荧光分别为7 095 a.u.、10 189 a.u.,核黄素产量与荧光成正相关,且二者荧光差异显著。利用96孔板静置培养的方法对工业菌株S1的突变体库进行筛选,得到的优选菌株核黄素产量为2.53 g/L,相比S1提高了15%。这些结果表明96孔板静置培养-荧光检测筛选可以应用于核黄素工业生产菌产量的提高。  相似文献   

17.
Proteomics: the industrialization of protein chemistry   总被引:7,自引:0,他引:7  
Establishing a proteomics platform in the industrial setting initially required implementation of a series of robotic systems to allow a high-throughput approach to analysis and identification of differences observed on 2-D electrophoresis gels. Now, a simpler alternative approach employing chromatography-based systems is emerging for identification of many components of complex mixtures, which can also provide quantitative comparisons through the use of a new labeling methodology.  相似文献   

18.
Hai Peng  Jing Zhang 《Biologia》2009,64(1):20-26
DNA sequences can be used for the analysis of genetic variation and gene function. The high-throughput sequencing techniques that have been developed over the past three years can read as many as one billion bases per run, and are far less expensive than the traditional Sanger sequencing method. Therefore, the high-throughput sequencing has been applied extensively to genomic analyses, such as screening for mutations, construction of genomic methylation maps, and the study of DNA-protein interactions. Although they have only been available for a short period, high-throughput sequencing techniques are profoundly affecting many of the life sciences, and are opening out new potential avenues of research. With the highly-developed commercial high-throughput sequencing platforms, each laboratory has the opportunity to explore this research field. Therefore, in this paper, we have focused on commercially-popular high-throughput sequencing techniques and the ways in which they have been applied over the past three years.  相似文献   

19.
吡咯喹啉醌(Pyrroloquinoline quinone,PQQ)作为一种新型的氧化还原酶辅酶,在医药和食品等领域有广阔的应用前景。为改善扭脱甲基杆菌Methylobacterium extorquens AM1 PQQ生产性能,采用常压室温等离子体(Atmospheric and room temperature plasma,ARTP)进行诱变,结合高通量快速筛选方法,得到以PQQ产量为指标的正向突变株。ARTP诱变的菌株正突变率为31.6%,筛选得到的较优正突变株M.extorquens AM1(E-F3),PQQ产量达到54.0 mg/L,是出发菌株的近3倍。系统的高通量方法筛选ARTP诱变菌为后续进一步提高M.extorquens AM1菌株PQQ的产量奠定了基础,亦为改善菌株生产性能提供了新思路。  相似文献   

20.
Tepper N  Shlomi T 《PloS one》2011,6(1):e16274
Combinatorial approaches in metabolic engineering work by generating genetic diversity in a microbial population followed by screening for strains with improved phenotypes. One of the most common goals in this field is the generation of a high rate chemical producing strain. A major hurdle with this approach is that many chemicals do not have easy to recognize attributes, making their screening expensive and time consuming. To address this problem, it was previously suggested to use microbial biosensors to facilitate the detection and quantification of chemicals of interest. Here, we present novel computational methods to: (i) rationally design microbial biosensors for chemicals of interest based on substrate auxotrophy that would enable their high-throughput screening; (ii) predict engineering strategies for coupling the synthesis of a chemical of interest with the production of a proxy metabolite for which high-throughput screening is possible via a designed bio-sensor. The biosensor design method is validated based on known genetic modifications in an array of E. coli strains auxotrophic to various amino-acids. Predicted chemical production rates achievable via the biosensor-based approach are shown to potentially improve upon those predicted by current rational strain design approaches. (A Matlab implementation of the biosensor design method is available via http://www.cs.technion.ac.il/~tomersh/tools).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号