首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeThis study investigated the impact of lung density on the isolated lung tumor dose for volumetric modulated arc therapy (VMAT) in an inline magnetic resonance linear accelerator (MR-Linac) using the Monte Carlo (MC) simulation.MethodsCT images of the thorax phantoms with lung tumors of 1, 2, and 3 cm diameters were converted into voxel-base phantoms with lung densities of 0.1, 0.2, and 0.3 g/cm3, respectively. The dose distributions were calculated for partial-arc VMAT. The dose distributions were compared using dose differences, dose volume histograms, and dose volume indices.ResultsIn all cases, the inline magnetic field significantly enhanced the lung tumor dose compared to that at 0 T. For the 1 cm lung tumor, the inline magnetic field of 1 T increased the minimum dose of 95% of the Planning target volume (PTV D95) by 14.0% in 0.1 g/cm3 lung density as compared to that in 0.3 g/cm3 at 0 T. In contrast, at 0 and 0.5 T, the PTV D95 in 0.3 g/cm3 lung density was larger than that in lung density of 0.1 g/cm3. For the 2 cm lung tumor, a similar tendency to 1 cm was observed, whereas the dose impact of lung density was smaller than that for 1 cm. For the 3 cm lung tumor, the lung tumor dose was independent of lung density at 0.5 T and 1.0 T.ConclusionThe inline MR-Linac with the magnetic field over 1 T can enhance the PTV D95 for VMAT regardless of the lung density.  相似文献   

2.
3.
PurposeStatic beam intensity-modulated-radiation-therapy (IMRT) and/or Volumetric-Modulated-Arc-Therapy (VMAT) are now available in many regional radiotherapy departments. The aim of this multi-institutional audit was to design a new methodology based on radiochromic films to perform an independent quality control.MethodsA set of data were sent to all participating centres for two clinical localizations: prostate and Head and Neck (H&N) cancers. The agreement between calculations and measurements was verified in the Octavius phantom (PTW) by point measurements using ionization chambers and by 2D measurements using EBT3 radiochromic films. Due to uncertainties in the whole procedure, criteria were set to 5% and 3% in local dose and 3 mm in distance excluding doses lower than 10% of the maximum doses. No normalization point or area was used for the quantitative analysis.Results13 radiotherapy centres participated in this audit involving 28 plans (12 IMRT, 16 VMAT). For point measurements, mean errors were −0.18 ± 1.54% and 0.00 ± 1.58% for prostate and H&N cases respectively. For 2D measurements with 5%/3 mm criteria, gamma map analysis showed a pixel pass rate higher than 95% for prostate and H&N. Mean gamma index was lower than 0.4 for prostate and 0.5 for H&N. Both techniques yielded similar results.ConclusionThis study showed the feasibility of an independent quality control by peers for conventional IMRT and VMAT. Results from all participating centres were found to be in good agreement. This regional study demonstrated the feasibility of our new methodology based on radiochromic films without dose normalization on a specific point.  相似文献   

4.
Gadolinium-based contrast agents (GBCAs) are widely used to improve tissue contrast during magnetic resonance imaging. Exposure to GBCAs can result in gadolinium deposition within human tissues and has become a clinical concern because of the potential toxic effects of free gadolinium (Gd3+). Here, we report the impact of a single administration of GBCAs (Omniscan and Gadovist), and Gd3+ on mouse tissues. Five-week-old male BALB/c mice were injected intravenously with GBCAs or Gd3+. Seven days after injection, relatively high levels of gadolinium were detected in the spleen (118.87 nmol/g tissue), liver (83.00 nmol/g tissue), skin (48.56 nmol/g tissue), and kidneys (25.59 nmol/g tissue) of the Gd(NO3)3 (high dose: 0.165 mmol/kg) group; in the bones (11.12 nmol/g tissue), kidneys (7.49 nmol/g tissue), teeth (teeth: 6.18 nmol/g tissue), and skin (2.43 nmol/g tissue) of the Omniscan (high dose: 1.654 mmol/kg) group and in the kidneys (16.36 nmol/g tissue) and skin (4.88 nmol/g tissue) of the Gadovist (high dose: 3.308 mmol/kg) group. Enlargement of the spleen was observed in the Gd3+ group (p < 0.05), but not in the Omniscan or Gadovist groups. Gd3+ caused iron accumulation around the white pulp of the spleen, suggesting that enlargement of the spleen is, at least in part, associated with Gd3+ and/or iron accumulation. Our results may help elucidate the relative risks of different types of gadolinium agents, the mechanisms involved, and even recognition of potential toxic effects of GBCAs.  相似文献   

5.
AimPatient setup errors were aimed to be reduced in radiotherapy (RT) of head-and-neck (H&N) cancer. Some remedies in patient setup procedure were proposed for this purpose.BackgroundRT of H&N cancer has challenges due to patient rotation and flexible anatomy. Residual position errors occurring in treatment situation and required setup margins were estimated for relevant bony landmarks after the remedies made in setup process and compared with previous results.Materials and methodsThe formation process for thermoplastic masks was improved. Also image matching was harmonized to the vertebrae in the middle of the target and a 5 mm threshold was introduced for immediate correction of systematic errors of the landmarks. After the remedies, residual position errors of bony landmarks were retrospectively determined from 748 orthogonal X-ray images of 40 H&N cancer patients. The landmarks were the vertebrae C1–2, C5–7, the occiput bone and the mandible. The errors include contributions from patient rotation, flexible anatomy and inter-observer variation in image matching. Setup margins (3D) were calculated with the Van Herk formula.ResultsSystematic residual errors of the landmarks were reduced maximally by 49.8% (p  0.05) and the margins by 3.1 mm after the remedies. With daily image guidance the setup margins of the landmarks were within 4.4 mm, but larger margins of 6.4 mm were required for the mandible.ConclusionsRemarkable decrease in the residual errors of the bony landmarks and setup margins were achieved through the remedies made in the setup process. The importance of quality assurance of the setup process was demonstrated.  相似文献   

6.
AimTo evaluate the treatment plans of 3D image-guided brachytherapy (BT) and stereotactic robotic radiotherapy with online image guidance – CyberKnife (CK) in patients with locally advanced cervix cancer.Methods and materialsTen pairs of plans for patients with locally advanced inoperable cervical cancer were created using MR based 3D brachytherapy and stereotaxis CK. The dose that covers 98% of the target volume (HR CTV D98) was taken as a reference and other parameters were compared.ResultsOf the ten studied cases, the dose from D100 GTV was comparable for both devices, on average, the BT GTV D90 was 10–20% higher than for CK. The HR CTV D90 was higher for CK with an average difference of 10–20%, but only fifteen percent of HR CTV (the peripheral part) received a higher dose from CK, while 85% of the target volume received higher doses from BT. We found a significant organ-sparing effect of CK compared to brachytherapy (20–30% lower doses in 0.1 cm3, 1 cm3, and 2 cm3).ConclusionBT remains to be the best method for dose escalation. Due to the significant organ-sparing effect of CK, patients that are not candidates for BT could benefit from stereotaxis more than from classical external beam radiotherapy.  相似文献   

7.
Background and purposeTo study the impact of coronal and sagittal views (CSV) on the gross tumor volume (GTV) delineation on CT and matched PET/CT scans in non-small cell lung cancer.Material and methodsGTV delineations were performed by 11 experienced radiation oncologists on CT and PET/CT in 22 patients. Two tumor groups were defined: Group I: Primary tumors surrounded by lung or visceral pleura, without venous invasion, and without large extensions to the chest wall or the mediastinum. Group II: Tumors invading the hilar region, heart, large vessels, pericardium, and the mediastinum and/or associated with atelectasis. Tumor volumes and inter-observers variations (SD) were calculated and compared according to the use of axial view only (AW), axial/coronal/sagittal views (ACSW) and ACSW/PET (ACSWP).ResultsCSV were not frequently used (57.4% out of 242 delineations on CT). For group I, ACSW didn’t improve significantly mean GTVs. SDs were small on CT and on PET (SD = 0.3 cm). For group II, ACSW had 27–46% smaller observer variation (mean SD = 0.7 cm) than AW (mean SD = 1.1 cm). The smaller observer variation of ACSW users was associated with, on average, a 40% smaller delineated volume (p = 0.038). Mean GTV of ACSWP was 21% larger than mean GTV of ACSW on CT.ConclusionsFor smaller lung tumors surrounded by healthy lung tissue the effect of multiple axis delineation is limited. However, application of coronal and sagittal windows is highly beneficial for delineation of more complex tumors, with atelectasis and/or pathological lymph nodes even if PET is used.  相似文献   

8.
PurposeThe aim of this study is to investigate the effect of beam interruptions during delivery of volumetric modulated arc therapy (VMAT) on delivered dose distributions.MethodsTen prostate and ten head and neck (H&N) VMAT plans were retrospectively selected. Each VMAT plan was delivered using Trilogy™ without beam interruption, and with 4 and 8 intentional beam interruptions per a single arc. Two-dimensional global and local gamma evaluations with a diode array were performed with gamma criteria of 3%/3 mm, 2%/2 mm, 1%/2 mm and 2%/1 mm for each VMAT plan with and without beam interruptions. The VMAT plans were reconstructed with log files recorded during delivery and the dose-volumetric parameters were calculated for each reconstructed plan. The differences among dose-volumetric parameters due to the beam interruptions were calculated.ResultsThe changes in global gamma passing rates with various gamma criteria were less than 1.6% on average, while the changes in local gamma passing rates were less than 5.3% on average. The dose-volumetric parameter changes for the target volumes of prostate and H&N VMAT plans due to beam interruptions were less than 0.72% and 1.5% on average, respectively.ConclusionThe delivered dose distributions with up to 8 beam interruptions per an arc were clinically acceptable, showing minimal changes in both gamma passing rates and dose-volumetric parameters.  相似文献   

9.
AimThe aim of this study is to verify the Prowess Panther jaws-only intensity modulated radiation therapy (JO-IMRT) treatment planning (TP) by comparing the TP dose distributions for head-and-neck (H&N) cancer with the ones simulated by Monte Carlo (MC).BackgroundTo date, dose distributions planned using JO-IMRT for H&N patients were found superior to the corresponding three-dimensional conformal radiotherapy (3D-CRT) plans. Dosimetry of the JO-IMRT plans were also experimentally verified using an ionization chamber, MapCHECK 2, and Octavius 4D and good agreements were shown.Materials and methodsDose distributions of 15 JO-IMRT plans of nasopharyngeal patients were recalculated using the EGSnrc Monte Carlo code. The clinical photon beams were simulated using the BEAMnrc. The absorbed dose to patients treated by fixed-field IMRT was computed using the DOSXYZnrc. The simulated dose distributions were then compared with the ones calculated by the Collapsed Cone Convolution (CCC) algorithm on the TPS, using the relative dose error comparison and the gamma index using global methods implemented in PTW-VeriSoft with 3%/3 mm, 2%/2 mm, 1%/1 mm criteria.ResultsThere is a good agreement between the MC and TPS dose. The average gamma passing rates were 93.3 ± 3.1%, 92.8 ± 3.2%, 92.4 ± 3.4% based on the 3%/3 mm, 2%/2 mm, 1%/1 mm criteria, respectively.ConclusionsAccording to the results, it is concluded that the CCC algorithm was adequate for most of the IMRT H&N cases where the target was not immediately adjacent to the critical structures.  相似文献   

10.
11.
12.
PurposeWe aimed to identify the most accurate combination of phantom and protocol for image value to density table (IVDT) on volume-modulated arc therapy (VMAT) dose calculation based on kV-Cone-beam CT imaging, for head and neck (H&N) and pelvic localizations.MethodsThree phantoms (Catphan®600, CIRS®062M (inner phantom for head and outer phantom for body), and TomoTherapy® “Cheese” phantom) were used to create IVDT curves of CBCT systems with two different CBCT protocols (Standard-dose Head and Standard Pelvis). Hounsfield Unit (HU) time stability and repeatability for a single On-Board-Imager (OBI) and compatibility of two distinct devices were assessed with Catphan®600. Images from the anthropomorphic phantom CIRS ATOM® for both CT and CBCT modalities were used for VMAT dose calculation from different IVDT curves. Dosimetric indices from CT and CBCT imaging were compared.ResultsIVDT curves from CBCT images were highly different depending on phantom used (up to 1000 HU for high densities) and protocol applied (up to 200 HU for high densities). HU time stability was verified over seven weeks. A maximum difference of 3% on the dose calculation indices studied was found between CT and CBCT VMAT dose calculation across the two localizations using appropriate IVDT curves. One IVDT curve per localization can be established with a bi-monthly verification of IVDT-CBCT.ConclusionsThe IVDT-CBCTCIRS-Head phantom with the Standard-dose Head protocol was the most accurate combination for dose calculation on H&N CBCT images. For pelvic localizations, the IVDT-CBCTCheese established with the Standard Pelvis protocol provided the best accuracy.  相似文献   

13.
PurposeWe performed the first investigations, via measurements and Monte Carlo simulations on phantoms, of the feasibility of a new technique for synchrotron radiation rotational radiotherapy for breast cancer (SR3T).MethodsA Monte Carlo (MC) code based on Geant4 toolkit was developed in order to simulate the irradiation with the SR3T technique and to evaluate the skin sparing effect in terms of centre-to-periphery dose ratio at different energies in the range 60–175 keV. Preliminary measurements were performed at the Australian Synchrotron facility. Radial dose profiles in a 14-cm diameter polyethylene phantom were measured with a 100-mm pencil ionization chamber for different beam sizes and compared with the results of MC simulations. Finally, the dose painting feasibility was demonstrated with measurements with EBT3 radiochromic films in a phantom and collimating the SR beam at 1.5 cm in the horizontal direction.ResultsMC simulations showed that the SR3T technique assures a tumour-to-skin absorbed dose ratio from about 7:1 (at 60 keV photon energy) to about 10:1 (at 175 keV), sufficient for skin sparing during radiotherapy. The comparison between the results of MC simulations and measurements showed an agreement within 5%. Two off-centre foci were irradiated shifting the rotation centre in the horizontal direction.ConclusionsThe SR3T technique permits to obtain different dose distributions in the target with multiple rotations and can be guided via synchrotron radiation breast computed tomography imaging, in propagation based phase-contrast conditions. Use of contrast agents like iodinated solutions or gold nanoparticles for dose enhancement (DE-SR3T) is foreseen and will be investigated in future work.  相似文献   

14.
AimTo study the sensitivity of three commercial dosimetric systems, Delta4, Multicube and Octavius4D, in detecting Volumetric Modulated Arc Therapy (VMAT) delivery errors.MethodsFourteen prostate and head and neck (H&N) VMAT plans were considered for this study. Three types of errors were introduced into the original plans: gantry angle independent and dependent MLC errors, and gantry angle dependent dose errors. The dose matrix measured by each detector system for the no-error and error introduced delivery were compared with the reference Treatment Planning System (TPS) calculated dose matrix for no-error plans using gamma (γ) analysis with 2%/2 mm tolerance criteria. The ability of the detector system in identifying the minimum error in each scenario was assessed by analysing the gamma pass rates of no error delivery and error delivery using a Wilcoxon signed-rank test. The relative sensitivity of the system was assessed by determining the slope of the gamma pass line for studied error magnitude in each error scenario.ResultsIn the gantry angle independent and dependent MLC error scenario the Delta4, Multicube and Octavius4D systems detected a minimum 2 mm error. In the gantry angle dependent dose error scenario all studied systems detected a minimum 3% and 2% error in prostate and H&N plans respectively. In the studied detector systems Multicube showed relatively less sensitivity to the errors in the majority of error scenarios.ConclusionThe studied systems identified the same magnitude of minimum errors in all considered error scenarios.  相似文献   

15.
PurposeTo present our methods and results regarding the modeling of a carbon fiber couch (Varian Exact IGRT) in the RayStation treatment planning system (TPS).MethodsThree geometrical-models (GMs) were implemented in the TPS to represent the three different regions of the couch (thick, medium and thin). The materials and densities of each GM component were tuned to maximize the agreement between measured and calculated attenuations. Moreover, a couch computed-tomography (CT) scan was acquired and dosimetrically compared with the GMs. For validation, plan-specific quality assurance (QA) of VMAT plans (TG-119 cases, 5 prostate and 5 H&N clinical cases) was performed by comparing measured dose distributions with doses computed with and without including the GMs in the TPS.ResultsCouch attenuations up to 4.3% were measured (energy: 6MV). Compared to couch CT, GMs could be modified to optimize the agreement with measurements and reduce dependence on the dose grid resolution. For both couch CT and GM, absolute deviations between measured and calculated attenuations were within 1.0%. When including the GMs in plan-specific QA, global 2%/2 mm γ-pass rates showed an average improvement of 4.8% (p-value < 0.001, max +18.6%). The couch reduced the mean dose to targets by up to 2.4% of the prescribed dose for prostate cases and up to 1.4% for H&N cases.ConclusionsRayStation accurately considers the implemented couch GMs replicating measured attenuations within an uncertainty of 1.0%. Materials and densities are proposed for the Varian Exact IGRT couch. The results obtained justify introducing couch GMs in clinical routine.  相似文献   

16.
Magnetic Resonance Imaging (MRI) scanners are widely used for 3D gel dosimeters readout. However, limited access to MRI scanners is a challenge in MRI-based gel dosimetry. Recent clinical implementation of MRI-guided radiation therapy machines provides potential opportunities for onboard gel dosimetry using its MRI subsystem. The objective of this study was to investigate the feasibility of gel dosimetry using ViewRay’s onboard 0.35 T MRI scanner. A BANG® polymer gel dosimeter was irradiated by three beams of 3 × 3 cm2 field size. The T2 relaxation rate (R2) of the irradiated gel was measured using a Philips 1.5 T Ingenia MRI and a ViewRay 0.35 T onboard MRI and spin-echo pulse sequences. The number of signal averages (NSA) was set to 16 for the ViewRay acquisitions and one for the Philips 1.5 T MRI to achieve similar signal-to-noise ratios. The in-plane spatial resolution was 1.5 × 1.5 mm2 and the slice thickness was 5 mm. The relative dose uncertainty was obtained using R2 versus dose curves to compare the performance of dosimetry using the two different MRIs and field strengths. The dose uncertainty decreased from 12% at 2 Gy to 3.5% at 7.5 Gy at 1.5 T. The dose uncertainty decreased from 13% at 2 Gy to 4% at 7.5 Gy with NSA = 16 and 3 × 3 mm2 pixel size, and from 10.5% at 2 Gy to 3.2% at 7.5 Gy with NSA = 16 and denoised R2 maps (1.5 × 1.5 mm2 pixel size) at 0.35 T. The mean of dose resolution was 0.4 Gy at 1.5 T while the mean of dose resolution was 0.8 Gy and 0.64 Gy at 0.35 T by downsampling and denoising the R2 map, respectively. Therefore, comparable dose uncertainty was achievable using the ViewRay’s onboard 0.35 T and Philips 1.5 T MRI scanners. 3D gel dosimetry using onboard low-field MRI scanner provides ViewRay users a 3D high resolution dosimetry option besides film and ionization chamber.  相似文献   

17.
18.
AimTo present the segmented photon beams technique (SPBT) for irradiation of postmastectomy patients.BackgroundIn majority of techniques for irradiation of posmastectomy patients, a few adjacent photon or electron beams were usually implemented in order to encompass different parts of the target. In the presented SPBT technique, the radiotherapy plan consists of 6 isocentric photon beams and the area CTV includes both the chest wall and the supraclavicular area. This makes it possible to provide a uniform dose to the CTV with no hot and cold points and enables the determination of doses for the entire volume of critical organs.Methods and materialThe treatment forward-IMRT plan comprises six isocentric 4 and 15 MV photon beams. Modulation of the dose distribution for each field was obtained by applying three segments on average. The total dose of 45 Gy was administered in 20 fractions. Dose distributions in target volume and organs at risk were evaluated for 70 randomly chosen patients.ResultsOn average, 94.8% of the CTV volume received doses within 95–107% of the prescribed dose. The average volume of the heart receiving a dose of 30 Gy and lager was 2% for patients with left breast cancer. The average dose to the lung on the irradiation side was always lower than 15.5 Gy and the average V20 Gy was below 35.5%.ConclusionsThe SPBT complies with requirements for high dose homogeneity within the target volume and satisfactory level of sparing of organs at risk.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号