首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
December 2019 will never be forgotten in the history of medicine when an outbreak of pneumonia of unknown etiology in Wuhan, China sooner or later prompted the World Health Organization to issue a public health warning emergency. This is not the first nor will it be the last time that a member of β-coronaviruses (CoVs) is waging a full-scale war against human health. Notwithstanding the fact that pneumonia is the primary symptom of the novel coronavirus (2019nCoV; designated as SARS-CoV-2), the emergence of severe disease mainly due to the injury of nonpulmonary organs at the shadow of coagulopathy leaves no choice, in some cases, rather than a dreadful death. Multiple casual factors such as inflammation, endothelial dysfunction, platelet and complement activation, renin-angiotensin-aldosterone system derangement, and hypoxemia play a major role in the pathogenesis of coagulopathy in coronavirus disease 2019 (COVID-19) patients. Due to the undeniable role of coagulation dysfunction in the initiation of several complications, assessment of coagulation parameters and the platelet count would be beneficial in early diagnosis and also timely prediction of disease severity. Although low-molecular-weight heparin is considered as the first-line of treatment in COVID-19-associated coagulopathy, several possible therapeutic options have also been proposed for better management of the disease. In conclusion, this review would help us to gain insight into the pathogenesis, clinical manifestation, and laboratory findings associated with COVID-19 coagulopathy and would summarize management strategies to alleviate coagulopathy-related complications.  相似文献   

2.
Increasing clinical evidence shows that acute kidney injury (AKI) is a common and severe complication in critically ill COVID-19 patients. The older age, the severity of COVID-19 infection, the ethnicity, and the history of smoking, diabetes, hypertension, and cardiovascular disease are the risk factor for AKI in COVID-19 patients. Of them, inflammation may be a key player in the pathogenesis of AKI in patients with COVID-19. It is highly possible that SARS-COV-2 infection may trigger the activation of multiple inflammatory pathways including angiotensin II, cytokine storm such as interleukin-6 (IL-6), C-reactive protein (CRP), TGF-β signaling, complement activation, and lung-kidney crosstalk to cause AKI. Thus, treatments by targeting these inflammatory molecules and pathways with a monoclonal antibody against IL-6 (Tocilizumab), C3 inhibitor AMY-101, anti-C5 antibody, anti-TGF-β OT-101, and the use of CRRT in critically ill patients may represent as novel and specific therapies for AKI in COVID-19 patients.  相似文献   

3.
Complement component 5a (C5a) is a 74 amino acid glycoprotein and an important proinflammatory mediator that is cleaved enzymatically from its precursor, C5, on activation of the complement cascade. C5a is quickly metabolised by carboxypeptidases, forming the less-potent C5a desArg. C5a and C5a desArg interact with their receptors (C5aR and C5L2), which results in a number of effects which are essential to the immune response. C5a has a broad range of biological effects throughout the human body because the widespread expression of C5a receptors throughout the human organs enables C5a and C5a desArg to elicit a broad range of biological effects. Recently, accumulating evidence in humans and experimental animal models shows that the C5a-C5aR axis is involved in the development of atherosclerosis lesions. The absence or blockade of C5aRs greatly reduces the formation of atherosclerotic lesions or wire-injury-induced neointima formation in atherosclerosis-prone mice. Serum C5a level was related to the major adverse cardiovascular events in patients with advanced atherosclerosis and those with drug-eluting stent implantation. Thus, the C5a-C5aR axis may be a significant pathogenic driver of arteriosclerotic vascular disease, making C5a-C5aR inhibition an attractive therapeutic strategy.  相似文献   

4.
The canonical heptahelical bundle architecture of seven-transmembrane domain (7TM) receptors is intertwined by three intra- and three extracellular loops, whose local conformations are important in receptor signaling. Many 7TM receptors contain a cysteine residue in the third extracellular loop (EC3) and a complementary cysteine residue on the N terminus. The functional role of such EC3-N terminus conserved cysteine pairs remains unclear. This study explores the role of the EC3-N terminus cysteine pairs on receptor conformation and G protein activation by disrupting them in the chemokine receptor CXCR4, while engineering a novel EC3-N terminus cysteine pair into the complement factor 5a receptor (C5aR), a chemo attractant receptor that lacks it. Mutated CXCR4 and C5aRs were expressed in engineered yeast. Mutation of the cysteine pair with the serine pair (C28S/C274S) in constitutively active mutant CXCR4 abrogated the receptor activation, whereas mutation with the aromatic pair (C28F–C274F) or the salt bridge pair (C28R/C274E), respectively, rescued or retained the receptor activation in response to CXCL12. In this context, the cysteine pair (Cys30 and Cys272) engineered into the EC3-N terminus (Ser30 and Ser272) of a novel constitutively active mutant of C5aR restrained the constitutive signaling without affecting the C5a-induced activation. Further mutational studies demonstrated a previously unappreciated role for Ser272 on EC3 of C5aR and its interaction with the N terminus, thus defining a new microswitch region within the C5aR. Similar results were obtained with mutated CXCR4 and C5aRs expressed in COS-7 cells. These studies demonstrate a novel role of the EC3-N terminus cysteine pairs in G protein-coupled receptor activation and signaling.  相似文献   

5.
Interferons are the best antiviral agents in vitro against SARS-CoV-2 so far and genetic defects in their signaling cascade or neutralization of alfa-interferons by autoantibodies come with more severe COVID-19. However, there is more, as the SARS-CoV-2 dysregulates not only innate immune mechanisms but also T and B cell repertoires. Most genetic, hematological and immunological studies in COVID-19 are at present phenomenological. However, these and antecedent studies contain the seed grains to resolve many unanswered questions and a whole range of testable hypotheses. What are the links, if existing, between genetics and the occurrence of interferon-neutralizing antibodies? Are NAGGED (neutralizing and generated by gene defect) antibodies involved or not? Is the autoimmune process cause or consequence of virus infection? What are the roles played by cytokine posttranslational modifications, such as proteolysis, glycosylation, citrullination and others? How is systemic autoimmunity linked with type 1 interferons? These questions place cytokines and growth factors at pole positions as keys to unlock basic mechanisms of infection and (auto)immunity. Related to cytokine research, (1) COVID-19 patients develop neutralizing autoantibodies, mainly against alpha interferons and it is not yet established whether this is the consequence or cause of virus replication. (2) The glycosylation of recombinant interferon-beta protects against breaking tolerance and the development of neutralizing antibodies. (3) SARS-CoV-2 induces severe inflammation and release of extracellular proteases leading to remnant epitopes, e.g. of cytokines. (4) In the rare event of homozygous cytokine gene segment deletions, observed neutralizing antibodies may be named NAGGED antibodies. (5) Severe cytolysis releases intracellular content into the extracellular milieu and leads to regulated degradation of intracellular proteins and selection of antibody repertoires, similar to those observed in patients with systemic lupus erythematosus. (6) Systematic studies of novel autoimmune diseases on single cytokines will complement the present picture about interferons. (7) Interferon neutralization in COVID-19 constitutes a preamble of more studies about cytokine-regulated proteolysis in the control of autoimmunity. Here we reformulate these seven conjectures into testable questions for future research.  相似文献   

6.
SARS-CoV-2 infection poses a major threat to the lungs and multiple other organs, occasionally causing death. Until effective vaccines are developed to curb the pandemic, it is paramount to define the mechanisms and develop protective therapies to prevent organ dysfunction in patients with COVID-19. Individuals that develop severe manifestations have signs of dysregulated innate and adaptive immune responses. Emerging evidence implicates neutrophils and the disbalance between neutrophil extracellular trap (NET) formation and degradation plays a central role in the pathophysiology of inflammation, coagulopathy, organ damage, and immunothrombosis that characterize severe cases of COVID-19. Here, we discuss the evidence supporting a role for NETs in COVID-19 manifestations and present putative mechanisms, by which NETs promote tissue injury and immunothrombosis. We present therapeutic strategies, which have been successful in the treatment of immunο-inflammatory disorders and which target dysregulated NET formation or degradation, as potential approaches that may benefit patients with severe COVID-19.Subject terms: Immunological disorders, Infectious diseases, Respiratory tract diseases  相似文献   

7.
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits a wide spectrum of clinical presentations, ranging from asymptomatic cases to severe pneumonia or even death. In severe COVID-19 cases, an increased level of proinflammatory cytokines has been observed in the bloodstream, forming the so-called “cytokine storm”. Generally, nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation intensely induces cytokine production as an inflammatory response to viral infection. Therefore, the NLRP3 inflammasome can be a potential target for the treatment of COVID-19. Hence, this review first introduces the canonical NLRP3 inflammasome activation pathway. Second, we review the cellular/molecular mechanisms of NLRP3 inflammasome activation by SARS-CoV-2 infection (e.g., viroporins, ion flux and the complement cascade). Furthermore, we describe the involvement of the NLRP3 inflammasome in the pathogenesis of COVID-19 (e.g., cytokine storm, respiratory manifestations, cardiovascular comorbidity and neurological symptoms). Finally, we also propose several promising inhibitors targeting the NLRP3 inflammasome, cytokine products and neutrophils to provide novel therapeutic strategies for COVID-19.  相似文献   

8.
9.
Immune complex (IC)-induced inflammation is integral to the pathogenesis of several autoimmune diseases. ICs activate the complement system and interact with IgG FcgammaR. In this study, we demonstrate that activation of the complement system, specifically generation of C5a, initiates the neutrophilic inflammation in IC peritonitis. We show that ablation of C5a receptor signaling abrogates neutrophil recruitment in wild-type mice and prevents the enhancement of neutrophil migration seen in FcgammaRIIB(-/-) mice, suggesting that C5aR signaling is the crucial initial event upstream of FcgammaR signaling. We also provide evidence that C5a initiates the inflammatory cascade both directly, through C5aR-mediated effector functions on infiltrating and resident peritoneal cells, and indirectly, through shifting the balance between activating and inhibitory FcgammaRs on resident cells toward an inflammatory phenotype. We conclude that complement activation and C5a generation are prerequisites for IC-induced inflammation through activating FcgammaR, which amplifies complement-induced inflammation in autoimmunity.  相似文献   

10.
SARS-CoV-2 is a novel coronavirus that severely affects the respiratory system, is the cause of the COVID-19 pandemic, and is projected to result in the deaths of 2 million people worldwide. Recent reports suggest that SARS-CoV-2 also affects the central nervous system along with other organs. COVID-19-associated complications are observed in older people with underlying neurological conditions like stroke, Alzheimer's disease, and Parkinson’s disease. Hence, we discuss SARS-CoV-2 viral replication and its inflammation-mediated infection. This review also focuses on COVID-19 associated neurological complications in individuals with those complications as well as other groups of people. Finally, we also briefly discuss the current therapies available to treat patients, as well as ongoing available treatments and vaccines for effective cures with a special focus on the therapeutic potential of a small 5 amino acid peptide (PHSCN), ATN-161, that inhibits SARS-CoV-2 spike protein binding to both integrin α5β1 and α5β1/hACE2.  相似文献   

11.
Extracellular vesicles (EVs) have emerged as potential mediators of intercellular communication. EVs are nano-sized, lipid membrane–bound vesicles that contains biological information in the form of proteins, metabolites and/or nucleic acids. EVs are key regulators of tissue repair mechanisms, such as in the context of lung injuries. Recent studies suggest that EVs have the ability to repair COVID19-associated acute lung damage. EVs hold great promise for therapeutic treatments, particularly in treating a potentially fatal autoimmune response and attenuate inflammation. They are known to boost lung immunity and are involved in the pathogenesis of various lung diseases, including viral infection. EV-based immunization technology has been proven to elicit robust immune responses in many models of infectious disease, including COVID-19. The field of EV research has tremendous potential in advancing our understanding about viral infection pathogenesis, and can be translated into anti-viral therapeutic strategies.  相似文献   

12.
Singh  Ashutosh  Singh  Rahul Soloman  Sarma  Phulen  Batra  Gitika  Joshi  Rupa  Kaur  Hardeep  Sharma  Amit Raj  Prakash  Ajay  Medhi  Bikash 《中国病毒学》2020,35(3):290-304
The recent outbreak of coronavirus disease(COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) has already affected a large population of the world. SARS-CoV-2 belongs to the same family of severe acute respiratory syndrome coronavirus(SARS-CoV) and Middle East respiratory syndrome coronavirus(MERSCoV). COVID-19 has a complex pathology involving severe acute respiratory infection, hyper-immune response, and coagulopathy. At present, there is no therapeutic drug or vaccine approved for the disease. There is an urgent need for an ideal animal model that can reflect clinical symptoms and underlying etiopathogenesis similar to COVID-19 patients which can be further used for evaluation of underlying mechanisms, potential vaccines, and therapeutic strategies. The current review provides a paramount insight into the available animal models of SARS-CoV-2, SARS-CoV, and MERS-CoV for the management of the diseases.  相似文献   

13.
BackgroundCoronavirus disease-2019 (COVID-19) caused by infection with severe acute respiratory coronavirus-2 (SARS-CoV-2) has been spreading rapidly throughout China and in other countries since the end of 2019. The World Health Organization (WHO) has declared that the epidemic is a public health emergency of international concerns. The timely and appropriate measures for treating COVID-19 in China, which are inseparable from the contribution of traditional Chinese medicine (TCM), have won much praise of the world.PurposeThis review aimed to summarize and discuss the essential role of TCM in protecting tissues from injuries associated with COVID-19, and accordingly to clarify the possible action mechanisms of TCM from the perspectives of anti-inflammatory, antioxidant and anti-apoptotic effects.MethodsElectronic databases such as Pubmed, ResearchGate, Science Direct, Web of Science, medRixv and Wiley were used to search scientific literatures.ResultsThe present review found that traditional Chinese herbs commonly used for the clinical treatment of organ damages caused by COVID-19, such as Scutellaria baicalensis, Salvia miltiorrhizaSalvia miltiorrhiza, and ginseng, could act on multiple signaling pathways involved in inflammation, oxidative stress and apoptosis.ConclusionTCM could protect COVID-19 patients from tissue injuries, a protection that might be, at least partially, attributed to the anti-inflammatory, antioxidant and anti-apoptotic effects of the TCM under investigation. This review provides evidence and support for clinical treatment and novel drug research using TCM.  相似文献   

14.
The C1q-globular domain (gC1qD) is a highly conserved oligomerization motif that distinguishes a superfamily of proteins, which includes circulating factors like C1q (the first component of the complement cascade) and adiponectin. The compact structure resulting from gC1qD trimerization is well known for its versatility in establishing highly specific interactions with different ligands. Among the many binding targets are a large number of extracellular membrane-associated receptors involved in cell development, apoptosis, and immunological processes. Interestingly, proteins interacting with the prototypical globular domain of C1q have been described also inside the cell where they were shown to recognize signal transducers such as G protein coupled receptors and their downstream effectors. Afterward, it was shown that variants of the gC1qD have been adopted by intracellular proteins involved in signal transduction. This review summarizes the evidence supporting the presence of the gC1qD inside the cell and explores the possibility that the domain might play novel signaling functions in this context, such as determining highly specific protein-protein interactions aimed to organize signaling complexes on the cytosolic side of cellular membranes.  相似文献   

15.
The coronavirus disease 2019 (COVID-19) pandemic has become the most serious global public health issue in the past two years, requiring effective therapeutic strategies. This viral infection is a contagious disease caused by new coronaviruses (nCoVs), also called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Autophagy, as a highly conserved catabolic recycling process, plays a significant role in the growth and replication of coronaviruses (CoVs). Therefore, there is great interest in understanding the mechanisms that underlie autophagy modulation. The modulation of autophagy is a very complex and multifactorial process, which includes different epigenetic alterations, such as histone modifications and DNA methylation. These mechanisms are also known to be involved in SARS-CoV-2 replication. Thus, molecular understanding of the epigenetic pathways linked with autophagy and COVID-19, could provide novel therapeutic targets for COVID-19 eradication. In this context, the current review highlights the role of epigenetic regulation of autophagy in controlling COVID-19, focusing on the potential therapeutic implications.  相似文献   

16.
The pathophysiology of COVID-19 is an enigma with its severity often determined by the extent of coagulopathy. Several regulatory pathways targeted by the SARS-CoV-2 include the renin-angiotensin system, von Willebrand Factor, and most importantly, the complement pathway. This article discusses these pathways to help design potential future therapies.  相似文献   

17.
The complement cascade is a key component of the innate immune system that is rapidly recruited through a cascade of enzymatic reactions to enable the recognition and clearance of pathogens and promote tissue repair. Despite its well-understood role in immunology, recent studies have highlighted new and unexpected roles of the complement cascade in neuroimmune interaction and in the regulation of neuronal processes during development, aging, and in disease states. Complement signaling is particularly important in directing neuronal responses to tissue injury, neurotrauma, and nerve lesions. Under physiological conditions, complement-dependent changes in neuronal excitability, synaptic strength, and neurite remodeling promote nerve regeneration, tissue repair, and healing. However, in a variety of pathologies, dysregulation of the complement cascade leads to chronic inflammation, persistent pain, and neural dysfunction. This review describes recent advances in our understanding of the multifaceted cross-communication that takes place between the complement system and neurons. In particular, we focus on the molecular and cellular mechanisms through which complement signaling regulates neuronal excitability and synaptic plasticity in the nociceptive pathways involved in pain processing in both health and disease. Finally, we discuss the future of this rapidly growing field and what we believe to be the significant knowledge gaps that need to be addressed.  相似文献   

18.
19.
During the current formidable COVID-19 pandemic, it is appealing to address ideas that may invoke therapeutic interventions. Clotting disorders are well recognized in patients infected with severe acute respiratory syndrome (SARS) caused by a novel coronavirus (SARS-CoV-2), which lead to severe complications that worsen the prognosis in these subjects.Increasing evidence implicate Heparan sulfate proteoglycans (HSPGs) and Heparanase in various diseases and pathologies, including hypercoagulability states. Moreover, HSPGs and Heparanase are involved in several viral infections, in which they enhance cell entry and release of the viruses.Herein we discuss the molecular involvement of HSPGs and heparanase in SARS-CoV-2 infection, namely cell entry and release, and the accompanied coagulopathy complications, which assumedly could be blocked by heparanase inhibitors such as Heparin and Pixatimod.  相似文献   

20.
Theoretically, mesenchymal stem cells (MSCs) are very promising as adjuvant therapy to alleviate coronavirus disease 2019 (COVID-19)-associated acute lung injury and cytokine storm. Several published studies, which used MSCs to alleviate COVID-19-associated acute lung injury and cytokine storm, reported promising results. However, the evidence came from a case report, case series, and clinical trials with a limited number of participants. Therefore, more studies are needed to get robust proof of MSC beneficial effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号