首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modeling of metabolic pathway dynamics requires detailed kinetic equations at the enzyme level. In particular, the kinetic equations must account for metabolite effectors that contribute significantly to the pathway regulation in vivo. Unfortunately, most kinetic rate laws available in the literature do not consider all the effectors simultaneously, and much kinetic information exists in a qualitative or semiquantitative form. In this article, we present a strategy to incorporate such information into the kinetic equation. This strategy uses fuzzy logic‐based factors to modify algebraic rate laws that account for partial kinetic characteristics. The parameters introduced by the fuzzy factors are then optimized by use of a hybrid of simplex and genetic algorithms. The resulting model provides a flexible form that can simulate various kinetic behaviors. Such kinetic models are suitable for pathway modeling without complete enzyme mechanisms. Three enzymes in Escherichia coli central metabolism are used as examples: phosphoenolpyruvate carboxylase; phosphoenolpyruvate carboxykinase; and pyruvate kinase I. Results show that, with fuzzy logic‐augmented models, the kinetic data can be much better described. In particular, complex behavior, such as allosteric inhibition, can be captured using fuzzy rules. The resulting models, even though they do not provide additional physical meaning in enzyme mechanisms, allow the model to incorporate semiquantitative information in metabolic pathway models. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 62: 722–729, 1999.  相似文献   

2.
Mathematical and computational means are developed that take into consideration the specifics of control processes at the molecular level and allow one to obtain both qualitative and quantitative patterns of gene network dynamics. Using the method of generalized threshold models, models are constructed for the Arabidopsis thaliana flower morphogenesis control subsystem and gene subnetwork controlling the Drosophila melanogaster early ontogeny. The dynamics of these systems are investigated: kinetic curves are computed for molecular components (RNA, proteins), possible modes of functioning and steady states of the nets are revealed and biologically interpreted. The models are shown to be adequate to the real processes. The effectiveness of the generalized threshold model method is evaluated in the analysis of the actual eukaryotic gene networks.  相似文献   

3.
Metabolic system modeling for model-based glycaemic control is becoming increasingly important. Few metabolic system models are clinically validated for both fit to the data and prediction ability. This research introduces a new additional form of pharmaco-dynamic (PD) surface comparison for model analysis and validation. These 3D surfaces are developed for 3 clinically validated models and 1 model with an added saturation dynamic. The models include the well-known Minimal Model. They are fit to two different data sets of clinical PD data from hyperinsulinaemic clamp studies at euglycaemia and/or hyperglycaemia. The models are fit to the first data set to determine an optimal set of population parameters. The second data set is used to test trend prediction of the surface modeling as it represents a lower insulin sensitivity cohort and should thus require only scaling in these (or related) parameters to match this data set. This particular approach clearly highlights differences in modeling methods, and the model dynamics utilized that may not appear as clearly in other fitting or prediction validation methods.Across all models saturation of insulin action is seen to be an important determinant of prediction and fit quality. In particular, the well-reported under-modeling of insulin sensitivity in the Minimal Model can be seen in this context to be a result of a lack of saturation dynamics, which in turn affects its ability to detect differences between cohorts. The overall approach of examining PD surfaces is seen to be an effective means of analyzing and thus validating a metabolic model's inherent dynamics and basic trend prediction on a population level, but is not a replacement for data driven, patient-specific fit and prediction validation for clinical use. The overall method presented could be readily generalized to similar PD systems and therapeutics.  相似文献   

4.
Kinetic models of metabolic networks are essential for predicting and optimizing the transient behavior of cells in culture. However, such models are inherently high dimensional and stiff due to the large number of species and reactions involved and to kinetic rate constants of widely different orders of magnitude. In this paper we address the problem of deriving non-stiff, reduced-order non-linear models of the dominant dynamics of metabolic networks with fast and slow reactions. We present a method, based on singular perturbation analysis, which allows the systematic identification of quasi-steady-state conditions for the fast reactions, and the derivation of explicit non-linear models of the slow dynamics independent of the fast reaction rate expressions. The method is successfully applied to detailed models of metabolism in human erythrocytes and Saccharomyces cerevisiae.  相似文献   

5.
A novel approach to construct kinetic models of metabolic pathways, to be used in metabolic engineering, is presented: the tendency modeling approach. This approach greatly facilitates the construction of these models and can easily be applied to complex metabolic networks. The resulting models contain a minimal number of parameters; identification of their values is straightforward. Use of in vitro obtained information in the identification of the kinetic equations is minimized. The tendency modeling approach has been used to derive a dynamic model of primary metabolism for aerobic growth of Saccharomyces cerevisiae on glucose, in which compartmentation is included. Simulation results obtained with the derived model are satisfying for most of the carbon metabolites that have been measured. Compared to a more detailed model, the simulations of our model are less accurate, but taking into account the much smaller number of kinetic parameters (35 instead of 84), the tendency the modeling approach is considered promising.  相似文献   

6.
Phylodynamics - the field aiming to quantitatively integrate the ecological and evolutionary dynamics of rapidly evolving populations like those of RNA viruses - increasingly relies upon coalescent approaches to infer past population dynamics from reconstructed genealogies. As sequence data have become more abundant, these approaches are beginning to be used on populations undergoing rapid and rather complex dynamics. In such cases, the simple demographic models that current phylodynamic methods employ can be limiting. First, these models are not ideal for yielding biological insight into the processes that drive the dynamics of the populations of interest. Second, these models differ in form from mechanistic and often stochastic population dynamic models that are currently widely used when fitting models to time series data. As such, their use does not allow for both genealogical data and time series data to be considered in tandem when conducting inference. Here, we present a flexible statistical framework for phylodynamic inference that goes beyond these current limitations. The framework we present employs a recently developed method known as particle MCMC to fit stochastic, nonlinear mechanistic models for complex population dynamics to gene genealogies and time series data in a Bayesian framework. We demonstrate our approach using a nonlinear Susceptible-Infected-Recovered (SIR) model for the transmission dynamics of an infectious disease and show through simulations that it provides accurate estimates of past disease dynamics and key epidemiological parameters from genealogies with or without accompanying time series data.  相似文献   

7.
Significant advances in system-level modeling of cellular behavior can be achieved based on constraints derived from genomic information and on optimality hypotheses. For steady-state models of metabolic networks, mass conservation and reaction stoichiometry impose linear constraints on metabolic fluxes. Different objectives, such as maximization of growth rate or minimization of flux distance from a reference state, can be tested in different organisms and conditions. In particular, we have suggested that the metabolic properties of mutant bacterial strains are best described by an algorithm that performs a minimization of metabolic adjustment (MOMA) upon gene deletion. The increasing availability of many annotated genomes paves the way for a systematic application of these flux balance methods to a large variety of organisms. However, such a high throughput goal crucially depends on our capacity to build metabolic flux models in a fully automated fashion. Here we describe a pipeline for generating models from annotated genomes and discuss the current obstacles to full automation. In addition, we propose a framework for the integration of flux modeling results and high throughput proteomic data, which can potentially help in the inference of whole-cell kinetic parameters.  相似文献   

8.
Substrate competition can be found in many types of biological processes, ranging from gene expression to signal transduction and metabolic pathways. Although several experimental and in silico studies have shown the impact of substrate competition on these processes, it is still often neglected, especially in modelling approaches. Using toy models that exemplify different metabolic pathway scenarios, we show that substrate competition can influence the dynamics and the steady state concentrations of a metabolic pathway. We have additionally derived rate laws for substrate competition in reversible reactions and summarise existing rate laws for substrate competition in irreversible reactions.  相似文献   

9.
Metabolic models are typically characterized by a large number of parameters. Traditionally, metabolic control analysis is applied to differential equation-based models to investigate the sensitivity of predictions to parameters. A corresponding theory for constraint-based models is lacking, due to their formulation as optimization problems. Here, we show that optimal solutions of optimization problems can be efficiently differentiated using constrained optimization duality and implicit differentiation. We use this to calculate the sensitivities of predicted reaction fluxes and enzyme concentrations to turnover numbers in an enzyme-constrained metabolic model of Escherichia coli. The sensitivities quantitatively identify rate limiting enzymes and are mathematically precise, unlike current finite difference based approaches used for sensitivity analysis. Further, efficient differentiation of constraint-based models unlocks the ability to use gradient information for parameter estimation. We demonstrate this by improving, genome-wide, the state-of-the-art turnover number estimates for E. coli. Finally, we show that this technique can be generalized to arbitrarily complex models. By differentiating the optimal solution of a model incorporating both thermodynamic and kinetic rate equations, the effect of metabolite concentrations on biomass growth can be elucidated. We benchmark these metabolite sensitivities against a large experimental gene knockdown study, and find good alignment between the predicted sensitivities and in vivo metabolome changes. In sum, we demonstrate several applications of differentiating optimal solutions of constraint-based metabolic models, and show how it connects to classic metabolic control analysis.  相似文献   

10.
Systems biology provides new approaches for metabolic engineering through the development of models and methods for simulation and optimization of microbial metabolism. Here we explore the relationship between two modeling frameworks in common use namely, dynamic models with kinetic rate laws and constraint-based flux models. We compare and analyze dynamic and constraint-based formulations of the same model of the central carbon metabolism of Escherichia coli. Our results show that, if unconstrained, the space of steady states described by both formulations is the same. However, the imposition of parameter-range constraints can be mapped into kinetically feasible regions of the solution space for the dynamic formulation that is not readily transferable to the constraint-based formulation. Therefore, with partial kinetic parameter knowledge, dynamic models can be used to generate constraints that reduce the solution space below that identified by constraint-based models, eliminating infeasible solutions and increasing the accuracy of simulation and optimization methods.  相似文献   

11.
MOTIVATION: High-throughput technologies now allow the acquisition of biological data, such as comprehensive biochemical time-courses at unprecedented rates. These temporal profiles carry topological and kinetic information regarding the biochemical network from which they were drawn. Retrieving this information will require systematic application of both experimental and computational methods. RESULTS: S-systems are non-linear mathematical approximative models based on the power-law formalism. They provide a general framework for the simulation of integrated biological systems exhibiting complex dynamics, such as genetic circuits, signal transduction and metabolic networks. We describe how the heuristic optimization technique simulated annealing (SA) can be effectively used for estimating the parameters of S-systems from time-course biochemical data. We demonstrate our methods using three artificial networks designed to simulate different network topologies and behavior. We then end with an application to a real biochemical network by creating a working model for the cadBA system in Escherichia coli. AVAILABILITY: The source code written in C++ is available at http://www.engg.upd.edu.ph/~naval/bioinformcode.html. All the necessary programs including the required compiler are described in a document archived with the source code. SUPPLEMENTARY INFORMATION: Supplementary material is available at Bioinformatics online.  相似文献   

12.
Spike-timing dependent plasticity (STDP) is a type of synaptic modification found relatively recently, but the underlying biophysical mechanisms are still unclear. Several models of STDP have been proposed, and differ by their implementation, and in particular how synaptic weights saturate to their minimal and maximal values. We analyze here kinetic models of transmitter-receptor interaction and derive a series of STDP models. In general, such kinetic models predict progressive saturation of the weights. Various forms can be obtained depending on the hypotheses made in the kinetic model, and these include a simple linear dependence on the value of the weight (“soft bounds”), mixed soft and abrupt saturation (“hard bound”), or more complex forms. We analyze in more detail simple soft-bound models of Hebbian and anti-Hebbian STDPs, in which nonlinear spike interactions (triplets) are taken into account. We show that Hebbian STDPs can be used to selectively potentiate synapses that are correlated in time, while anti-Hebbian STDPs depress correlated synapses, despite the presence of nonlinear spike interactions. This correlation detection enables neurons to develop a selectivity to correlated inputs. We also examine different versions of kinetics-based STDP models and compare their sensitivity to correlations. We conclude that kinetic models generally predict soft-bound dynamics, and that such models seem ideal for detecting correlations among large numbers of inputs.  相似文献   

13.
14.
Genome sequencing and annotation has enabled the reconstruction of genome-scale metabolic networks. The phenotypic functions that these networks allow for can be defined and studied using constraints-based models and in silico simulation. Several useful predictions have been obtained from such in silico models, including substrate preference, consequences of gene deletions, optimal growth patterns, outcomes of adaptive evolution and shifts in expression profiles. The success rate of these predictions is typically in the order of 70-90% depending on the organism studied and the type of prediction being made. These results are useful as a basis for iterative model building and for several practical applications.  相似文献   

15.
Understanding the complex growth and metabolic dynamics in microorganisms requires advanced kinetic models containing both metabolic reactions and enzymatic regulation to predict phenotypic behaviors under different conditions and perturbations. Most current kinetic models lack gene expression dynamics and are separately calibrated to distinct media, which consequently makes them unable to account for genetic perturbations or multiple substrates. This challenge limits our ability to gain a comprehensive understanding of microbial processes towards advanced metabolic optimizations that are desired for many biotechnology applications. Here, we present an integrated computational and experimental approach for the development and optimization of mechanistic kinetic models for microbial growth and metabolic and enzymatic dynamics. Our approach integrates growth dynamics, gene expression, protein secretion, and gene-deletion phenotypes. We applied this methodology to build a dynamic model of the growth kinetics in batch culture of the bacterium Cellvibrio japonicus grown using either cellobiose or glucose media. The model parameters were inferred from an experimental data set using an evolutionary computation method. The resulting model was able to explain the growth dynamics of C. japonicus using either cellobiose or glucose media and was also able to accurately predict the metabolite concentrations in the wild-type strain as well as in β-glucosidase gene deletion mutant strains. We validated the model by correctly predicting the non-diauxic growth and metabolite consumptions of the wild-type strain in a mixed medium containing both cellobiose and glucose, made further predictions of mutant strains growth phenotypes when using cellobiose and glucose media, and demonstrated the utility of the model for designing industrially-useful strains. Importantly, the model is able to explain the role of the different β-glucosidases and their behavior under genetic perturbations. This integrated approach can be extended to other metabolic pathways to produce mechanistic models for the comprehensive understanding of enzymatic functions in multiple substrates.  相似文献   

16.
The stability characteristics of a class of unstructured models of continuous bioreactors are analyzed using elementary concepts of singularity theory and continuation techniques. The class consists of models for which the non-biomass product formation rate is linearly proportional to the utilization rate of limiting substrate. The kinetics expressions of cell growth and product synthesis are allowed to assume general forms of substrate and product. Global analytical conditions are derived that allow the construction of a practical picture in the multidimensional parameter space delineating the different static behavior these models can predict, including unique steady states, coexistence of non-trivial steady states with wash-out conditions, and multistability resulting from hysteresis. These general results are applied to specific examples of bioprocesses and allow the study of the effect of kinetic and operating parameters on the stability characteristics of these models.  相似文献   

17.
18.
We study, both analytically and numerically, models of ecological character displacement for two species that compete for the same set of food sources. These models include quantitative genetics and Lotka-Volterra type competition and are symmetric with respect to the two species. We allow for various shapes of the carrying capacity and the competition function, and we discuss under what general conditions large character displacement can occur. While some of these conditions, like genetic rigidity, or flat and truncated carrying capacity curves, were known before, we also find that slow dynamics of the genetic variance, steep slopes in the interaction function and carrying capacities that are not truncated can lead to large displacements. We interpret these conditions biologically and also give new insights into models which have been previously investigated.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号