首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biocatalysts that mediate the H2-dependent reduction of NAD+ to NADH are attractive from both a fundamental and applied perspective. Here we present the first biochemical and spectroscopic characterization of an NAD+-reducing [NiFe]?hydrogenase that sustains catalytic activity at high temperatures and in the presence of O2, which usually acts as an inhibitor. We isolated and sequenced the four structural genes, hoxFUYH, encoding the soluble NAD+-reducing [NiFe]?hydrogenase (SH) from the thermophilic betaproteobacterium, Hydrogenophilus thermoluteolus TH-1T (Ht). The HtSH was recombinantly overproduced in a hydrogenase-free mutant of the well-studied, H2-oxidizing betaproteobacterium Ralstonia eutropha H16 (Re). The enzyme was purified and characterized with various biochemical and spectroscopic techniques. Highest H2-mediated NAD+ reduction activity was observed at 80 °C and pH 6.5, and catalytic activity was found to be sustained at low O2 concentrations. Infrared spectroscopic analyses revealed a spectral pattern for as-isolated HtSH that is remarkably different from those of the closely related ReSH and other [NiFe]?hydrogenases. This indicates an unusual configuration of the oxidized catalytic center in HtSH. Complementary electron paramagnetic resonance spectroscopic analyses revealed spectral signatures similar to related NAD+-reducing [NiFe]?hydrogenases. This study lays the groundwork for structural and functional analyses of the HtSH as well as application of this enzyme for H2-driven cofactor recycling under oxic conditions at elevated temperatures.  相似文献   

2.
The O2 affinity of βSH chains is lowered by H+, inositol hexaphosphate (IHP), and CO2. As the oxygen affinity of βSH monomers (β1SH) is lower than that of βSH tetramers (β4SH), it is possible that IHP and CO2 exert their influence on the O2 affinity of βSH chains by increasing the dissociation constant of β4SH rather than by a direct effect on the molecule. In order to test for this hypothesis we have measured the O2 affinity of βSH chains as a function of protein concentration at various concentrations of IHP and inorganic phosphates in the absence and presence of CO2. From these data association constants for the binding of IHP to β1SH and β4SH as well as for the equilibrium 4β1SH ? β4SH were calculated. We found that IHP and CO2 influence the oxygen affinity of β1SH. It was furthermore established that inorganic phosphate enhances the stability of β4SH while IHP favors its dissociation in monomers.  相似文献   

3.
4.
We describe a strategy to establish cyanobacterial strains with high levels of H2 production that involves the identification of promising wild-type strains followed by optimization of the selected strains using genetic engineering. Nostoc sp. PCC 7422 was chosen from 12 other heterocystous strains, because it has the highest nitrogenase activity. We sequenced the uptake hydrogenase (Hup) gene cluster as well as the bidirectional hydrogenase gene cluster from the strain, and constructed a mutant (ΔhupL) by insertional disruption of the hupL gene. The ΔhupL mutant produced H2 at 100 μmoles mg chlorophyll a -1 h-1, a rate three times that of the wild-type. The ΔhupL cells could accumulate H2 to about 29% (v/v) accompanied by O2 evolution in 6 days, under a starting gas phase of Ar + 5% CO2. The presence of 20% O2 in the initial gas phase inhibited H2 accumulation of the ΔhupL cells by less than 20% until day 7.  相似文献   

5.
Rates of respiratory CO2 loss and nitrogenase activities of H2 uptake-negative mutant strains and H2 uptake-positive revertant strains of Rhizobium japonicum have been investigated. Two-dimensional gel protein patterns of bacteroids formed by inoculation of soybeans (Glycine max L.) with these two strains show that they are closely related and revealed only one obvious difference between them. On the basis of molecular weight standards, it was concluded that the missing protein spot in the H2 uptake-negative mutant strain could be caused by a failure of the mutant to synthesize hydrogenase. Nodules formed by the H2 uptake-negative mutant strain evolved respiratory CO2 at a rate of about 10% higher than that of nodules formed by the H2 uptake-positive revertant strain. During short-term experiments employed, rates of both C2H2 reduction and 15N2 fixation varied considerably among replicate samples and no statistically significant differences between mutant and revertant strains were observed. It was observed that increasing the partial pressure of O2 over nodules significantly decreased the proportion of nitrogenase electrons allocated to H+.  相似文献   

6.
The purple sulfur phototrophic bacterium Thiocapsa roseopersicina BBS synthesizes at least three NiFe hydrogenases (Hox, Hup, Hyn). We characterized the physiological H2 consumption/evolution reactions in mutants having deletions of the structural genes of two hydrogenases in various combinations. This made possible the separation of the functionally distinct roles of the three hydrogenases. Data showed that Hox hydrogenase (unlike the Hup and Hyn hydrogenases) catalyzed the dark fermentative H2 evolution and the light-dependent H2 production in the presence of thiosulfate. Both Hox+ and Hup+ mutants demonstrated light-dependent H2 uptake stimulated by CO2 but only the Hup+ mutant was able to mediate O2-dependent H2 consumption in the dark. The ability of the Hox+ mutant to evolve or consume hydrogen was found to depend on a number of interplaying factors including both growth and reaction conditions (availability of glucose, sulfur compounds, CO2, H2, light). The study of the redox properties of Hox hydrogenase supported the reversibility of its action. Based on the results a scheme is suggested to describe the role of Hox hydrogenase in light-dependent and dark hydrogen metabolism in T. roseopersicina BBS.  相似文献   

7.
Hydrogenase mediated nitrite reduction in chlorella   总被引:4,自引:3,他引:1       下载免费PDF全文
Stiller M 《Plant physiology》1966,41(2):348-352
The assay of the hydrogenase of glucose-grown cells of Chlorella pyrenoidosa, strain 7-11-05 by means of nitrite reduction with molecular hydrogen is described. The hydrogenase of Chlorella shows maximum activity immediately after equilibration in the hydrogen atmosphere. The hydrogenase mediated reduction of nitrite to ammonia requires the presence of CO2. However, at pH 6.4. when the reaction proceeds optimally, there is apparently sufficient retention of metabolic CO2 to support the reaction, which goes to completion, at near maximum rates.

Reduction of nitrite in the hydrogenase system when CO2 is present results in the uptake of 3 moles of H2 per mole of nitrite and ammonia is the product. When CO2 is absent or limiting, ammonia is also formed from nitrite but with the uptake of less than the stoichiometric amount of H2. It is concluded that CO2 is essential for the uptake of H2, and that in the absence of CO2 internal hydrogen donors support nitrite reduction.

The possibility that CO2 exerts a catalytic effect in all reductions mediated by hydrogenase in algae is considered, and a further hypothesis, that hydrogenase arises from that portion of the photosynthetic machinery which also shows a catalytic requirement for CO2, is proposed.

  相似文献   

8.
Hydrogenases are metalloenzymes that catalyze 2H+ + 2e ↔ H2. A multisubunit, bidirectional [NiFe]-hydrogenase has been identified and characterized in a number of bacteria, including cyanobacteria, where it is hypothesized to function as an electron valve, balancing reductant in the cell. In cyanobacteria, this Hox hydrogenase consists of five proteins in two functional moieties: a hydrogenase moiety (HoxYH) with homology to heterodimeric [NiFe]-hydrogenases and a diaphorase moiety (HoxEFU) with homology to NuoEFG of respiratory Complex I, linking NAD(P)H ↔ NAD(P)+ as a source/sink for electrons. Here, we present an extensive study of Hox hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803. We identify the presence of HoxEFUYH, HoxFUYH, HoxEFU, HoxFU, and HoxYH subcomplexes as well as association of the immature, unprocessed large subunit (HoxH) with other Hox subunits and unidentified factors, providing a basis for understanding Hox maturation and assembly. The analysis of mutants containing individual and combined hox gene deletions in a common parental strain reveals apparent alterations in subunit abundance and highlights an essential role for HoxF and HoxU in complex/subcomplex association. In addition, analysis of individual and combined hox mutant phenotypes in a single strain background provides a clear view of the function of each subunit in hydrogenase activity and presents evidence that its physiological function is more complicated than previously reported, with no outward defects apparent in growth or photosynthesis under various growth conditions.  相似文献   

9.
10.
Washed cells of Desulfovibrio vulgaris strain Marburg oxidized H2, formate, lactate or pyruvate with sulfate, sulfite, trithionate, thiosulfate or oxygen as electron acceptor. CuCl2 as an inhibitor of periplasmic hydrogenase inhibited H2 and formate oxidation with sulfur compounds, and lactate oxidation in H2-grown, but not in lactate-grown cells. H2 oxidation was sensitive to O2 concentrations above 2% saturation. Carbon monoxide inhibited the oxidation of all substrates tested. Additions of micromolar H2 pulses to cells incubated in KCl in the presence of various sulfur compounds (reductant pulse method) resulted in a reversible acidification. This proton release was stimulated by thiocyanate, methyl triphenylphosphonium (MTPP+) or valinomycin plus EDTA, and completely inhibited by the uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP), CuCl2 or carbon monoxide. The extrapolated H+/H2 ratios obtained with sulfate, sulfite, trithionate or thiosulfate varied from 1.0 to 1.7. Micromolar additions of O2 to cells incubated in the presence of excess of electron donor (oxidant pulse method) caused proton translocation with extrapolated H+/H2 ratios of 3.9 with H2, 1.6 with lactate and 2.4 with pyruvate. Since a periplasmic hydrogenase can release at maximum 2 H+/H2, it is concluded that D. vulgaris is able to generate a proton gradient by vectorial proton translocation across the cytoplasmic membrane and by extracellular proton release by a periplasmic hydrogenase.  相似文献   

11.
12.
Nostoc punctiforme ATCC 29133 is a nitrogen-fixing, heterocystous cyanobacterium of symbiotic origin. During nitrogen fixation, it produces molecular hydrogen (H2), which is recaptured by an uptake hydrogenase. Gas exchange in cultures of N. punctiforme ATCC 29133 and its hydrogenase-free mutant strain NHM5 was studied. Exchange of O2, CO2, N2, and H2 was followed simultaneously with a mass spectrometer in cultures grown under nitrogen-fixing conditions. Isotopic tracing was used to separate evolution and uptake of CO2 and O2. The amount of H2 produced per molecule of N2 fixed was found to vary with light conditions, high light giving a greater increase in H2 production than N2 fixation. The ratio under low light and high light was approximately 1.4 and 6.1 molecules of H2 produced per molecule of N2 fixed, respectively. Incubation under high light for a longer time, until the culture was depleted of CO2, caused a decrease in the nitrogen fixation rate. At the same time, hydrogen production in the hydrogenase-deficient strain was increased from an initial rate of approximately 6 μmol (mg of chlorophyll a)−1 h−1 to 9 μmol (mg of chlorophyll a)−1 h−1 after about 50 min. A light-stimulated hydrogen-deuterium exchange activity stemming from the nitrogenase was observed in the two strains. The present findings are important for understanding this nitrogenase-based system, aiming at photobiological hydrogen production, as we have identified the conditions under which the energy flow through the nitrogenase can be directed towards hydrogen production rather than nitrogen fixation.  相似文献   

13.

Background  

Molecular hydrogen is an environmentally-clean fuel and the reversible (bi-directional) hydrogenase of the cyanobacterium Synechocystis sp. PCC 6803 as well as the native Escherichia coli hydrogenase 3 hold great promise for hydrogen generation. These enzymes perform the simple reaction 2H+ + 2e- ↔ H2 (g).  相似文献   

14.
The cytoplasmic, NAD-reducing hydrogenase (SH) of Alcaligenes eutrophus H16 is a heterotetrameric enzyme which contains several cofactors and undergoes a complex maturation during biogenesis. HoxH is the Ni-carrying subunit, and together with HoxY it forms the hydrogenase dimer. HoxF and HoxU represent the flavin-containing diaphorase moiety, which is closely related to NADH:ubiquinone oxidoreductase and mediates NADH oxidation. A variety of mutations were introduced into the four SH structural genes to obtain mutant enzymes composed of monomeric and dimeric forms. A deletion removing most of hoxF, hoxU, and hoxY led to the expression of a HoxH monomer derivative which was proteolytically processed at the C terminus like the wild-type polypeptide. While the hydrogenase dimer, produced by a strain deleted of hoxF and hoxU, displayed H2-dependent dye-reducing activity, the monomeric form did not mediate the activation of H2, although nickel was incorporated into HoxH. Deletion of hoxH and hoxY led to the production of HoxFU dimers which displayed NADH:oxidoreductase activity. Mixing the hydrogenase and the diaphorase moieties in vitro reconstituted the structure and catalytic function of the SH holoenzyme.  相似文献   

15.
16.
The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha H16 catalyzes the H2-driven reduction of NAD+, as well as reverse electron transfer from NADH to H+, in the presence of O2. It comprises six subunits, HoxHYFUI2, and incorporates a [NiFe] H+/H2 cycling catalytic centre, two non-covalently bound flavin mononucleotide (FMN) groups and an iron-sulfur cluster relay for electron transfer. This study provides the first characterization of the diaphorase sub-complex made up of HoxF and HoxU. Sequence comparisons with the closely related peripheral subunits of Complex I in combination with UV/Vis spectroscopy and the quantification of the metal and FMN content revealed that HoxFU accommodates a [2Fe2S] cluster, FMN and a series of [4Fe4S] clusters. Protein film electrochemistry (PFE) experiments show clear electrocatalytic activity for both NAD+ reduction and NADH oxidation with minimal overpotential relative to the potential of the NAD+/NADH couple. Michaelis-Menten constants of 56 µM and 197 µM were determined for NADH and NAD+, respectively. Catalysis in both directions is product inhibited with K I values of around 0.2 mM. In PFE experiments, the electrocatalytic current was unaffected by O2, however in aerobic solution assays, a moderate superoxide production rate of 54 nmol per mg of protein was observed, meaning that the formation of reactive oxygen species (ROS) observed for the native SH can be attributed mainly to HoxFU. The results are discussed in terms of their implications for aerobic functioning of the SH and possible control mechanism for the direction of catalysis.  相似文献   

17.
Out of 15 strains ofAzospirillum spp. isolated from the roots of different plants, only 4 (CY, M, CC, and AM) were able to grow autotrophically with H2 and CO2. All of them showed H2 uptake in the presence of oxygen or methylene blue and ribulose-1,5-bisphosphate carboxylase activity. Among the four strains, strain CC isolated from the roots ofCenchrus cilliaris showed maximum H2+O2 uptake (32.5 l/min. mg protein) as well as H2 uptake in the presence of methylene blue (41.4 l/min·mg protein) and also the maximum activity of ribulose-1,5-bisphosphate carboxylase (17 units [U]/g protein). The doubling time of this strain under autotrophic growth conditions and at low oxygen concentration (2.5%, vol/vol) was 10 h. At the same O2 concentration the maximal rates of H2+O2 uptake were reached. The distribution of hydrogenase activity among soluble and particulate protein fractions revealed that the hydrogenase ofAzospirillum strain CC is a membrane-bound enzyme. It showed cross-reaction with antibodies raised against the membrane-bound hydrogenase ofAlcaligenes eutrophus. The hydrogenase in intact cells and crude extracts reacted with methylene blue, phenazine methosulfate, and ferricyanide, but not with NAD or FMN. The specific hydrogenase activity, with methylene blue as an acceptor, was 5.71 U/mg protein in crude extract at 9.38 U/mg protein in the membrane suspension. Hydrogen evolution from reduced viologen dyes could not be demonstrated. The hydrogenase is oxygen sensitive and can be optimally stabilized by addition of dithionite to H2-gased samples.  相似文献   

18.
The O-methyl substituents of aromatic compounds constitute a C1 growth substrate for a number of taxonomically diverse anaerobic acetogens. In this study, strain TH-001, an O-demethylating obligate anaerobe, was chosen to represent this physiological group, and the carbon flow when cells were grown on O-methyl substituents as a C1 substrate was determined by 14C radiotracer techniques. O-[methyl-14C]vanillate (4-hydroxy-3-methoxy-benzoate) was used as the labeled C1 substrate. The data showed that for every O-methyl carbon converted to [14C]acetate, two were oxidized to 14CO2. Quantitation of the carbon recovered in the two products, acetate and CO2, indicated that acetate was formed in part by the fixation of unlabeled CO2. The specific activity of 14C in acetate was 70% of that in the O-methyl substrate, suggesting that only one carbon of acetate was derived from the O-methyl group. Thus, it is postulated that the carboxyl carbon of the product acetate is derived from CO2 and the methyl carbon is derived from the O-methyl substituent of vanillate. The metabolism of O-[methyl-14C]vanillate by strain TH-001 can be described as follows: 314CH3OC7H5O3 + CO2 + 4H2O → 14CH3COOH + 214CO2 + 10H+ + 10e- + 3HOC7H5O3.  相似文献   

19.
20.
Localization of an uptake hydrogenase in anabaena   总被引:9,自引:2,他引:7       下载免费PDF全文
Occurrence and localization of an uptake hydrogenase were examined in three strains of the blue-green alga, Anabaena. In vivo H2 uptake was detected (0.60-1.44 μmoles/[mg of chlorophyll a per hour]) in all three strains when grown with N2 as the sole source of nitrogen. H2 uptake (in vivo and in vitro) was severely suppressed in cultures grown on NH4+ and lacking heterocysts. H2 uptake in cell-free extracts could be readily measured with a methyl viologen-ferricyanide electron acceptor system. Solubilization kinetics during cavitation of aerobically grown Anabaena 7120 indicates that the uptake hydrogenase is localized solely in the heterocyst. When the same organism is grown on N2/CO2, vegetative cells may account for up to 21% of the total hydrogenase activity in the filaments. The results are discussed in terms of a proposed functional relationship between nitrogenase and hydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号