首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Determining the capacity of organisms to acclimate and adapt to increased temperatures is key to understand how populations and communities will respond to global warming. Although there is evidence that elevated water temperature affects metabolism, growth and condition of tropical marine fish, it is unknown whether they have the potential to acclimate, given adequate time. We reared the tropical reef fish Acanthochromis polyacanthus through its entire life cycle at present day and elevated (+1.5 and+3.0 °C) water temperatures to test its ability to thermally acclimate to ocean temperatures predicted to occur over the next 50–100 years. Fish reared at 3.0 °C greater than the present day average reduced their resting oxygen consumption (RMR) during summer compared with fish reared at present day temperatures and tested at the elevated temperature. The reduction in RMR of up to 69 mg O2 kg?1 h?1 in acclimated fish could represent a significant benefit to daily energy expenditure. In contrast, there was no acclimation to summer temperatures exhibited by fish reared at 1.5 °C above present day temperatures. Fish acclimated to +3.0 °C were smaller and in poorer condition than fish reared at present day temperatures, suggesting that even with acclimation there will be significant consequences for future populations of tropical fishes caused by global warming.  相似文献   

2.
Globally increasing temperatures may strongly affect insect herbivore performance, as their growth and development is directly linked to ambient temperature as well as host‐plant quality. In contrast to direct effects of temperature on herbivores, indirect effects mediated via thermal effects on host‐plant quality are only poorly understood, despite having the potential to substantially impact performance and thereby to alter responses to the changing climatic conditions. We here use a full‐factorial design to explore the direct (larvae were reared at 17 °C or 25 °C) and indirect effects (host plants were reared at 17 °C or 25 °C) of temperature on larval growth and life‐history traits in the temperate‐zone butterfly Pieris napi. Direct temperature effects reflected the common pattern of prolonged development and increased body mass at lower temperatures. At the higher temperature, efficiency of converting food into body matter was much reduced being accompanied by an increased food intake, suggesting compensatory feeding. Indirect temperature effects were apparent as reduced body mass, longer development time, an increased food intake, and a reduced efficiency of converting food into body matter in larvae feeding on plants grown at the higher temperature, thus indicating poor host‐plant quality. The effects of host‐plant quality were more pronounced at the higher temperature, at which compensatory feeding was much less efficient. Our results highlight that temperature‐mediated changes in host‐plant quality are a significant, but largely overlooked source of variation in herbivore performance. Such effects may exaggerate negative effects of global warming, which should be considered when trying to forecast species' responses to climate change.  相似文献   

3.
Tropical species are predicted to have limited capacity for acclimation to global warming. This study investigated the potential for developmental thermal acclimation by the tropical damselfish Pomacentrus moluccensis to ocean temperatures predicted to occur over the next 50–100 years. Newly settled juveniles were reared for 4 months in four temperature treatments, consisting of the current-day summer average (28.5 °C) and up to 3 °C above the average (29.5, 30.5 and 31.5 °C). Resting metabolic rate (RMR) of fish reared at 29.5 and 31.5 °C was significantly higher than the control group reared at 28.5 °C. In contrast, RMR of fish reared at 30.5 °C was not significantly different from the control group, indicating these fish had acclimated to their rearing temperature. Furthermore, fish that developed in 30.5 and 31.5 °C exhibited an enhanced ability to deal with acute temperature increases. These findings illustrate that developmental acclimation may help coral reef fish cope with warming ocean temperatures.  相似文献   

4.
Male and female D. oleae have similar powers of acclimation when exposed to low temperatures. Their torpor thresholds depend upon the temperature to which they have been acclimatised. During slow cooling (i.e. less than 1°C per min) they are capable of some rapid acclimation which enables them to lower their torpor threshold by almost 1°C degree, as compared with when they are chilled quickly. After abrupt transfer from 25°C to a different temperature, acclimation takes some time to be accomplished. At 15°C and above it occurs within 10 days but at temperatures below this, progressive acclimation lowers the torpor thresholds to the very low levels typical of flies overwintering under natural conditions. During this long term acclimation torpor thresholds may change by almost 0.5°C per 1°C change of acclimation temperature.No differences were observed in the ability of either flies from northern and southern Greece, or normal and γ-irradiated laboratory reared flies to acclimate to winter conditions in the field. In all cases, torpor thresholds were progressively lowered in advance of the decline in weekly minimum temperatures.  相似文献   

5.
Ambient temperature exerts both physiological and mechanicaleffects on the rates of functional processes of small aquaticectotherms. Physiological effects of temperature result fromits influence on the rates of chemical reactions. Mechanicaleffects of temperature result from the inverse relationshipbetween the temperature of water and its dynamic viscosity.We measured the relative importance of these components of temperatureon the feeding performance of polychaete larvae. Cohorts oflarvae were reared for 24 h at 20°C and 10°C in treatmentswhere the physiological and mechanical effects of these temperatureswere separated. The feeding performance of these larvae wassubsequently measured in treatments where these components oftemperature were similarly partitioned. Cold-reared larvae displayedcomplete acclimation of feeding performance to the physiologicaleffects of decreased temperature: thus, increased viscositywas responsible for 100% of the difference in feeding performancebetween 20°C and 10°C. The physiological ability ofsmall aquatic ectotherms to acclimate functional processes totemperature variation may be greater than previously thought,and these results have implications for understanding the responsesof aquatic ectotherms’ to global temperature change.  相似文献   

6.
Most research in physiological ecology has focused on the effects of mean changes in temperature under the classic “hot vs cold” acclimation treatment; however, current evidence suggests that an increment in both the mean and variance of temperature could act synergistically to amplify the negative effects of global temperature increase and how it would affect fitness and performance-related traits in ectothermic organisms. We assessed the effects of acclimation to daily variance of temperature on thermal performance curves of swimming speed in helmeted water toad tadpoles (Calyptocephalella gayi). Acclimation treatments were 20 °C ± 0.1 SD (constant) and 20 °C ± 1.5 SD (fluctuating). We draw two key findings: first, tadpoles exposed to daily temperature fluctuation had reduced maximal performance (Zmax), and flattened thermal performance curves, thus supporting the “vertical shift or faster-slower” hypothesis, and suggesting that overall swimming performance would be lower through an examination of temperatures under more realistic and ecologically-relevant fluctuating regimens; second, there was significant interindividual variation in performance traits by means of significant repeatability estimates.Our present results suggest that the widespread use of constant acclimation temperatures in laboratory experiments to estimate thermal performance curves (TPCs) may lead to an overestimation of actual organismal performance. We encourage the use of temperature fluctuation acclimation treatments to better understand the variability of physiological traits, which predict ecological and evolutionary responses to global change.  相似文献   

7.
Climate warming is expected to increase respiration rates of tropical forest trees and lianas, which may negatively affect the carbon balance of tropical forests. Thermal acclimation could mitigate the expected respiration increase, but the thermal acclimation potential of tropical forests remains largely unknown. In a tropical forest in Panama, we experimentally increased nighttime temperatures of upper canopy leaves of three tree and two liana species by on average 3  ° C for 1 week, and quantified temperature responses of leaf dark respiration. Respiration at 25  ° C (R25) decreased with increasing leaf temperature, but acclimation did not result in perfect homeostasis of respiration across temperatures. In contrast, Q10 of treatment and control leaves exhibited similarly high values (range 2.5–3.0) without evidence of acclimation. The decrease in R25 was not caused by respiratory substrate depletion, as warming did not reduce leaf carbohydrate concentration. To evaluate the wider implications of our experimental results, we simulated the carbon cycle of tropical latitudes (24 ° S–24 ° N) from 2000 to 2100 using a dynamic global vegetation model (LM3VN) modified to account for acclimation. Acclimation reduced the degree to which respiration increases with climate warming in the model relative to a no‐acclimation scenario, leading to 21% greater increase in net primary productivity and 18% greater increase in biomass carbon storage over the 21st century. We conclude that leaf respiration of tropical forest plants can acclimate to nighttime warming, thereby reducing the magnitude of the positive feedback between climate change and the carbon cycle.  相似文献   

8.
Many frogs from temperate climates can tolerate low temperatures and increase their thermal tolerance through hardening and acclimation. Most tropical frogs, on the other hand, fail to acclimate to low temperatures. This lack of acclimation ability is potentially due to lack of selection pressure for acclimation because cold weather is less common in the tropics. We tested the generality of this pattern by characterizing the critical temperature minimum (CTMin), hardening, and acclimation responses of túngara frogs (Engystomops pustulosus). These frogs belong to a family with unknown thermal ecology. They are found in a tropical habitat with a highly constant temperature regime. The CTMin of the tadpoles was on average 12.5 °C. Pre-metamorphic tadpoles hardened by 1.18 °C, while metamorphic tadpoles hardened by 0.36 °C. When raised at 21 °C, tadpoles acclimated expanding their cold tolerance by 1.3 °C in relation to larvae raised at 28 °C. These results indicate that the túngara frog has a greatly reduced cold tolerance when compared to species from temperate climates, but it responds to cold temperatures with hardening and acclimation comparable to those of temperate-zone species. Cold tolerance increased with body length but cold hardening was more extensive in pre-metamorphic tadpoles than in metamorphic ones. This study shows that lack of acclimation ability is not general to the physiology of tropical anurans.  相似文献   

9.
Thermal acclimation capacity was investigated in adults of three tropical marine invertebrates, the subtidal barnacle Striatobalanus amaryllis, the intertidal gastropod Volegalea cochlidium and the intertidal barnacle Amphibalanus amphitrite. To test the relative importance of transgenerational acclimation, the developmental acclimation capacity of A. amphitrite was investigated in F1 and F2 generations reared at a subset of the same incubation temperatures. The increase in CTmax (measured through loss of key behavioural metrics) of F0 adults across the incubation temperature range 25.4–33.4 °C was low: 0.00 °C (V. cochlidium), 0.05 °C (S. amaryllis) and 0.06 °C (A. amphitrite) per 1 °C increase in incubation temperature (the acclimation response ratio; ARR). Although the effect of generation was not significant, across the incubation temperature range of 29.4–33.4 °C, the increase in CTmax in the F1 (0.30 °C) and F2 (0.15 °C) generations of A. amphitrite was greater than in the F0 (0.10 °C). These correspond to ARR's of 0.03 °C (F0), 0.08 °C (F1) and 0.04 °C (F2), respectively. The variability in CTmax between individuals in each treatment was maintained across generations, despite the high mortality of progeny. Further research is required to investigate the potential for transgenerational acclimation to provide an extra buffer for tropical marine species facing climate warming.  相似文献   

10.
Previous studies hailed thermal tolerance and the capacity for organisms to acclimate and adapt as the primary pathways for species survival under climate change. Here we challenge this theory. Over the past decade, more than 365 tropical stenothermal fish species have been documented moving poleward, away from ocean warming hotspots where temperatures 2–3 °C above long‐term annual means can compromise critical physiological processes. We examined the capacity of a model species – a thermally sensitive coral reef fish, Chromis viridis (Pomacentridae) – to use preference behaviour to regulate its body temperature. Movement could potentially circumvent the physiological stress response associated with elevated temperatures and may be a strategy relied upon before genetic adaptation can be effectuated. Individuals were maintained at one of six temperatures (23, 25, 27, 29, 31 and 33 °C) for at least 6 weeks. We compared the relative importance of acclimation temperature to changes in upper critical thermal limits, aerobic metabolic scope and thermal preference. While acclimation temperature positively affected the upper critical thermal limit, neither aerobic metabolic scope nor thermal preference exhibited such plasticity. Importantly, when given the choice to stay in a habitat reflecting their acclimation temperatures or relocate, fish acclimated to end‐of‐century predicted temperatures (i.e. 31 or 33 °C) preferentially sought out cooler temperatures, those equivalent to long‐term summer averages in their natural habitats (~29 °C). This was also the temperature providing the greatest aerobic metabolic scope and body condition across all treatments. Consequently, acclimation can confer plasticity in some performance traits, but may be an unreliable indicator of the ultimate survival and distribution of mobile stenothermal species under global warming. Conversely, thermal preference can arise long before, and remain long after, the harmful effects of elevated ocean temperatures take hold and may be the primary driver of the escalating poleward migration of species.  相似文献   

11.
Chelifers (Pseudoscorpions) are generalist predators of small prey such as mites. Their occasional presence in honeybee hives suggests potential to exploit them as part of a management programme against Varroa mites (Varroa destructor), a significant pest of honeybees. Two species of native New Zealand chelifers Nesochernes gracilis and Heterochernes novaezealandiae, shown to consume Varroa mites, were collected from commercial nucleus hives or in litter surrounding the hives. Methods for mass‐rearing the chelifers were developed to provide specimens for research and introduction into beehives for biological control of Varroa. Cultures were fed aphids and fruit fly larvae in vented containers containing sand and bark. N. gracilis was maintained at 14°C, 18°C, and 22°C. At 18°C, 1423 nymphs were reared from 140 N. gracilis adults, with 84.8% of all nymphs produced at this temperature. H. novaezealandiae was maintained at 18°C and 22°C, with 5 nymphs raised from 12 adults at 18°C and none at the higher temperature.  相似文献   

12.
  • 1 Aphids, similar to all insects, are ectothermic and, consequently, are greatly affected by environmental conditions. The peach potato aphid Myzus persicae (Sulzer) has a global distribution, although it is not known whether populations display regional adaptations to distinct climatic zones along its distribution and vary in their ability to withstand and acclimate to temperature extremes. In the present study, lethal temperatures were measured in nine anholocyclic clones of M. persicae collected along a latitudinal cline of its European distribution from Sweden to Spain. The effects of collection origin and intra‐ and intergenerational acclimation on cold and heat tolerance, as determined by upper and lower lethal temperatures (ULT50 and LLT50, respectively), were investigated.
  • 2 Lethal temperatures of M. persicae were shown to be plastic and could be altered after acclimation over just one generation. Lower lethal temperatures were significantly depressed in eight of nine clones after acclimation for one generation at 10°C (range: ?13.3 to ?16.2°C) and raised after acclimation at 25°C (range: ?10.7 to ?11.6°C) compared with constant 20°C (range: ?11.9 to ?12.9°C). Upper lethal temperatures were less plastic, although significantly increased after one generation at 25°C (range: 41.8–42.4°C) and in five of nine clones after acclimation at 10°C. There was no evidence of intergenerational acclimation over three generations.
  • 3 Thermal tolerance ranges were expanded after acclimation at 10 and 25°C compared with constant 20°C, resulting in aphids reared at 10°C surviving over a temperature range that was approximately 2–6°C greater than those reared at 25°C.
  • 4 There was no clear relationship between lethal temperatures and latitude. Large scale mixing of clones may occur across Europe, thus limiting local adaption in thermal tolerance. Clonal type, as identified by microsatellite analysis, did show a relationship with thermal tolerance, notably with Type O clones being the most thermal tolerant. Clonal types may respond independently to climate change, affecting the relative proportions of clones within populations, with consequent implications for biodiversity and agriculture.
  相似文献   

13.
Global warming increasingly challenges thermoregulation in endothermic animals, particularly in hot and dry environments where low water availability and high temperature increase the risk of hyperthermia. In birds, un-feathered body parts such as the head and bill work as ‘thermal windows’, because heat flux is higher compared to more insulated body regions. We studied how such structures were used in different thermal environments, and if heat flux properties change with time in a given temperature. We acclimated zebra finches (Taeniopygia guttata) to two different ambient temperatures, ‘cold’ (5 °C) and ‘hot’ (35 °C), and measured the response in core body temperature using a thermometer, and head surface temperature using thermal imaging. Birds in the hot treatment had 10.3 °C higher head temperature than those in the cold treatment. Thermal acclimation also resulted in heat storage in the hot group: core body temperature was 1.1 °C higher in the 35 °C group compared to the 5 °C group. Hence, the thermal gradient from core to shell was 9.03 °C smaller in the hot treatment. Dry heat transfer rate from the head was significantly lower in the hot compared to the cold treatment after four weeks of thermal acclimation. This reflects constraints on changes to peripheral circulation and maximum body temperature. Heat dissipation capacity from the head region increased with acclimation time in the hot treatment, perhaps because angiogenesis was required to reach peak heat transfer rate. We have shown that zebra finches meet high environmental temperature by heat storage, which saves water and energy, and by peripheral vasodilation in the head, which facilitates dry heat loss. These responses will not exclude the need for evaporative cooling, but will lessen the amount of energy expend on body temperature reduction in hot environments.  相似文献   

14.
We investigated the metabolic rate of the Tasmanian marsupial, the eastern barred bandicoot, Perameles gunnii, before and after acclimation to cold temperature (5 °C) for a 2-week period. Although body temperature did not change significantly, we observed a significant increase in the metabolic rate (MR) when measured at 5 °C before and after cold acclimation. Nor-epinephrine had a significant effect on the metabolic rate when measured in the thermoneutral zone and when measured at 5 °C after cold acclimation; however, there was no significant increase when measured at 5 °C before cold acclimation. Nor-epinephrine also resulted in a small but significant decrease in body temperature. Electromyography (EMG) measurements were obtained before and after cold acclimation during shivering. Shivering decreased after two weeks of cold exposure indicating that the bandicoot had acclimated to that temperature. Nor-epinephrine (NE) significantly reduced shivering before but not after cold acclimation. The metabolic rate and shivering decreased in the adult eastern barred bandicoot after acclimation at 5 °C and nor-epinephrine had similar effects to cold acclimation. Our findings of minor changes in thermal conductance suggest that insulation differences were unlikely explanations for our results. These experiments indicate that this marsupial is able to increase its heat production by non-shivering thermogenesis.  相似文献   

15.
In the Maritime Antarctic and High Arctic, soil microhabitat temperatures throughout the year typically range between ?10 and +5 °C. However, on occasion, they can exceed 20 °C, and these instances are likely to increase and intensify as a result of climate warming. Remaining active under both cool and warm conditions is therefore important for polar terrestrial invertebrates if they are to forage, reproduce and maximise their fitness. In the current study, lower and upper thermal activity thresholds were investigated in the polar Collembola, Megaphorura arctica and Cryptopygus antarcticus, and the mite, Alaskozetes antarcticus. Specifically, the effect of acclimation on these traits was explored. Sub-zero activity was exhibited in all three species, at temperatures as low as ?4.6 °C in A. antarcticus. At high temperatures, all three species had capacity for activity above 30 °C and were most active at 25 °C. This indicates a comparable spread of temperatures across which activity can occur to that seen in temperate and tropical species, but with the activity window shifted towards lower temperatures. In all three species following one month acclimation at ?2 °C, chill coma (=the temperature at which movement and activity cease) and the critical thermal minimum (=low temperature at which coordination is no longer shown) occurred at lower temperatures than for individuals maintained at +4 °C (except for the CTmin of M. arctica). Individuals acclimated at +9 °C conversely showed little change in their chill coma or CTmin. A similar trend was demonstrated for the heat coma and critical thermal maximum (CTmax) of all species. Following one month at ?2 °C, the heat coma and CTmax were reduced as compared with +4 °C reared individuals, whereas the heat coma and CTmax of individuals acclimated at +9 °C showed little adjustment. The data obtained suggest these invertebrates are able to take maximum advantage of the short growing season and have some capacity, in spite of limited plasticity at high temperatures, to cope with climate change.  相似文献   

16.
Temperature effects on predator–prey interactions are fundamental to better understand the effects of global warming. Previous studies never considered local adaptation of both predators and prey at different latitudes, and ignored the novel population combinations of the same predator–prey species system that may arise because of northward dispersal. We set up a common garden warming experiment to study predator–prey interactions between Ischnura elegans damselfly predators and Daphnia magna zooplankton prey from three source latitudes spanning >1500 km. Damselfly foraging rates showed thermal plasticity and strong latitudinal differences consistent with adaptation to local time constraints. Relative survival was higher at 24 °C than at 20 °C in southern Daphnia and higher at 20 °C than at 24 °C, in northern Daphnia indicating local thermal adaptation of the Daphnia prey. Yet, this thermal advantage disappeared when they were confronted with the damselfly predators of the same latitude, reflecting also a signal of local thermal adaptation in the damselfly predators. Our results further suggest the invasion success of northward moving predators as well as prey to be latitude‐specific. We advocate the novel common garden experimental approach using predators and prey obtained from natural temperature gradients spanning the predicted temperature increase in the northern populations as a powerful approach to gain mechanistic insights into how community modules will be affected by global warming. It can be used as a space‐for‐time substitution to inform how predator–prey interaction may gradually evolve to long‐term warming.  相似文献   

17.
Global warming is expected to reduce body sizes of ectothermic animals. Although the underlying mechanisms of size reductions remain poorly understood, effects appear stronger at latitudinal extremes (poles and tropics) and in aquatic rather than terrestrial systems. To shed light on this phenomenon, we examined the size dependence of critical thermal maxima (CTmax) and aerobic metabolism in a commercially important tropical reef fish, the leopard coral grouper (Plectropomus leopardus) following acclimation to current‐day (28.5 °C) vs. projected end‐of‐century (33 °C) summer temperatures for the northern Great Barrier Reef (GBR). CTmax declined from 38.3 to 37.5 °C with increasing body mass in adult fish (0.45–2.82 kg), indicating that larger individuals are more thermally sensitive than smaller conspecifics. This may be explained by a restricted capacity for large fish to increase mass‐specific maximum metabolic rate (MMR) at 33 °C compared with 28.5 °C. Indeed, temperature influenced the relationship between metabolism and body mass (0.02–2.38 kg), whereby the scaling exponent for MMR increased from 0.74 ± 0.02 at 28.5 °C to 0.79 ± 0.01 at 33 °C, and the corresponding exponents for standard metabolic rate (SMR) were 0.75 ± 0.04 and 0.80 ± 0.03. The increase in metabolic scaling exponents at higher temperatures suggests that energy budgets may be disproportionately impacted in larger fish and contribute to reduced maximum adult size. Such climate‐induced reductions in body size would have important ramifications for fisheries productivity, but are also likely to have knock‐on effects for trophodynamics and functioning of ecosystems.  相似文献   

18.
A 30 day feeding trial was conducted using a freshwater fish, Labeo rohita (rohu), to determine their thermal tolerance, oxygen consumption and optimum temperature for growth. Four hundred and sixteen L. rohita fry (10 days old, 0.385±0.003 g) were equally distributed between four treatments (26, 31, 33 and 36 °C) each with four replicates for 30 days. Highest body weight gain and lowest feed conversion ratio (FCR) was recorded between 31 and 33 °C. The highest specific growth rate was recorded at 31 °C followed by 33 and 26 °C and the lowest was at 36 °C. Thermal tolerance and oxygen consumption studies were carried out after completion of growth study to determine tolerance level and metabolic activity at four different acclimation temperatures. Oxygen consumption rate increased significantly with increasing acclimation temperature. Preferred temperature decided from relationship between acclimation temperature and Q10 values were between 33 and 36 °C, which gives a better understanding of optimum temperature for growth of L. rohita. Critical thermal maxima (CTMax) and critical thermal minima (CTMin) were 42.33±0.07, 44.81±0.07, 45.35±0.06, 45.60±0.03 and 12.00±0.08, 12.46±0.04, 13.80±0.10, 14.43±0.06, respectively, and increased significantly with increasing acclimation temperatures (26, 31, 33 and 36 °C). Survival (%) was similar in all groups indicating that temperature range of 26–36 °C is not fatal to L. rohita fry. The optimum temperature range for growth was 31–33 °C and for Q10 values was 33–36 °C.  相似文献   

19.

The majority of our understanding of the effects of climate change on coral reef fishes are currently based on studies of small-bodied species such as damselfishes. By contrast, we know little about the potential impacts of ocean warming on larger species of herbivorous and detritivorous reef fish, despite them being a critical functional group and an essential source of food protein for millions of people. In addition, we know little of the role of habitat in determining species’ thermal sensitivity and the legitimacy of extrapolating thermal performance across closely-related species from different habitat types. Here we test the effect of exposure to increased water temperature during juvenile development on key physiological and behavioral traits of two species of rabbitfish typically associated with different habitats: Siganus doliatus (reef-associated) and S. lineatus (estuarine). Wild-caught juveniles were reared for 14 weeks at temperatures representing present-day ambient conditions (28.0 °C), late-summer ambient conditions (30.0 °C), or those projected on reefs under future global warming scenarios (31.5 °C). We then measured the somatic (growth, condition, immune response) and behavioral (feeding rate, latency to feed and activity level) traits of individuals within each treatment to determine the sensitivity of each species to elevated water temperatures. Overall, both species showed comparatively robust levels of thermal tolerance, based on previously-documented responses of small-bodied reef fishes. However, two very different patterns emerged. The reef-associated S. doliatus showed a greater physiological response to temperature, with negative effects on hepatosomatic condition and immune function observed in individuals exposed to the 31.5 °C treatment. By contrast, there were no negative physiological effects of temperature observed in S. lineatus and instead we recorded behavioral changes, with individuals at 30 °C and 31.5 °C displaying altered feeding behavior (increased feeding rate and decreased latency to feed). These distinct responses observed between congeners are likely due to their evolutionary history and flag the potential inaccuracies that could arise from extrapolating effects of ocean warming across even closely-related species adapted to different habitats.

  相似文献   

20.
Koinobiont parasitoid insects, which maintain intimate and long-term relationships with their arthropod hosts, constitute an association of ectothermic organisms that is particularly sensitive to temperature variations. Because temperature shows pronounced natural daily fluctuations, we examined if experiments based on a constant temperature range can mask the real effects of the thermal regime on host-parasitoid interactions. The effects of two fluctuating thermal regimes on several developmental parameters of the Drosophila larval parasitoid Leptopilina boulardi were analyzed in this study. Regime 1 included a range of 16–23–16 °C and regime 2 included a range of 16–21–26–21–16 °C (mean temperature 20.1 °C) compared to a 20.1 °C constant temperature. Under an average temperature of 20.1 °C, which corresponds to a cold condition of L. boulardi development, we showed that the success of parasitism is significantly higher under a fluctuating temperature regime than at constant temperature. A fluctuating regime also correlated with a reduced development time of the parasitoids. In contrast, the thermal regime did not affect the ability of Drosophila to resist parasitoid infestation. Finally, we demonstrated that daily temperature fluctuation prevented the entry into diapause for this species, which is normally observed at a constant temperature of 21 °C. Overall, the results reveal that constant temperature experiments can produce misleading results, highlighting the need to study the thermal biology of organisms under fluctuating regimes that reflect natural conditions as closely as possible. This is particularly a major issue in host-parasitoid associations, which constitute a good model to understand the effect of climate warming on interacting species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号