首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Technology for establishment of vegetated roofs (green roofs) has developed rapidly over recent years but knowledge about how these systems will develop over time is still limited. This study investigates vegetation development on unfertilised thin extensive vegetated roofs during a 3-year period. The vegetation systems investigated were designed to be low maintenance and had a saturated weight of 50 kg/m2, a thickness of 4 cm and drought-resistant succulent and bryophyte vegetation.Vegetation development was investigated in relation to: establishment method, species mixture and substrate composition in a factorial experiment. Vegetation cover was investigated using point intercept.Moss was found to develop on most substrates and reached more than 80% cover on some plots. Sedum album and Sedum acre were the dominant species on the roofs. S. acre was found to decrease drastically after 2 years. The lack of difference found in this study between the establishment techniques shows that there are other possible marketable ways to construct vegetated roofs in Sweden, as an alternative to vegetation mats. Uniform extensive vegetated roofs with a high dominance of succulent species have limited value for plant biodiversity, as few species establish spontaneously.  相似文献   

2.
Extensive green roofs substrates should meet a list of physicochemical and biochemical requirements to be used as a basis for plant growth: high water holding capacity, good aeration, low bulk density, and proper drainage are some of them. In recent years, the impact of different organic matter doses and the substrate depth on the subsequent plant growth have been deeply studied. By contrast, there are not many publications about the effect of the inorganic component of these substrates on plant development and C and N sequestration potential by the green roof system, and even more under semi-arid Mediterranean conditions. Four substrates were made by mixing the same compost, at 10% by volume, with different inorganic materials: CsB (compost, silica sand, and crushed bricks; 1:1:8), CB (compost and crushed bricks; 1:9), CSB (compost, clay-loam soil, and crushed bricks; 1:1:8), and CsS (compost, silica sand, and clay-loam soil; 1:1:8). These were placed, a depth of 10 cm, on “cultivation tables” in an experimental farm located in the SE of Spain. Two native species were sown in each substrate: Lotus creticus and Asteriscus maritimus. Physicochemical, nutritional, and biochemical properties of the substrates as well as the plant development were evaluated during a 10-month experiment. The CsB and CSB mixtures had good physicochemical properties (high porosity and acceptable water holding capacity) although the levels of C, N, and humic substances were higher in the soil-containing substrates than in the CB and CsB mixtures. The hydrolytic enzyme activity was also promoted in these mixtures. The plant growth pattern showed differences regarding the inorganic composition of the substrate; L. creticus had superior development in the CsB substrate and A. maritimus was able to grow in all tested substrate mixtures, although its cover was low, being a more versatile candidate to establish a green roof cover. The greatest C and N sequestration potential was achieved by the CsS mixture, reaching 1.06 kg TC m−2 of green roof substrate. Therefore, substrate composition impacts the growth of native plant species as well as the C and N sequestration by the green roof system.  相似文献   

3.
The understory is a diverse component of temperate forest ecosystems, contributing significantly to forest ecosystem services. Despite their importance, many native understories face stresses from current and past land use, habitat fragmentation, invasive species, and overabundant herbivores. We established a four block, three factor experiment to evaluate the relative contribution of native plant establishment, competitive effects from the invasive herb garlic mustard (Alliaria petiolata), and herbivory from white-tailed deer (Odocoileus virginianus) to better understand the mechanisms promoting low native plant richness and cover and understory dominance by the biennial exotic herb garlic mustard in a NE Wisconsin, USA forest. Four years of garlic mustard removal failed to increase native plant richness or cover in non-restored plots. However, deer access and the introduction of native plants (restoration treatment) both significantly enhanced native plant cover and richness, with restored species cover in fenced plots approximately 216 % that of open-access plots, and the majority of these species flowered at significantly higher proportions inside of fenced areas. In contrast, deer access did not significantly alter the cover, or seed production of garlic mustard. We also found no significant effect of garlic mustard presence on the cover or flowering of restored native species. We conclude that multiple factors, including limited natural establishment by native species and selective herbivory drove low native, high exotic dominance at our site, suggesting that a shift in focus from invasive plant removal to combined native plant restoration and herbivore control is needed to maximize the recovery of this degraded forest understory.  相似文献   

4.
Global warming is expected to cause significant changes in the distribution of species worldwide, altering ecosystem function and services. These impacts can be exacerbated by synergism with other global change drivers, such as biological invasions. Furcraea foetida (Asparagaceae) is a CAM species native to Central America and northern South America that is currently invading coastal ecosystems in the Atlantic Forest biome in Brazil. The species propagates clonally by bulbils, forming dense clusters that exclude native species. We addressed whether warming may favor or impair development of F. foetida bulbils based on functional traits and assessed whether plant cover of native species influenced F. foetida establishment in a rocky shore ecosystem. We used open-top chambers during summer and autumn, which increased air temperature during daylight hours by 0.4 °C relative to ambient conditions. This short-term warming effect increased the leaf length of bulbils but had no effect on number of leaves, dry mass, specific leaf area, leaf dry matter content (LDMC), or photosynthetic efficiency of photosystem II (Fv/Fm). However, an increase in vegetation cover decreased LDMC and helped maintain high Fv/Fm, having an indirect positive effect on F. foetida establishment that suggests a facilitation interaction in this extreme environment. Even though the manipulated temperature did not reach IPCC (Intergovernmental Panel on Climate Change) forecasts for 2100, our data show that even small, short-term changes in temperature affected plant performance. Thus, we suggest that F. foetida may be favored in a scenario of climate change, increasing its negative effects on biodiversity of coastal ecosystems.  相似文献   

5.
Abstract

Deficiencies of organic matter and essential nutrients are important features of derelict/degraded lands; these characteristics have profound effects on the establishment of functional soil-plant systems on such lands. This work reports on the impact of organic wastes amendments on the establishment, growth and biomass yield of grass mixtures grown on a degraded soil. The experimental site was a heavily compacted and eroded land due to excavation (scrapping) of topsoil layer for urban construction activities. Zero, 10 and 20cm layers each of substrates collected from an old (abandoned) municipal refuse and from site affected by long-term surface disposal of livestock litter and topsoil collected under fallow vegetation were applied on soil surface, before the establishment of a mixture of grass species. Substrates collected from old municipal refuse contained high amount of essential nutrients and metals and, on application, produced upward shift in soil pH and electrical conductivity. Nevertheless, these properties neither significantly retarded plant growth nor impaired biomass yield. Plant establishment and biomass yield were comparable under topsoil application and organic waste amended soil and produced significantly higher biomass yield when spread at 20cm layers were made of them. This experimental group also produced superior biomass yield over the unamended control. The agronomic benefits of organic waste incorporation stemmed from improved soil properties in surface horizon and contents of essential nutrients supportive of the establishment and development of plant cover. Nutrient supply is related to soil organic matter status, organic wastes are therefore important to the reconstruction of effective nutrient cycling and the eventual functional soil-plant system on this degraded ecosystem. The goal of these revegetation efforts is to improve soil and plant productivity, plant diversity, conservation of native grasslands and aesthetic.  相似文献   

6.
Summary Efforts to re‐establish indigenous forests in pastoral New Zealand have increased as the value of native biodiversity has been realized. Direct seeding of woody species is preferable to transplanting, as labour and material costs are less. However, the success rate of direct seeding in pasture has been variable due to intense competition from adventive species. We initiated an experiment in pasture plots adjacent to a forest fragment where seed bed treatments (increasing in degree of disturbance from herbicide application to turf removal and topsoil removal) in combination with mulch treatments (wood chip shavings with and without forest floor organic material) were seeded with a mixture of New Zealand lowland forest species. The objective of the study was to determine if early successional plant communities, and ultimately seedling establishment, differed as a result of seed bed preparation after 1 year. Coprosma robusta (Karamu) and Kunzea ericoides (Kanuka) seedlings established on plots in significant numbers: both species were most abundant on topsoil‐removed plots where bare substrate was greatest and plant cover least. Both seed bed treatments and mulching treatments led to measurable differences in overall composition of early successional plant communities. However, absence of plant cover and low soil fertility (both associated with the topsoil‐removed treatment) were the most important factors in seedling success.  相似文献   

7.
Exotic annual grasses have been introduced into many semi-arid ecosystems worldwide, often to the detriment of native plant communities. The accumulation of litter from these grasses (i.e. residual dry biomass) has been demonstrated to negatively impact native plant communities and promote positive feedbacks to exotic grass persistence. More targeted experiments are needed, however, to determine the relative impact of exotic grass litter on plant community structure across local environmental gradients. We experimentally added exotic grass litter to annual forb-dominated open woodland communities positioned along natural canopy cover gradients in southwest Western Australia. These communities are an important component of this region’s plant biodiversity hotspot and are documented to be under threat from exotic annual grasses. After a one-year treatment period, we measured the effects of exotic grass litter, soil properties, and canopy cover on native and exotic species richness and abundance, as well as common species’ biomass and abundances. Plant community structure was more strongly influenced by soil properties and canopy cover than by grass litter. Total plant abundances per plot, however, were significantly lower in litter addition plots than control plots, a trend driven by native species. Exotic grass litter was also associated with lower abundances of one very common native species: Waitzia acuminata. Our results suggest that exotic grass litter limits the establishment of some native species in this system. Over multiple years, these subtle impacts may contribute substantially to the successful advancement of exotic species into this system, particularly in certain microenvironments.  相似文献   

8.
Green roofs provide ecosystem services through evapotranspiration and nutrient cycling that depend, among others, on plant species, substrate type, and substrate depth. However, no study has assessed thoroughly how interactions between these factors alter ecosystem functions and multifunctionality of green roofs. We simulated some green roof conditions in a pot experiment. We planted 20 plant species from 10 genera and five families (Asteraceae, Caryophyllaceae, Crassulaceae, Fabaceae, and Poaceae) on two substrate types (natural vs. artificial) and two substrate depths (10 cm vs. 30 cm). As indicators of major ecosystem functions, we measured aboveground and belowground biomasses, foliar nitrogen and carbon content, foliar transpiration, substrate water retention, and dissolved organic carbon and nitrates in leachates. Interactions between substrate type and depth strongly affected ecosystem functions. Biomass production was increased in the artificial substrate and deeper substrates, as was water retention in most cases. In contrast, dissolved organic carbon leaching was higher in the artificial substrates. Except for the Fabaceae species, nitrate leaching was reduced in deep, natural soils. The highest transpiration rates were associated with natural soils. All functions were modulated by plant families or species. Plant effects differed according to the observed function and the type and depth of the substrate. Fabaceae species grown on natural soils had the most noticeable patterns, allowing high biomass production and high water retention but also high nitrate leaching from deep pots. No single combination of factors enhanced simultaneously all studied ecosystem functions, highlighting that soil–plant interactions induce trade‐offs between ecosystem functions. Substrate type and depth interactions are major drivers for green roof multifunctionality.  相似文献   

9.
Exotic species are prominent constituents of fouling communities. If exotic fouling organisms colonize or compete better on a wider range of substrate types than native species, this may partially account for their high abundance in estuaries and bays. We used four artificial and four naturally occurring substrate types to compare initial settlement and percent cover of native and exotic fouling species through six months of community development. Both the identity of common taxa and the total number of species colonizing artificial versus natural substrate types were similar. Despite the similarities in species richness, relative abundance patterns between natural and artificial substrate types varied, particularly as the communities developed. Native species were initially in equal abundance on natural and artificial substrate types. Initially, the two most common exotic species, the colonial tunicates, Botrylloides violaceus Ritter and Forsyth and Botryllus schlosseri (Pallas), were also in similar, but low, abundance on artificial and natural substrates. As the communities developed, there was little change in abundance of exotic or native species on natural substrates. However, on artificial substrates the exotic tunicates increased dramatically and native species declined in abundance. Artificial surfaces may provide a novel context for competitive interactions giving exotic species a more “level playing field” in an environment for which they otherwise might not be as well adapted compared to long-resident native species. Additions of artificial substrates to nearshore environments may disproportionately favor exotic species by increasing local sources of exotic propagules to colonize all types of substrates.  相似文献   

10.
Invasive plant species are major drivers of biodiversity losses, especially on islands which are prone to invasions and extinctions. In the “endemic montane forest” of Robinson Crusoe Island (Pacific Ocean, Chile) invasive exotic plant species threaten conservation efforts by establishing in gaps and outcompeting native tree species regeneration. We compared gap attributes and ground vegetation cover in three gap types: those dominated by native species (<5 % cover of invasive species), invaded gaps (>30 % cover by invasive species), and treated gaps (invasive species removed). We examined (a) which gap attributes favored native and exotic species, (b) the relationship between gap size and species richness, and (c) species responses to invasion and treatment. Gaps ranged in size from 46 to 777 m2 caused mainly by uprooted and snapped trees. Multi response permutation procedures showed a different floristic composition between natural, invaded and treated gaps. The presence of Myrceugenia fernandeziana (native species) and Aristotelia chilensis (invasive species) as gap border trees was positively and negatively correlated with native species richness, respectively. New gaps had more native species than old gaps, and smaller gaps contained relatively more native species than larger ones. An increase in invasive species cover was related to a decline in native species cover and richness. 1–6 years after treatment gaps tended to recover their native floristic composition. Highly effective conservation management programs will concentrate on monitoring gap creation, early control of invasive species, and by treating smaller gaps first.  相似文献   

11.
It is difficult to map and quantify biodiversity at landscape level in areas with low data availability, despite demand from decision-makers. We propose a methodology to determine potential biodiversity pattern using habitat suitability maps of the understory plant species with highest cover and occurrence frequency in the three different forests types of Tierra del Fuego (Argentina). We used a database of vascular plants from 535 surveys from which we identified 35 indicative species. We explored more than 50 potential explanatory variables to develop habitat suitability maps of the indicative species, which were combined to develop a map of the potential biodiversity. Correlation among environmental, topographic and forest landscape variables were discussed, as well as the marginality and the specialization of the indicative species. We detected differences in the niches of the species prevailing in the three forest types. The developed map of potential biodiversity uncovered hotspots of biodiversity in the ecotone of Nothofagus pumilio and N. antarctica as well as in the wettest part of the mixed N. pumilioN. betuloides forests. It allowed thus to identify forest areas with different conservation potential and can be readily used as a decision support system for conservation and management strategies at different scales including the identification of land-use conflicts (e.g. of biodiversity with timber production and livestock) and the development of a network of protected areas, which currently does not cover the forests of highest conservation value.  相似文献   

12.
The mechanistic bases of saprotrophic fungal dynamics in soil are not fully clarified. By assessing hyphal density and radial expansion of Aspergillus niger on extracts 45 plant litter types (15 species at 3 decomposition stages), encompassing a broad range of organic quality, we investigated how changes in litter biochemistry affected fungal growth. Plant litter were characterized by classic proximate chemical analyses (total C and N, labile C, cellulose and lignin content, C/N and lignin/N ratios) and, at molecular level, by solid-state 13C-CPMAS NMR. The growth of A. niger decreased during the decomposition process over all organic matter types, consistently with the well-known disappearance of this species during the early successional stages. The litter suitability as a substrate to A. niger progressively decreased during decomposition, both considering proximate parameters and C types corresponding to spectral regions, with the latter being also invariably predictive of fungal growth over the 45 substrates. A. niger growth was positively associated with the content of labile C, and with di-O-alkyl C and O-alkyl C spectral regions, but negatively with lignin content and with methoxyl C region. Our results suggest that organic matter quality may control saprotrophic fungal dynamics, at least for the tested species.  相似文献   

13.
Banksia woodlands are renowned for their flammability and prescribed fire is increasingly employed to reduce the risk of wildfire and to protect life and property, particularly where these woodlands occur on the urban interface. Prescribed fire is also employed as a tool for protecting biodiversity assets but can have adverse impacts on native plant communities. We investigated changes in species richness and cover in native and introduced flora following autumn prescribed fire in a 700‐hectare Banksia/Tuart (Eucalyptus gomphocephala) woodland that had not burnt for more than 30 years. Effectiveness of management techniques at reducing weed cover and the impacts of grazing by Western Grey Kangaroo (Macropus fuliginosus) postfire were also investigated. Thirty plots were established across a designated burn boundary immediately before a prescribed fire in May 2011, and species richness and cover were measured 3 years after the fire, in spring of 2013. Fencing treatments were established immediately following the fire, and weed management treatments were applied annually in winter over the subsequent 3 years. Our results indicate that autumn prescribed fire can facilitate increases in weed cover, but management techniques can limit the establishment of targeted weeds postfire. Postfire grazing was found to have significant adverse impacts on native species cover and vegetation structure, but it also limited establishment of some serious weeds including Pigface (Carpobrotus edulis). Manipulating herbivores in time and space following prescribed fire could be an important and cost‐effective way of maintaining biodiversity values.  相似文献   

14.
Humans’ impacts on natural environments have become pervasive, and natural regeneration is often hampered by extreme soil degradation. This situation is exacerbated in insular habitats where introductions of non-native grazing mammals have left behind completely barren areas. Once mammals are removed, aggressive native or non-native plant species can grow vigorously. This leads to the question of whether biodiversity can return through native succession, or if other actions are needed to prevent invading pioneer species from causing successional arrest. This occurs on the remote Socorro Island, in the UNESCO World-Heritage Revillagigedo Archipelago, Mexico. To understand whether native plants are establishing at sites invaded by Pteridium caudatum, we evaluated natural regeneration in sites with different Pteridium cover in two contrasting zones of the island (dry and mesic). We also calculated plant stress indicators (midday leaf water potential, chlorophyl content and maximum quantum yield) for two native species—Dodonea viscosa and Psidium socorrense—growing in open areas and under Pteridium. Our results showed that Pteridium is a significant barrier to seedling establishment. Thus, restoration actions such as seeding and/or plantings should focus on areas without Pteridium cover. Certain local species can be used to restore degraded areas: P. socorrese and Waltheria americana could be used in dry zones, while D. viscosa could be sown in either dry or mesic zones. For adult plants of the two dominant shrubs, Pteridium cover neither imposes or ameliorates stress. Our results suggest that the restoration of plant diversity in the vast Pteridium-invaded areas of Socorro Island will require management actions, including progressive physical removal of Pteridium cover to activate natural regeneration. Pteridium removal can be accelerated by nucleation, planting adults of native shrubs to generate shading. This strategy could be viable if restoration programs involve conservation institutions and government agencies, who currently have critical human and technological resources on the Island.  相似文献   

15.
Roadside reclamation involves standard revegetation practices that often fail under the adverse conditions imposed by subordination to the infrastructure construction schedule. We experimentally tested for seed and microsite limitations on roadslopes by assessing the effects of seed addition and habitat suitability upon plant cover and species richness. The relative contributions of topsoil seed bank, seed rain, and hydroseeding with standard or native seed mixtures were analyzed in relation to soil texture, fertility, and stability. In order to increase applicability, this research was fitted into the actual construction design and schedule of a highway in central Spain, which resulted in topsoil of varying quality, steep roadcuts and embankments (34°), and out‐of‐season hydroseedings. During the first 2 years following roadslope construction, there was an uneven but sustained increase in plant cover and species richness. Topsoil spread on embankments led to greater plant cover in a shorter time and to lower sedimentation rates at slope bases. The topsoil seed bank was extremely poor. Hydroseeding invariably failed, regardless of seed mixture and roadslope type. The seed rain provided seven times more seeds than hydroseedings, and was correlated with the distance to vegetation patches. Recruitment, however, was limited by microsite suitability, as the initial soil content in nitrate, total nitrogen, and organic matter explained up to 80% of variation in plant cover. In conclusion, when revegetation was performed outside the optimal season due to schedule constraints, measures aimed at overcoming microsite limitation were more cost‐effective and enhanced roadside carrying capacity for local species.  相似文献   

16.
Transfer RNA (tRNA) 3′ processing endoribonuclease (tRNase Z) is an enzyme responsible for the removal of a 3′ trailer from pre-tRNA. There exists two types of tRNase Z: one is a short form (tRNase ZS) that consists of 300–400 amino acids, and the other is a long form (tRNase ZL) that contains 800–900 amino acids. Here we investigated whether the short and long forms have different preferences for various RNA substrates. We examined three recombinant tRNase ZSs from human, Escherichia coli and Thermotoga maritima, two recombinant tRNase ZLs from human and Saccharomyces cerevisiae, one tRNase ZL from pig liver, and the N- and C-terminal half regions of human tRNase ZL for cleavage of human micro-pre-tRNAArg and the RNase 65 activity. All tRNase ZLs cleaved the micro-pre-tRNA and showed the RNase 65 activity, while all tRNase ZSs and both half regions of human tRNase ZL failed to do so with the exception of the C-terminal half, which barely cleaved the micro-pre-tRNA. We also show that only the long forms of tRNase Z can specifically cleave a target RNA under the direction of a new type of small guide RNA, hook RNA. These results indicate that indeed tRNase ZL and tRNase ZS have different substrate specificities and that the differences are attributed to the N-terminal half-domain of tRNase ZL. Furthermore, the optimal concentrations of NaCl, MgCl2 and MnCl2 differed between tRNase ZSs and tRNase ZLs, and the Km values implied that tRNase ZLs interact with pre-tRNA substrates more strongly than tRNase ZSs.  相似文献   

17.
The decline in species‐rich grasslands across the United States has increased the importance of conservation and restoration efforts to preserve the biodiversity supported by these habitats. Abandoned agricultural fields often provide practical locations for the reestablishment of species‐rich grasslands. However, these fields often retain legacies of agriculture both in their soils, which may have higher pH and nitrogen (N) contents than soils that were never farmed, and in their plant communities, which are dominated by non‐native species and poor in native seed stock. We considered methods of reversing these legacies to create native‐species‐rich grassland on former agricultural land. We tested seeding and tilling combined with additions of sulfur (S), carbon (C), N or water to establish diverse sandplain grassland vegetation on an old field on Martha's Vineyard, Massachusetts. We measured soil pH, extractable nitrate and ammonium, and total and native species richness and native species cover for 5 years after treatment. S additions lowered pH to values typical of never‐tilled sandplain ecosystems and increased native species cover, but had no effect on species richness. C, N, and water additions had no significant effects on the soil or vegetation. Seeding and tilling were more effective at restoring native species richness than any soil amendments and indicated a greater importance of biotic factors compared with soil conditions in promoting sandplain vegetation establishment. S amendment accelerated establishment of native species cover for several years but the effect of S additions compared with seeding and tilling alone declined over time.  相似文献   

18.
Invasive plants are recognised as a major threat to biodiversity. Although they are well-established in natural areas, the supposed negative impacts of invasive plants upon communities and ecosystems have so far been poorly investigated in urban areas, where invasions are a main issue for ecologists and for urban planners and managers. We propose to assess the effects of an invasive species along an invasion gradient in a typical urban habitat. We focused on the Japanese knotweed (Reynoutria japonica Houtt.), a widespread invasive species in Europe and North America. We considered eight urban wastelands invaded by this species in the heart of the Greater Paris Area, France. On each site, we ran four transects from the centre of the Japanese knotweed patch towards the uninvaded peripheral vegetation. We recorded the flora using the line intercept method, and several soil parameters (thickness of A horizon, abundance of earthworm casts, topsoil Munsell value, pH) every metre along each transect. The A horizon was thicker and the topsoil darker under R. japonica canopy. Thus, this invasive plant species seemed to influence soil organic matter pool. However, our results also steadily showed that R. japonica locally excluded and/or severely reduced the cover of many plant species through competition. Our study clarified the local effects of R. japonica: an influence on the soil organic matter, and a severe negative impact on wasteland plant communities. We suggest implications in both conservation and restoration ecology.  相似文献   

19.
The ecological role of biodiversity in achieving successful restoration has been little explored in restoration ecology. We tested the prediction that we are more likely to create persistent, species‐rich plant communities by increasing the number of species sown, and, to some degree, by varying functional group representation, in experimental prairie plantings. There were 12 treatments consisting of 1‐, 2‐, 3‐, 4‐, 8‐, 12‐, and 16‐species mixtures of native perennials representing four functional groups (C4 grasses, C3 grasses, nitrogen‐fixing species, and late‐flowering composites) that predominate within Central Plains tallgrass prairies. In 2000, species were seeded into square plots (6 × 6 m), with five replicates per treatment, on former agricultural land. Annually, we measured total species richness and evenness, target species richness and cover, and richness and cover of resident species (i.e., those emerging from the seed bank). Both target species richness and rate of establishment of target communities were highest in the most species‐rich mixtures, but there was no additional benefit for treatments that contained more than eight species. Richness of resident species did not vary with target species richness; however, cover by resident species was lower in the higher target species treatments. Our results, indicating that establishment of species‐rich prairie mimics can be enhanced by starting with larger numbers of species at the outset, have implications for grassland restoration in which community biodiversity creation and maintenance are key goals.  相似文献   

20.
The effects of invasive plants on the species diversity of plant communities are controversial, showing either a positive or negative linear relationship. Based on community data collected from forty 5 m×5 m plots invaded by Sphagneticola trilobata in eight cities across Hainan Island, China, we found S. trilobata decreased plant community diversity once its cover was beyond 10%. We demonstrated that the effects of invasive/native plants on the plant diversity of communities invaded by S. trilobata were curvilinear. These effects, which showed peaks under different degrees of vegetation cover, appeared not only for S. trilobata and all invasive plants, but also for all native plants. Invasive plants primarily had negative effects on plant diversity when they became abundant at a much lower cover level (less than 35%), compared with the native plants (over 60%). Thus, it is necessary to distinguish a range for assessing the effects of plants, especially invasive plants. Our results also confirmed that the invasion intensity of invasive alien plants increased with the intensity of local economic development. We highlight and further discuss the critical importance of curvilinear effects of biological invasion to provide ideas regarding the conservation of local biodiversity and the management of invasive plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号