首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The HDL and LDL subclass profile is an emerging cardiovascular risk factor. Yet, the biological and genetic mechanisms controlling the lipoprotein subclass distribution are unclear. Therefore, we aimed 1) to determine the heritability of the entire spectrum of LDL and HDL subclass features and 2) to identify gene loci influencing the lipoprotein subfraction pattern. Using NMR spectroscopy, we analyzed the lipoprotein subclass distribution in 1,275 coronary artery disease patients derived from the Regensburg Myocardial Infarction Family Study. We calculated heritabilities, performed a microsatellite genome scan, and calculated linkage. HDL and LDL subclass profiles showed heritabilities ranging from 23% to 67% (all P < 10(-3)) of traits using univariate calculation. After multivariate adjustment, we found heritabilities of 27-48% (all P < 0.05) for HDL and 21-44% for LDL traits. The linkage analysis revealed a significant logarithm of the odds (LOD) score (3.3) for HDL particle concentration on chromosome 18 and a highly suggestive signal for HDL particle size on chromosome 12 (2.9). After multivariate adjustment, we found a significant maximum LOD score of 3.7 for HDL size. Our study is the first to analyze heritability and linkage for the entire spectrum of LDL and HDL subclass features. Our findings may lead to the identification of genes controlling the lipoprotein subclass distribution.  相似文献   

2.
Several genome scans in search of high-density lipoprotein (HDL) quantitative trait loci (QTLs) have been performed. However, to date the actual identification of genes implicated in the regulation of common forms of HDL abnormalities remains unsuccessful. This may be due, in part, to the oligogenic and multivariate nature of HDL regulation, and potentially, pleiotropy affecting HDL and other lipid-related traits. Using a Bayesian Markov Chain Monte Carlo (MCMC) approach, we recently provided evidence of linkage of HDL level variation to the APOA1–C3–A4–A5 gene complex, in familial combined hyperlipidemia pedigrees, with an estimated number of two to three large QTLs remaining to be identified. We also presented results consistent with pleiotropy affecting HDL and triglycerides at the APOA1–C3–A4–A5 gene complex. Here we use the same MCMC analytic strategy, which allows for oligogenic trait models, as well as simultaneous incorporation of covariates, in the context of multipoint analysis. We now present results from a genome scan in search for the additional HDL QTLs in these pedigrees. We provide evidence of linkage for additional HDL QTLs on chromosomes 3p14 and 13q32, with results on chromosome 3 further supported by maximum parametric and variance component LOD scores of 3.0 and 2.6, respectively. Weaker evidence of linkage was also obtained for 7q32, 12q12, 14q31–32 and 16q23–24.  相似文献   

3.
Most genome-wide association studies consider genes that are located closest to single nucleotide polymorphisms (SNPs) that are highly significant for those studies. However, the significance of the associations between SNPs and candidate genes has not been fully determined. An alternative approach that used SNPs in expression quantitative trait loci (eQTL) was reported previously for Crohn’s disease; it was shown that eQTL-based preselection for follow-up studies was a useful approach for identifying risk loci from the results of moderately sized GWAS. In this study, we propose an approach that uses eQTL SNPs to support the functional relationships between an SNP and a candidate gene in a genome-wide association study. The genome-wide SNP genotypes and 10 biochemical measures (fasting glucose levels, BUN, serum albumin levels, AST, ALT, gamma GTP, total cholesterol, HDL cholesterol, triglycerides, and LDL cholesterol) were obtained from the Korean Association Resource (KARE) consortium. The eQTL SNPs were isolated from the SNP dataset based on the RegulomeDB eQTL-SNP data from the ENCODE projects and two recent eQTL reports. A total of 25,658 eQTL SNPs were tested for their association with the 10 metabolic traits in 2 Korean populations (Ansung and Ansan). The proportion of phenotypic variance explained by eQTL and non-eQTL SNPs showed that eQTL SNPs were more likely to be associated with the metabolic traits genetically compared with non-eQTL SNPs. Finally, via a meta-analysis of the two Korean populations, we identified 14 eQTL SNPs that were significantly associated with metabolic traits. These results suggest that our approach can be expanded to other genome-wide association studies.  相似文献   

4.
We employed a novel approach to identify the key loci that harbor genes influencing lipoprotein metabolism in approximately 2,000 pedigreed baboons fed various diets differing in levels of fat and cholesterol. In this study, 126 overlapping traits related to both LDL and HDL metabolism were normalized and subjected to genome-wide linkage screening. As was expected, the traits were highly, but not completely, correlated. We exploited the information in these correlated traits by focusing on those genomic regions harboring quantitative trait loci (QTL) for multiple traits, reasoning that the more influential genes would impact a larger number of traits. This study identified five major QTL clusters (each with at least two significant logarithm of the odds scores >4.7), two of which had not been previously reported in baboons. One of these mapped to the baboon ortholog of human chromosome 1p32-p34 and influenced concentrations of LDL-cholesterol on Basal and high-fat, low-cholesterol diets. The other novel QTL cluster mapped to the baboon ortholog of human chromosome 12q13.13-q14.1 and influenced LDL size properties on high-fat, low-cholesterol and high-fat, high-cholesterol, but not Basal, diets. Confirming the value of this approach, three of the QTL clusters replicated published linkage findings for the same or similar traits.  相似文献   

5.
In this investigation, we have carried out an autosomal genome-wide linkage analysis to map genes associated with type 2 diabetes (T2D) and five quantitative traits of blood lipids including total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, very low-density lipoprotein (VLDL) cholesterol, and triglycerides in a unique family-based cohort from the Sikh Diabetes Study (SDS). A total of 870 individuals (526 male/344 female) from 321 families were successfully genotyped using 398 polymorphic microsatellite markers with an average spacing of 9.26 cM on the autosomes. Results of non-parametric multipoint linkage analysis using Sall statistics (implemented in Merlin) did not reveal any chromosomal region to be significantly associated with T2D in this Sikh cohort. However, linkage analysis for lipid traits using QTL-ALL analysis revealed promising linkage signals with p≤0.005 for total cholesterol, LDL cholesterol, and HDL cholesterol at chromosomes 5p15, 9q21, 10p11, 10q21, and 22q13. The most significant signal (p = 0.0011) occurred at 10q21.2 for HDL cholesterol. We also observed linkage signals for total cholesterol at 22q13.32 (p = 0.0016) and 5p15.33 (p = 0.0031) and for LDL cholesterol at 10p11.23 (p = 0.0045). Interestingly, some of linkage regions identified in this Sikh population coincide with plausible candidate genes reported in recent genome-wide association and meta-analysis studies for lipid traits. Our study provides the first evidence of linkage for loci associated with quantitative lipid traits at four chromosomal regions in this Asian Indian population from Punjab. More detailed examination of these regions with more informative genotyping, sequencing, and functional studies should lead to rapid detection of novel targets of therapeutic importance.  相似文献   

6.

Background

Plants rely on the root system for anchorage to the ground and the acquisition and absorption of nutrients critical to sustaining productivity. A genome wide association analysis enables one to analyze allelic diversity of complex traits and identify superior alleles. 384 inbred lines from the Ames panel were genotyped with 681,257 single nucleotide polymorphism markers using Genotyping-by-Sequencing technology and 22 seedling root architecture traits were phenotyped.

Results

Utilizing both a general linear model and mixed linear model, a GWAS study was conducted identifying 268 marker trait associations (p ≤ 5.3×10-7). Analysis of significant SNP markers for multiple traits showed that several were located within gene models with some SNP markers localized within regions of previously identified root quantitative trait loci. Gene model GRMZM2G153722 located on chromosome 4 contained nine significant markers. This predicted gene is expressed in roots and shoots.

Conclusion

This study identifies putatively associated SNP markers associated with root traits at the seedling stage. Some SNPs were located within or near (<1 kb) gene models. These gene models identify possible candidate genes involved in root development at the seedling stage. These and respective linked or functional markers could be targets for breeders for marker assisted selection of seedling root traits.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1226-9) contains supplementary material, which is available to authorized users.  相似文献   

7.
The plasma profile of major lipoprotein classes and its subdivision into particular fractions plays a crucial role in the pathogenesis of atherosclerosis and is a major predictor of coronary artery disease. Our aim was to identify genomic determinants of triglyceride and cholesterol distribution into lipoprotein fractions and lipoprotein particle sizes in the recombinant inbred rat set PXO, in which alleles of two rat models of the metabolic syndrome (SHR and PD inbred strains) segregate together with those from Brown Norway rat strain. Adult male rats of 15 PXO strains (n = 8–13/strain) and two progenitor strains SHR-Lx (n = 13) and BXH2/Cub (n = 18) were subjected to one-week of high-sucrose diet feeding. We performed association analyses of triglyceride (TG) and cholesterol (C) concentrations in 20 lipoprotein fractions and the size of major classes of lipoprotein particles utilizing 704 polymorphic microsatellite markers, the genome-wide significance was validated by 2,000 permutations per trait. Subsequent in silico focusing of the identified quantitative trait loci was completed using a map of over 20,000 single nucleotide polymorphisms. In most of the phenotypes we identified substantial gradient among the strains (e.g. VLDL-TG from 5.6 to 66.7 mg/dl). We have identified 14 loci (encompassing 1 to 65 genes) on rat chromosomes 3, 4, 7, 8, 11 and 12 showing suggestive or significant association to one or more of the studied traits. PXO strains carrying the SHR allele displayed significantly higher values of the linked traits except for LDL-TG and adiposity index. Cholesterol concentrations in large, medium and very small LDL particles were significantly associated to a haplotype block spanning part of a single gene, low density lipoprotein receptor-related protein 1B (Lrp1b). Using genome-wide association we have identified new genetic determinants of triglyceride and cholesterol distribution into lipoprotein fractions in the recombinant inbred panel of rat model strains.  相似文献   

8.
《PloS one》2013,8(12)
Plasma lipid levels are important risk factors for cardiovascular disease and are influenced by genetic and environmental factors. Recent genome wide association studies (GWAS) have identified several lipid-associated loci, but these loci have been identified primarily in European populations. In order to identify genetic markers for lipid levels in a Chinese population and analyze the heterogeneity between Europeans and Asians, especially Chinese, we performed a meta-analysis of two genome wide association studies on four common lipid traits including total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL) and high-density lipoprotein cholesterol (HDL) in a Han Chinese population totaling 3,451 healthy subjects. Replication was performed in an additional 8,830 subjects of Han Chinese ethnicity. We replicated eight loci associated with lipid levels previously reported in a European population. The loci genome wide significantly associated with TC were near DOCK7, HMGCR and ABO; those genome wide significantly associated with TG were near APOA1/C3/A4/A5 and LPL; those genome wide significantly associated with LDL were near HMGCR, ABO and TOMM40; and those genome wide significantly associated with HDL were near LPL, LIPC and CETP. In addition, an additive genotype score of eight SNPs representing the eight loci that were found to be associated with lipid levels was associated with higher TC, TG and LDL levels (P = 5.52×10-16, 1.38×10-6 and 5.59×10-9, respectively). These findings suggest the cumulative effects of multiple genetic loci on plasma lipid levels. Comparisons with previous GWAS of lipids highlight heterogeneity in allele frequency and in effect size for some loci between Chinese and European populations. The results from our GWAS provided comprehensive and convincing evidence of the genetic determinants of plasma lipid levels in a Chinese population.  相似文献   

9.
A recombinant inbred line mapping population of intra-species upland cotton was generated from a cross between the drought-tolerant female parent (AS2) and the susceptible male parent (MCU13). A linkage map was constructed deploying 1,116 GBS-based SNPs and public domain-based 782 SSRs spanning a total genetic distance of 28,083.03 cM with an average chromosomal span length of 1,080.12 cM with inter-marker distance of 10.19 cM.A total of 19 quantitative trait loci (QTLs) were identified in nine chromosomes for field drought tolerance traits. Chromosomes 3 and 8 harbored important drought tolerant QTLs for chlorophyll stability index trait while for relative water content trait, three QTLs on chromosome 8 and one QTL each on chromosome 4, 12 were identified. One QTL on each chromosome 8, 5, and 7, and two QTLs on chromosome 15 linking to proline content were identified. For the nitrate reductase activity trait, two QTLs were identified on chromosome 3 and one on each chromosome 8, 13, and 26. To complement our QTL study, a meta-analysis was conducted along with the public domain database and resulted in a consensus map for chromosome 8. Under field drought stress, chromosome 8 harbored a drought tolerance QTL hotspot with two in-house QTLs for chlorophyll stability index (qCSI01, qCSI02) and three public domain QTLs (qLP.FDT_1, qLP.FDT_2, qCC.ST_3). Identified QTL hotspot on chromosome 8 could play a crucial role in exploring abiotic stress-associated genes/alleles for drought trait improvement.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-01041-y.  相似文献   

10.
Recent genome-wide association studies (GWAS) have reproducibly identified loci associated with plasma triglycerides (TG), HDL cholesterol, and LDL cholesterol. We sought to replicate these findings in a multiethnic population-based cohort using the curated single nucleotide polymorphism (SNP) set found on the new Illumina cardiovascular disease (CVD) beadchip, which contains approximately 50,000 SNPs densely mapping approximately 2,100 genes, selected based on their potential role in CVD. The sample consisted of individuals with European (n = 272), South Asian (n = 330), and Chinese (n = 304) ancestry. Identity by state clustering successfully classified individuals according to self-reported ethnicities. Associations between TG and APOA5, TG and LPL, HDL and CETP, and LDL and APOE were all identified (P < 2 × 10−6). In 13 loci, associations with the same SNP or a proxy SNP were identified in the same direction as previously reported (P < 0.05). Assessing the cumulative number of risk-associated alleles at multiple replicated SNPs increased the proportion of explained lipoprotein variance over and above traditional variables such as age, sex, body mass index, and ethnicity. The findings indicate the potential utility of the Illumina CVD beadchip, but they underscore the need to consider meta-analysis of results from commonly studied clinical or epidemiological samples.  相似文献   

11.
PURPOSE OF REVIEW: Quantitative trait locus analysis has been used in both humans and mice for the purpose of finding new genes regulating plasma lipid levels. We review these methods and discuss new approaches that can help find quantitative trait locus genes. RECENT FINDINGS: Many quantitative trait loci have been found that regulate plasma levels for HDL cholesterol (37 in mice and 30 in humans), LDL cholesterol (25 in mice and 20 in humans) and triglycerides (19 in mice and 30 in humans). Most of the human quantitative trait loci have concordant mouse quantitative trait loci mapping to homologous regions (93% for HDL cholesterol, 100% for LDL cholesterol and 80% for triglycerides), suggesting that many genes identified in mice may also regulate the same traits in humans. New approaches based on recently developed genomic and bioinformatic technologies and resources should greatly facilitate finding these genes. SUMMARY: New genes regulating plasma lipid levels can be found in mice and then tested in humans. Some of these genes could be potential therapeutic targets for human atherosclerosis.  相似文献   

12.
A recent large-scale meta-analysis of genome-wide studies has identified 95 loci, 59 of them novel, as statistically significant predictors of blood lipid traits; we tested whether the same loci explain the observed heterogeneity in response to lipid-lowering therapy with fenofibrate. Using data from the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN, n = 861) we fit linear mixed models with the genetic markers as predictors and high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, total cholesterol, and triglyceride concentrations as outcomes. For all four traits, we analyzed both baseline levels and changes in response to treatment with fenofibrate. For the markers that were significantly associated with fenofibrate response, we fit additional models evaluating potential epistatic interactions. All models were adjusted for age, sex, and study center as fixed effects, and pedigree as a random effect. Statistically significant associations were observed between the rs964184 polymorphism near APOA1 (P-value≤0.0001) and fenofibrate response for HDL and triglycerides. The association was replicated in the Pharmacogenetics of Hypertriglyceridemia in Hispanics study (HyperTG, n = 267). Suggestive associations with fenofibrate response were observed for markers in or near PDE3A, MOSC1, FLJ36070, CETP, the APOE-APOC1-APOC4-APOC2, and CILP2. Finally, we present strong evidence for epistasis (P-value for interaction =  0.0006 in GOLDN, 0.05 in HyperTG) between rs10401969 near CILP2 and rs4420638 in the APOE-APOC1-APOC4-APOC2 cluster with total cholesterol response to fenofibrate. In conclusion, we present evidence linking several novel and biologically relevant genetic polymorphisms to lipid lowering drug response, as well as suggesting novel gene-gene interactions in fenofibrate pharmacogenetics.  相似文献   

13.

Background

Numerous quantitative trait loci (QTL) have been detected in pigs over the past 20 years using microsatellite markers. However, due to the low density of these markers, the accuracy of QTL location has generally been poor. Since 2009, the dense genome coverage provided by the Illumina PorcineSNP60 BeadChip has made it possible to more accurately map QTL using genome-wide association studies (GWAS). Our objective was to perform high-density GWAS in order to identify genomic regions and corresponding haplotypes associated with production traits in a French Large White population of pigs.

Methods

Animals (385 Large White pigs from 106 sires) were genotyped using the PorcineSNP60 BeadChip and evaluated for 19 traits related to feed intake, growth, carcass composition and meat quality. Of the 64 432 SNPs on the chip, 44 412 were used for GWAS with an animal mixed model that included a regression coefficient for the tested SNPs and a genomic kinship matrix. SNP haplotype effects in QTL regions were then tested for association with phenotypes following phase reconstruction based on the Sscrofa10.2 pig genome assembly.

Results

Twenty-three QTL regions were identified on autosomes and their effects ranged from 0.25 to 0.75 phenotypic standard deviation units for feed intake and feed efficiency (four QTL), carcass (12 QTL) and meat quality traits (seven QTL). The 10 most significant QTL regions had effects on carcass (chromosomes 7, 10, 16, 17 and 18) and meat quality traits (two regions on chromosome 1 and one region on chromosomes 8, 9 and 13). Thirteen of the 23 QTL regions had not been previously described. A haplotype block of 183 kb on chromosome 1 (six SNPs) was identified and displayed three distinct haplotypes with significant (0.0001 < P < 0.03) associations with all evaluated meat quality traits.

Conclusions

GWAS analyses with the PorcineSNP60 BeadChip enabled the detection of 23 QTL regions that affect feed consumption, carcass and meat quality traits in a LW population, of which 13 were novel QTL. The proportionally larger number of QTL found for meat quality traits suggests a specific opportunity for improving these traits in the pig by genomic selection.  相似文献   

14.
Polymorphisms that affect complex traits or quantitative trait loci (QTL) often affect multiple traits. We describe two novel methods (1) for finding single nucleotide polymorphisms (SNPs) significantly associated with one or more traits using a multi-trait, meta-analysis, and (2) for distinguishing between a single pleiotropic QTL and multiple linked QTL. The meta-analysis uses the effect of each SNP on each of n traits, estimated in single trait genome wide association studies (GWAS). These effects are expressed as a vector of signed t-values (t) and the error covariance matrix of these t values is approximated by the correlation matrix of t-values among the traits calculated across the SNP (V). Consequently, t''V−1t is approximately distributed as a chi-squared with n degrees of freedom. An attractive feature of the meta-analysis is that it uses estimated effects of SNPs from single trait GWAS, so it can be applied to published data where individual records are not available. We demonstrate that the multi-trait method can be used to increase the power (numbers of SNPs validated in an independent population) of GWAS in a beef cattle data set including 10,191 animals genotyped for 729,068 SNPs with 32 traits recorded, including growth and reproduction traits. We can distinguish between a single pleiotropic QTL and multiple linked QTL because multiple SNPs tagging the same QTL show the same pattern of effects across traits. We confirm this finding by demonstrating that when one SNP is included in the statistical model the other SNPs have a non-significant effect. In the beef cattle data set, cluster analysis yielded four groups of QTL with similar patterns of effects across traits within a group. A linear index was used to validate SNPs having effects on multiple traits and to identify additional SNPs belonging to these four groups.  相似文献   

15.
A whole-genome scan using single marker association was used to detect chromosome regions associated with seven female fertility traits in Finnish Ayrshire dairy cattle. The phenotypic data consisted of de-regressed estimated breeding values for 340 bulls which were estimated using a single trait model. Genotypes were obtained with the Illumina BovineSNP50 panel and a total of 35 630 informative, high-quality single nucleotide polymorphism (SNP) markers were used. The association analysis was performed using a mixed-model approach which fitted a fixed effect for each SNP and a random polygenic effect. We detected eleven genome-wide significant associations on eight different chromosomes. With at least chromosome-wise significance after Bonferroni correction, sixteen SNPs on nine chromosomes showed significant associations with one or more fertility traits. The results confirmed quantitative trait loci on three chromosomes (1, 2 and 20) for fertility traits previously reported for the same breed and one on chromosome four previously detected in Holstein cattle.  相似文献   

16.
A genome‐wide association study of 2098 progeny‐tested Nordic Holstein bulls genotyped for 36 387 SNPs on 29 autosomes was conducted to confirm and fine‐map quantitative trait loci (QTL) for mastitis traits identified earlier using linkage analysis with sparse microsatellite markers in the same population. We used linear mixed model analysis where a polygenic genetic effect was fitted as a random effect and single SNPs were successively included as fixed effects in the model. We detected 143 SNP‐by‐trait significant associations (P < 0.0001) on 20 chromosomes affecting mastitis‐related traits. Among them, 21 SNP‐by‐trait combinations exceeded the genome‐wide significant threshold. For 12 chromosomes, both the present association study and the previous linkage study detected QTL, and of these, six were in the same chromosomal locations. Strong associations of SNPs with mastitis traits were observed on bovine autosomes 6, 13, 14 and 20. Possible candidate genes for these QTL were identified. Identification of SNPs in linkage disequilibrium with QTL will enable marker‐based selection for mastitis resistance. The candidate genes identified should be further studied to detect candidate polymorphisms underlying these QTL.  相似文献   

17.
Understanding the genetic basis of traits involved in adaptation is a major challenge in evolutionary biology but remains poorly understood. Here, we use genome-wide association mapping using a custom 50 k single nucleotide polymorphism (SNP) array in a natural population of collared flycatchers to examine the genetic basis of clutch size, an important life-history trait in many animal species. We found evidence for an association on chromosome 18 where one SNP significant at the genome-wide level explained 3.9% of the phenotypic variance. We also detected two suggestive quantitative trait loci (QTLs) on chromosomes 9 and 26. Fitness differences among genotypes were generally weak and not significant, although there was some indication of a sex-by-genotype interaction for lifetime reproductive success at the suggestive QTL on chromosome 26. This implies that sexual antagonism may play a role in maintaining genetic variation at this QTL. Our findings provide candidate regions for a classic avian life-history trait that will be useful for future studies examining the molecular and cellular function of, as well as evolutionary mechanisms operating at, these loci.  相似文献   

18.
Prediction of genetic merit using dense SNP genotypes can be used for estimation of breeding values for selection of livestock, crops, and forage species; for prediction of disease risk; and for forensics. The accuracy of these genomic predictions depends in part on the genetic architecture of the trait, in particular number of loci affecting the trait and distribution of their effects. Here we investigate the difference among three traits in distribution of effects and the consequences for the accuracy of genomic predictions. Proportion of black coat colour in Holstein cattle was used as one model complex trait. Three loci, KIT, MITF, and a locus on chromosome 8, together explain 24% of the variation of proportion of black. However, a surprisingly large number of loci of small effect are necessary to capture the remaining variation. A second trait, fat concentration in milk, had one locus of large effect and a host of loci with very small effects. Both these distributions of effects were in contrast to that for a third trait, an index of scores for a number of aspects of cow confirmation ("overall type"), which had only loci of small effect. The differences in distribution of effects among the three traits were quantified by estimating the distribution of variance explained by chromosome segments containing 50 SNPs. This approach was taken to account for the imperfect linkage disequilibrium between the SNPs and the QTL affecting the traits. We also show that the accuracy of predicting genetic values is higher for traits with a proportion of large effects (proportion black and fat percentage) than for a trait with no loci of large effect (overall type), provided the method of analysis takes advantage of the distribution of loci effects.  相似文献   

19.
To identify additional loci that influence lipoprotein cholesterol levels, we performed quantitative trait locus (QTL) mapping in offspring of PERA/EiJxI/LnJ and PERA/EiJxDBA/2J intercrosses and in a combined data set from both crosses after 8 weeks of consumption of a high fat-diet. Most QTLs identified were concordant with homologous chromosomal regions that were associated with lipoprotein levels in human studies. We detected significant new loci for HDL cholesterol levels on chromosome (Chr) 5 (Hdlq34) and for non-HDL cholesterol levels on Chrs 15 (Nhdlq9) and 16 (Nhdlq10). In addition, the analysis of combined data sets identified a QTL for HDL cholesterol on Chr 17 that was shared between both crosses; lower HDL cholesterol levels were conferred by strain PERA. This QTL colocalized with a shared QTL for cholesterol gallstone formation detected in the same crosses. Haplotype analysis narrowed this QTL, and sequencing of the candidate genes Abcg5 and Abcg8 confirmed shared alleles in strains I/LnJ and DBA/2J that differed from the alleles in strain PERA/EiJ. In conclusion, our analysis furthers the knowledge of genetic determinants of lipoprotein cholesterol levels in inbred mice and substantiates the hypothesis that polymorphisms of Abcg5/Abcg8 contribute to individual variation in both plasma HDL cholesterol levels and susceptibility to cholesterol gallstone formation.  相似文献   

20.
Cardiovascular disease (CVD) is the leading cause of death worldwide. Recent genome-wide association (GWA) studies have pinpointed many loci associated with CVD risk factors in adults. It is unclear, however, if these loci predict trait levels at all ages, if they are associated with how a trait develops over time, or if they could be used to screen individuals who are pre-symptomatic to provide the opportunity for preventive measures before disease onset. We completed a genome-wide association study on participants in the longitudinal Bogalusa Heart Study (BHS) and have characterized the association between genetic factors and the development of CVD risk factors from childhood to adulthood. We report 7 genome-wide significant associations involving CVD risk factors, two of which have been previously reported. Top regions were tested for replication in the Young Finns Study (YF) and two associations strongly replicated: rs247616 in CETP with HDL levels (combined P = 9.7×10−24), and rs445925 at APOE with LDL levels (combined P = 8.7×10−19). We show that SNPs previously identified in adult cross-sectional studies tend to show age-independent effects in the BHS with effect sizes consistent with previous reports. Previously identified variants were associated with adult trait levels above and beyond those seen in childhood; however, variants with time-dependent effects were also promising predictors. This is the first GWA study to evaluate the role of common genetic variants in the development of CVD risk factors in children as they advance through adulthood and highlights the utility of using longitudinal studies to identify genetic predictors of adult traits in children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号