首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Sphingolipids represent an important class of bioactive signaling lipids which have key roles in numerous cellular processes. Over the last few decades, the levels of bioactive sphingolipids and/or their metabolizing enzymes have been realized to be important factors involved in disease development and progression, most notably in cancer. Targeting sphingolipid-metabolizing enzymes in disease states has been the focus of many studies and has resulted in a number of pharmacological inhibitors, with some making it into the clinic as therapeutics. In order to better understand the regulation of sphingolipid-metabolizing enzymes as well as to develop much more potent and specific inhibitors, the field of sphingolipids has recently taken a turn toward structural biology. The last decade has seen the structural determination of a number of sphingolipid enzymes and effector proteins. In these terms, one of the most complete arms of the sphingolipid pathway is the sphingosine-1-phosphate (S1P) arm. The structures of proteins involved in the function and regulation of S1P are being used to investigate further the regulation of said proteins as well as in the design and development of inhibitors as potential therapeutics.  相似文献   

2.
Programmed cell death is an important physiological response to many forms of cellular stress. The signaling cascades that result in programmed cell death are as elaborate as those that promote cell survival, and it is clear that coordination of both protein- and lipid-mediated signals is crucial for proper cell execution. Sphingolipids are a large class of lipids whose diverse members share the common feature of a long-chain sphingoid base, e.g., sphingosine. Many sphingolipids have been shown to play essential roles in both death signaling and survival. Ceramide, an N-acylsphingosine, has been implicated in cell death following a myriad of cellular stresses. Sphingosine itself can induce cell death but via pathways both similar and dissimilar to those of ceramide. Sphingosine-1-phosphate, on the other hand, is an anti-apoptotic molecule that mediates a host of cellular effects antagonistic to those of its pro-apoptotic sphingolipid siblings. Extraordinarily, these lipid mediators are metabolically juxtaposed, suggesting that the regulation of their metabolism is of the utmost importance in determining cell fate. In this review, we briefly examine the role of ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death and highlight the potential roles that these lipids play in the pathway to apoptosis.  相似文献   

3.
Members of the sphingosine kinase (SK) family of lipid signaling enzymes, comprising SK1 and SK2 in humans, are receiving considerable attention for their roles in a number of physiological and pathophysiological processes. The SKs are considered signaling enzymes based on their production of the potent lipid second messenger sphingosine-1-phosphate, which is the ligand for a family of five G-protein-linked receptors. Both SK1 and SK2 are intracellular enzymes and do not possess obvious membrane anchor domains within their primary sequences. The native substrates (sphingosine and dihydrosphingosine) are lipids, as are the corresponding products, and therefore would have a propensity to be membrane associated, suggesting that specific membrane localization of the SKs could affect both access to substrate and localized production of product. Here, we consider the emerging picture of the SKs as enzymes localized to specific intracellular sites, sometimes by agonist-dependent translocation, the mechanism targeting these enzymes to those sites, and the functional consequence of that localization. Not only is the signaling output of the SKs affected by subcellular localization, but the role of these enzymes as metabolic regulators of sphingolipid metabolism may be impacted as well.  相似文献   

4.
Apoptosis and autophagy are two evolutionarily conserved processes that maintain homeostasis during stress. Although the two pathways utilize fundamentally distinct machinery, apoptosis and autophagy are highly interconnected and share many key regulators. The crosstalk between apoptosis and autophagy is complex, as autophagy can function to promote cell survival or cell death under various cellular conditions. The molecular mechanisms of crosstalk are beginning to be elucidated and have critical implications for the treatment of various diseases, such as cancer. Sphingolipids are a class of bioactive lipids that mediate many key cellular processes, including apoptosis and autophagy. By targeting several of the shared regulators, sphingolipid metabolites differentially regulate the induction of apoptosis and autophagy. Importantly, individual sphingolipid species appear to “switch” autophagy toward cell survival (e.g., sphingosine-1-phosphate) or cell death (e.g., ceramide, gangliosides). This review assesses the current understanding of sphingolipid-induced apoptosis and autophagy to address how sphingolipids mediate the “switch” between the cell survival and cell death. As sphingolipid metabolism is frequently dysregulated in cancer, sphingolipid-modulating agents, or sphingomimetics, have emerged as a novel chemotherapeutic strategy. Ultimately, a greater understanding of sphingolipid-mediated crosstalk between apoptosis and autophagy may be critical for enhancing the chemotherapeutic efficacy of these agents.  相似文献   

5.
O. Sukocheva  C. Wadham 《Steroids》2009,74(7):562-296
Recent studies have clearly demonstrated that estrogen signaling is not limited by the canonical ‘genomic’ pathway. Estrogens have been shown to interact with multiple cytoplasmic signaling networks including that of growth factors, cytokines, and the most recently recognised participants, sphingolipids. Sphingosine kinase (SphK), a key enzyme in metabolic pathways of sphingolipids, plays an important role in cell signaling and regulates a wide range of biological functions, including the actions of estrogens. Herein we briefly review current experimental evidence showing a critical involvement of sphingolipids in estrogen signaling, especially in breast cancer and vascular endothelial cells. In the current review we mainly focus on the SphK pathway and discuss the potential role of SphK and sphingolipids in the cellular biology of estrogens.  相似文献   

6.
This review considers various functional aspects of cell sphingolipids (sphingomyelin, ceramides) and lysosphingolipids (sphingosine-1-phosphate (S1P) and sphingosine phosphorylcholine). Good evidence now exists that they are actively involved in numerous cell-signaling processes. The enzymes responsible for formation and interconversion of cell sphingolipids (sphingomyelinases, ceramidase, sphingosine kinase, S1P-lyase) exhibit high sensitivity to various stimulating factors. This determines the content of individual cell sphingolipids and therefore the mode of cell response. Special attention is paid to preferential localization of sphingolipids in the rigid plasma membrane domains (rafts) coupled to many signal proteins. The suggestion is discussed that ceramide signaling may be based on the modification of fine molecular interactions in lipid rafts, resulting in its clusterization inducing the signal transduction. The review also highlights involvement of sphingolipids in cell proliferation, apoptosis, and in processes implicated to atherosclerosis.  相似文献   

7.
8.
The sphingosine kinases, SK1 and SK2, produce the potent signaling lipid sphingosine-1-phosphate (S1P). These enzymes have garnered increasing interest for their roles in tumorigenesis, inflammation, vascular diseases, and immunity, as well as other functions. The sphingosine kinases are considered signaling enzymes by producing S1P, and their activity is acutely regulated by a variety of agonists. However, these enzymes are also key players in the control of sphingolipid metabolism. A variety of sphingolipids, such as sphingosine and the ceramides, are potent signaling molecules in their own right. The role of sphingosine kinases in regulating sphingolipid metabolism is potentially a critical aspect of their signaling function. A central aspect of signaling lipids is that their hydrophobic nature constrains them to membranes. Most enzymes of sphingolipid metabolism, including the enzymes that degrade S1P, are membrane enzymes. Therefore the localization of the sphingosine kinases and S1P is likely to be important in S1P signaling. Sphingosine kinase localization affects sphingolipid signaling in several ways. Translocation of SK1 to the plasma membrane promotes extracellular secretion of S1P. SK1 and SK2 localization to specific sites appears to direct S1P to intracellular protein effectors. SK localization also determines the access of these enzymes to their substrates. This may be an important mechanism for the regulation of ceramide biosynthesis by diverting dihydrosphingosine, a precursor in the ceramide biosynthetic pathway, from the de novo production of ceramide.  相似文献   

9.
Lipids orchestrate biological processes by acting remotely as signaling molecules or locally as membrane components that modulate protein function. Detailed insight into lipid function requires knowledge of the subcellular localization of individual lipids. We report an analysis of the subcellular lipidome of the mammalian macrophage, a cell type that plays key roles in inflammation, immune responses, and phagocytosis. Nuclei, mitochondria, endoplasmic reticulum (ER), plasmalemma, and cytoplasm were isolated from RAW 264.7 macrophages in basal and activated states. Subsequent lipidomic analyses of major membrane lipid categories identified 229 individual/isobaric species, including 163 glycerophospholipids, 48 sphingolipids, 13 sterols, and 5 prenols. Major subcellular compartments exhibited substantially divergent glycerophospholipid profiles. Activation of macrophages by the Toll-like receptor 4-specific lipopolysaccharide Kdo2-lipid A caused significant remodeling of the subcellular lipidome. Some changes in lipid composition occurred in all compartments (e.g., increases in the levels of ceramides and the cholesterol precursors desmosterol and lanosterol). Other changes were manifest in specific organelles. For example, oxidized sterols increased and unsaturated cardiolipins decreased in mitochondria, whereas unsaturated ether-linked phosphatidylethanolamines decreased in the ER. We speculate that these changes may reflect mitochondrial oxidative stress and the release of arachidonic acid from the ER in response to cell activation.  相似文献   

10.
Recent findings indicate that lipid signaling is essential for plant resistance to pathogens. Besides oxylipins and unsaturated fatty acids known to play important signaling functions during plant-pathogen interactions, the very long chain fatty acid (VLCFA) biosynthesis pathway has been recently associated to plant defense through different aspects. VLCFAs are indeed required for the biosynthesis of the plant cuticle and the generation of sphingolipids. Elucidation of the roles of these lipids in biotic stress responses is the result of the use of genetic approaches together with the identification of the genes/proteins involved in their biosynthesis. This review focuses on recent observations which revealed the complex function of the cuticle and cuticle-derived signals, and the key role of sphingolipids as bioactive molecules involved in signal transduction and cell death regulation during plant-pathogen interactions.Key words: very long chain fatty acids (VLCFAs), plant-pathogen interactions, lipid signaling, sphingolipids, epicuticular waxes, lipid rafts, cuticle, plant defense  相似文献   

11.
Many adult neurons are dynamically remodeled across timescales ranging from the rapid addition and removal of specific synaptic connections, to largescale structural plasticity events that reconfigure circuits over hours, days, and months. Membrane lipids, including brain-enriched sphingolipids, play crucial roles in these processes. In this review, we summarize progress at the intersection of neuronal activity, lipids, and structural remodeling. We highlight how brain activity modulates lipid metabolism to enable adaptive structural plasticity, and showcase glia as key players in membrane remodeling. These studies reveal that lipids act as critical signaling molecules that instruct the dynamic architecture of the brain.  相似文献   

12.
Colorectal cancer is one of the major causes of death in the western world. Despite increasing knowledge of the molecular signaling pathways implicated in colon cancer, therapeutic outcomes are still only moderately successful. Sphingolipids, a family of N-acyl linked lipids, have not only structural functions but are also implicated in important biological functions. Ceramide, sphingosine and sphingosine-1-phosphate are the most important bioactive lipids, and they regulate several key cellular functions. Accumulating evidence suggests that many cancers present alterations in sphingolipids and their metabolizing enzymes. The aim of this review is to discuss the emerging roles of sphingolipids, both endogenous and dietary, in colon cancer and the interaction of sphingolipids with WNT/β-catenin pathway, one of the most important signaling cascades that regulate development and homeostasis in intestine. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.  相似文献   

13.
The sphingosine and diacylglycerol kinases form a superfamily of structurally related lipid signaling kinases. One of the striking features of these kinases is that although they are clearly involved in agonist-mediated signaling, this signaling is accomplished with only a moderate (and sometimes no) increase in the enzymatic activity of the enzymes. Here, we summarize findings that indicate that signaling by these kinases is strongly dependent on their localization to specific intracellular sites rather than on increases in enzyme activity. Both the substrates and products of these enzymes are bioactive lipids. Moreover, many of the metabolic enzymes that act on these lipids are found in specific organelles. Therefore, changes in the membrane localization of these signaling kinases have profound effects not only on the production of signaling lipid phosphates but also on the metabolism of the upstream signaling lipids.  相似文献   

14.
胰岛素抵抗是Ⅱ型糖尿病的病理基础之一,近年来已成为Ⅱ型糖尿病研究的关键和热点.众多研究发现,机体内鞘脂类物质水平的改变直接影响胰岛素信号的强弱.神经酰胺和神经节苷脂GM3对胰岛素信号具有负向调控作用,介导胰岛素抵抗的形成,该调节效应依赖于细胞膜上微囊蛋白.1-磷酸鞘氨醇则通过氧化还原途径增强胰岛素信号.微囊蛋白功能性活动和1-磷酸鞘氨醇的介导作用均与钙信号相关,因此,可通过实时检测细胞外钙内流和细胞内钙瞬间变化,从离子通道水平进一步探索鞘脂类调节胰岛素信号的相关机制.本文综述了鞘脂类物质调控胰岛素信号的机制,干预鞘脂类水平和改善胰岛素抵抗的策略,将为鞘脂类物质在Ⅱ型糖尿病预防和治疗的研究及应用提供有力的帮助.  相似文献   

15.
Sphingolipids comprise a complex group of lipids concentrated in membrane rafts and whose metabolites function as signaling molecules. Sphingolipids are conserved in Drosophila, in which their tight regulation is required for proper development and tissue integrity. In this study, we identified a new family of Drosophila sphingolipids containing two double bonds in the long chain base (LCB). The lipids were found at low levels in wild-type flies and accumulated markedly in Drosophila Sply mutants, which do not express sphingosine-1-phosphate lyase and are defective in sphingolipid catabolism. To determine the identity of the unknown lipids, purified whole fly lipid extracts were separated on a C18-HPLC column and analyzed using electrospray mass spectrometry. The lipids contain a LCB of either 14 or 16 carbons with conjugated double bonds at C4,6. The Delta(4,6)-sphingadienes were found as free LCBs, as phosphorylated LCBs, and as the sphingoid base in ceramides. The temporal and spatial accumulation of Delta(4,6)-sphingadienes in Sply mutants suggests that these lipids may contribute to the muscle degeneration observed in these flies.  相似文献   

16.
Glycosphingolipids, a family of heterogeneous lipids with biophysical properties conserved from fungi to mammals, are key components of cellular membranes. Because of their tightly packed backbone, they have the ability to associate with other sphingolipids and cholesterol to form microdomains called lipid rafts, with which a variety of proteins associate. These microdomains are thought to originate in the Golgi apparatus, where most sphingolipids are synthesized, and are enriched at the plasma membrane. They are involved in an increasing number of processes, including sorting of proteins by allowing selectivity in intracellular membrane transport. Apart from being involved in recognition and signaling on the cell surface, glycosphingolipids may fulfill unexpected roles on the cytosolic surface of cellular membranes.  相似文献   

17.
18.
When acquiring internal membranes and vesicular transport, eukaryotic cells started to synthesize sphingolipids and sterols. The physical differences between these and the glycerophospholipids must have enabled the cells to segregate lipids in the membrane plane. Localizing this event to the Golgi then allowed them to create membranes of different lipid composition, notably a thin, flexible ER membrane, consisting of glycerolipids, and a sturdy plasma membrane containing at least 50% sphingolipids and sterols. Besides sorting membrane proteins, in the course of evolution the simple sphingolipids obtained key positions in cellular physiology by developing specific interactions with (membrane) proteins involved in the execution and control of signaling. The few signaling sphingolipids in mammals must provide basic transmission principles that evolution has built upon for organizing the specific regulatory pathways tuned to the needs of the different cell types in the body.  相似文献   

19.
Sphingolipid signaling is thought to regulate apoptosis via mechanisms that are dependent on the concentration of ceramide relative to that of sphingosine-1-phosphate (S1P). This study reports defects in reproductive structures and function that are associated with enhanced apoptosis in Drosophila Sply05091 mutants that lack functional S1P lyase and thereby accumulate sphingolipid long chain base metabolites. Analyses of reproductive structures in these adult mutants unmasked multiple abnormalities, including supernumerary spermathecae, degenerative ovaries, and severely reduced testes. TUNEL assessment revealed increased cell death in mutant egg chambers at most oogenic stages and in affected mutant testes. These reproductive abnormalities and elevated gonadal apoptosis were also observed, to varying degrees, in other mutants affecting sphingolipid metabolism. Importantly, the reproductive defects seen in the Sply05091 mutants were ameliorated both by a second site mutation in the lace gene that restores long chain base levels towards normal and by genetic disruption of the proapoptotic genes reaper, hid and grim. These data thus provide the first evidence in Drosophila that accumulated sphingolipids trigger elevated levels of apoptosis via the modulation of known signaling pathways.  相似文献   

20.
Lipids are a major class of biological molecules and play many key roles in different processes. The diversity of lipids is on the same order of magnitude as that of proteins: cells express tens of thousands of different lipids and hundreds of proteins to regulate their metabolism and transport. Despite their clear importance and essential functions, lipids have not been as well studied as proteins. We discuss here some of the reasons why it has been challenging to study lipids and outline technological developments that are allowing us to begin lifting lipids out of their “Cinderella” status. We focus on recent advances in lipid identification, visualization, and investigation of their biophysics and perturbations and suggest that the field has sufficiently advanced to encourage broader investigation into these intriguing molecules.Lipids are fundamental building blocks of all cells and play many important and varied roles. They are key components of the plasma membrane and other cellular compartments, including the nuclear membrane, the endoplasmic reticulum, the Golgi apparatus, and trafficking vesicles such as endosomes and lysosomes. The lipid composition of different organelles, cell types, and ultimately tissues can vary substantially, suggesting that different lipids are required for different functions (Saghatelian et al., 2006 ; Klose et al., 2013 ). Mammalian cells express tens of thousands of different lipid species and use hundreds of proteins to synthesize, metabolize, and transport them. Although the complexity and diversity of lipids approach those of proteins, we have a much poorer understanding of their functions, making lipids in many ways the “Cinderellas” of cell biology. We discuss here recent advances, and challenges, in investigating how these molecules contribute to the many biological processes in which they participate.Like proteins, lipids can have structural (e.g., by stabilizing different membrane curvatures) or signaling roles. Posttranslational lipidation of proteins (e.g., palmitoylation or farnesylation) and carbohydrate-linked lipids (glycolipids) are also important examples of cellular lipid pools. It is clear that higher-order organization is key to most lipid functions, and they are believed to assemble into signaling platforms that contain both lipids and proteins (Kusumi et al., 2012 ). Some lipid microdomains are termed lipid rafts, and much ongoing effort is being focused on defining their parameters (Simons and Sampaio, 2011 ; Suzuki et al., 2012 ; Klotzsch and Schutz, 2013 ). Because of this focus on lipid rafts, we have a better understanding of the properties of proposed raft lipids (e.g., sphingomyelins and cholesterol) than of many other lipid species. Much of what we know about lipids has come from studying synthetic membranes with specific lipid compositions. Although model membranes usually consist of very few (<10) lipid species, they have been useful for understanding the biophysical properties of lipids. At the other end of the spectrum, lipids have been implicated in various diseases, with cholesterol metabolism being a prominent example. We are now getting to a point at which we can address the roles of lipids in the middle of the spectrum—in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号