首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Klebsiella pneumoniae is known to produce 2,3-butanediol (2,3-BDO), a valuable chemical. In K. pneumoniae, the 2,3-BDO operon (budBAC) is involved in the production of 2,3-BDO. To observe the physiological role of the 2,3-BDO operon in a mixed acid fermentation, we constructed a budBAC-deleted strain (SGSB109). The production of extracellular metabolites, CO2 emission, carbon distribution, and NADH/NAD+ balance of SGSB109 were compared with the parent strain (SGSB100). When comparing the carbon distribution at 15 hr, four significant differences were observed: in 2,3-BDO biosynthesis, lactate and acetate production (lactate and acetate production increased 2.3-fold and 4.1-fold in SGSB109 compared to SGSB100), CO2 emission (higher in SGSB100), and carbon substrate uptake (higher in SGSB100). Previous studies on the inactivation of the 2,3-BDO operon were focused on the increase of 1,3-propanediol production. Few studies have been done observing the role of 2,3-BDO biosynthesis. This study provides a prime insight into the role of 2,3-BDO biosynthesis of K. pneumoniae.  相似文献   

2.
(S)- and (R)-3-hydroxybutyrate (3HB) are precursors to synthesize the biodegradable plastics polyhydroxyalkanoates (PHAs) and many fine chemicals. To date, however, their production has been restricted to petroleum-based chemical industry and sugar-based microbial fermentation, limiting its sustainability and economical feasibility. With the ability to fix CO2 photosynthetically, cyanobacteria have attracted increasing interest as a biosynthesis platform to produce fuels and chemicals from alternative renewable resources. To this end, synthesis metabolic pathways have been constructed and optimized in cyanobacterium Synechocystis sp. PCC 6803 to photosynthetically produce (S)- and (R)-3HB directly from CO2. Both types of 3HB molecules were produced and readily secreted from Synechocystis cells without over-expression of transporters. Additional inactivation of the competing pathway by deleting slr1829 and slr1830 (encoding PHB polymerase) from the Synechocystis genome further promoted the 3HB production. Up to 533.4 mg/L 3HB has been produced after photosynthetic cultivation of the engineered cyanobacterium Synechocystis TABd for 21 days. Further analysis indicated that the phosphate consumption during the photoautrophic growth and the concomitant elevated acetyl-CoA pool acted as a key driving force for 3HB biosynthesis in Synechocystis. For the first time, the study has demonstrated the feasibility of photosynthetic production of (S)- and (R)-3HB directly from sunlight and CO2.  相似文献   

3.
Ralstonia eutropha is a facultatively chemolithoautotrophic bacterium able to grow with organic substrates or H2 and CO2 under aerobic conditions. Under conditions of nutrient imbalance, R. eutropha produces copious amounts of poly[(R)-3-hydroxybutyrate] (PHB). Its ability to utilize CO2 as a sole carbon source renders it an interesting new candidate host for the production of renewable liquid transportation fuels. We engineered R. eutropha for the production of fatty acid-derived, diesel-range methyl ketones. Modifications engineered in R. eutropha included overexpression of a cytoplasmic version of the TesA thioesterase, which led to a substantial (>150-fold) increase in fatty acid titer under certain conditions. In addition, deletion of two putative β-oxidation operons and heterologous expression of three genes (the acyl coenzyme A oxidase gene from Micrococcus luteus and fadB and fadM from Escherichia coli) led to the production of 50 to 65 mg/liter of diesel-range methyl ketones under heterotrophic growth conditions and 50 to 180 mg/liter under chemolithoautotrophic growth conditions (with CO2 and H2 as the sole carbon source and electron donor, respectively). Induction of the methyl ketone pathway diverted substantial carbon flux away from PHB biosynthesis and appeared to enhance carbon flux through the pathway for biosynthesis of fatty acids, which are the precursors of methyl ketones.  相似文献   

4.
(S)-1,3-Butanediol (BOO) oxidizing enzyme was purified from Candida parapsilosis IFO 1396, which could produce (R)-1,3-BDO from the racemate. The purified enzyme was an NAO+ -dependent secondary alcohol dehydrogenase that oxidized (S)-1,3-BDO to 4-hydroxy-2-butanone stereo-specifically.  相似文献   

5.
A gene encoding a stereo-specific secondary alcohol dehydrogenase (CpSADH) that catalyzed the oxidation of (S)-1,3-BDO to 4-hydroxy-2-butanone was cloned from Candida parapsilosis. This CpSADH-gene consisted of 1,009 nucleotides coding for a protein with M r 35,964. A recombinant Escherichia coli JM109 strain harboring the expression plasmid, pKK-CPA1, produced (R)-1,3-BDO (93.5% ee, 94.7% yield) from the racemate without any additive to regenerate NAD+ from NADH.  相似文献   

6.
3-hydroxypropionic acid (3-HP) is an important platform chemical with a wide range of applications. So far large-scale production of 3-HP has been mainly through petroleum-based chemical processes, whose sustainability and environmental issues have attracted widespread attention. With the ability to fix CO2 directly, cyanobacteria have been engineered as an autotrophic microbial cell factory to produce fuels and chemicals. In this study, we constructed the biosynthetic pathway of 3-HP in cyanobacterium Synechocystis sp. PCC 6803, and then optimized the system through the following approaches: i) increasing expression of malonyl-CoA reductase (MCR) gene using different promoters and cultivation conditions; ii) enhancing supply of the precursor malonyl-CoA by overexpressing acetyl-CoA carboxylase and biotinilase; iii) improving NADPH supply by overexpressing the NAD(P) transhydrogenase gene; iv) directing more carbon flux into 3-HP by inactivating the competing pathways of PHA and acetate biosynthesis. Together, the efforts led to a production of 837.18 mg L−1 (348.8 mg/g dry cell weight) 3-HP directly from CO2 in Synechocystis after 6 days cultivation, demonstrating the feasibility photosynthetic production of 3-HP directly from sunlight and CO2 in cyanobacteria. In addition, the results showed that overexpression of the ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) gene from Anabaena sp. PCC 7120 and Synechococcus sp. PCC 7942 led to no increase of 3-HP production, suggesting CO2 fixation may not be a rate-limiting step for 3-HP biosynthesis in Synechocystis.  相似文献   

7.
Alkanes of defined carbon chain lengths can serve as alternatives to petroleum-based fuels. Recently, microbial pathways of alkane biosynthesis have been identified and enabled the production of alkanes in non-native producing microorganisms using metabolic engineering strategies. The chemoautotrophic bacterium Cupriavidus necator has great potential for producing chemicals from CO2: it is known to have one of the highest growth rate among natural autotrophic bacteria and under nutrient imbalance it directs most of its carbon flux to the synthesis of the acetyl-CoA derived polymer, polyhydroxybutyrate (PHB), (up to 80% of intracellular content). Alkane synthesis pathway from Synechococcus elongatus (2 genes coding an acyl-ACP reductase and an aldehyde deformylating oxygenase) was heterologously expressed in a C. necator mutant strain deficient in the PHB synthesis pathway. Under heterotrophic condition on fructose we showed that under nitrogen limitation, in presence of an organic phase (decane), the strain produced up to 670 mg/L total hydrocarbons containing 435 mg/l of alkanes consisting of 286 mg/l of pentadecane, 131 mg/l of heptadecene, 18 mg/l of heptadecane, and 236 mg/l of hexadecanal. We report here the highest level of alka(e)nes production by an engineered C. necator to date. We also demonstrated the first reported alka(e)nes production by a non-native alkane producer from CO2 as the sole carbon source.  相似文献   

8.
The effect of glucose and elemental sulfur on the growth and PHB accumulation of Acidiphilium cryptum DX1-1 was investigated. Meanwhile, the differential expressions of 19 genes related with PHB accumulation, sulfur metabolism and carbon fixed in heterotrophy, phytotrophy and mixotrophy were studied by RT-qPCR. The results showed that strain DX1-1 could accumulate PHB with sulfur as the energy substance and atmospheric CO2 as carbon resource. Glucose could improve the growth of strain DX1-1 cultured in medium with sulfur as the energy substance, and almost all the key enzyme-encoding genes related with PHB, sulfur metabolism and carbon fixed were basically up-regulated. PHB polymerase (Arcy_3030), ribulose-bisphosphate carboxylase (Acry_0825), ribulose-phosphate-epimerase (Acry_0022), and cysteine synthase A (Acry_2560) played important role in PHB accumulation, the modified expression of which could influence the PHB yield. With CO2 as carbon resource, the main initial substance of PHB accumulation for strain DX1-1 was acetyl-CoA, instead of acetate with the glucose as the carbon resource. Because of accumulating PHB by fixed atmospheric CO2 while independent of light, A. cryptum DX1-1 may have specifically potential in production of PHB.  相似文献   

9.
10.
In situ measurements of leaf level photosynthetic response to light were collected from seedlings of ten tree species from a tropical montane wet forest, the John Crow Mountains, Jamaica. A model-based recursive partitioning ('mob') algorithm was then used to identify species associations based on their fitted photosynthetic response curves. Leaf area dark respiration (RD) and light saturated maximum photosynthetic (Amax) rates were also used as 'mob' partitioning variables, to identify species associations based on seedling demographic patterns (from June 2007 to May 2010) following a hurricane (Aug. 2007) and the spatiotemporal distribution patterns of stems in 2006 and 2012. RD and Amax rates ranged from 1.14 to 2.02 μmol (CO2) m−2s−1 and 2.97–5.87 μmol (CO2) m−2s−1, respectively, placing the ten species in the range of intermediate shade tolerance. Several parsimonious species 'mob' groups were formed based on 1) interspecific differences among species response curves, 2) variations in post-hurricane seedling demographic trends and 3) RD rates and species spatiotemporal distribution patterns at aspects that are more or less exposed to hurricanes. The composition of parsimonious groupings based on photosynthetic curves was not concordant with the groups based on demographic trends but was partially concordant with the RD - species spatiotemporal distribution groups. Our results indicated that the influence of photosynthetic characteristics on demographic traits and species distributions was not straightforward. Rather, there was a complex pattern of interaction between ecophysiological and demographic traits, which determined species successional status, post-hurricane response and ultimately, species distribution at our study site.  相似文献   

11.
Biochemical controls that regulate the biosynthesis of poly-3-hydroxybutyrate (PHB) were investigated in Rhizobium (Cicer) sp. strain CC 1192. This species is of interest for studying PHB synthesis because the polymer accumulates to a large extent in free-living cells but not in bacteroids during nitrogen-fixing symbiosis with chickpea (Cicer arietinum L.) plants. Evidence is presented that indicates that CC 1192 cells retain the enzymic capacity to synthesize PHB when they differentiate from the free-living state to the bacteroid state. This evidence includes the incorporation by CC 1192 bacteroids of radiolabel from [14C]malate into 3-hydroxybutyrate which was derived by chemically degrading insoluble material from bacteroid pellets. Furthermore, the presence of an NADPH-dependent acetoacetyl coenzyme A (CoA) reductase, which was specific for R-(−)-3-hydroxybutyryl-CoA and NADP+ in the oxidative direction, was demonstrated in extracts from free-living and bacteroid cells of CC 1192. Activity of this enzyme in the reductive direction appeared to be regulated at the biochemical level mainly by the availability of substrates. The CC 1192 cells also contained an NADH-specific acetoacetyl-CoA reductase which oxidized S-(+)-3-hydroxybutyryl-CoA. A membrane preparation from CC 1192 bacteroids readily oxidized NADH but not NADPH, which is suggested to be a major source of reductant for nitrogenase. Thus, a high ratio of NADPH to NADP+, which could enhance delivery of reductant to nitrogenase, could also favor the reduction of acetoacetyl-CoA for PHB synthesis. This would mean that fine controls that regulate the partitioning of acetyl-CoA between citrate synthase and 3-ketothiolase are important in determining whether PHB accumulates.  相似文献   

12.
Acetoin is widely used in food and cosmetics industries as a taste and fragrance enhancer. To produce (R)-acetoin in Saccharomyces cerevisiae, acetoin biosynthetic genes encoding α-acetolactate synthase (AlsS) and α-acetolactate decarboxylase (AlsD) from Bacillus subtilis and water-forming NADH oxidase (NoxE) from Lactococcus lactis were integrated into delta-sequences in JHY605 strain, where the production of ethanol, glycerol, and (R,R)-2,3-butanediol (BDO) was largely eliminated. We further improved acetoin production by increasing acetoin tolerance by adaptive laboratory evolution, and eliminating other byproducts including meso-2,3-BDO and 2,3-dimethylglycerate, a newly identified byproduct. Ara1, Ypr1, and Ymr226c (named Ora1) were identified as (S)-alcohol-forming reductases, which can reduce (R)-acetoin to meso-2,3-BDO in vitro. However, only Ara1 and Ypr1 contributed to meso-2,3-BDO production in vivo. We elucidate that Ora1, having a substrate preference for (S)-acetoin, reduces (S)-α-acetolactate to 2,3-dimethylglycerate, thus competing with AlsD-mediated (R)-acetoin production. By deleting ARA1, YPR1, and ORA1, 101.3 g/L of (R)-acetoin was produced with a high yield (96% of the maximum theoretical yield) and high stereospecificity (98.2%).  相似文献   

13.
The pathway of autotrophic CO2 fixation was studied in the phototrophic bacterium Chloroflexus aurantiacus and in the aerobic thermoacidophilic archaeon Metallosphaera sedula. In both organisms, none of the key enzymes of the reductive pentose phosphate cycle, the reductive citric acid cycle, and the reductive acetyl coenzyme A (acetyl-CoA) pathway were detectable. However, cells contained the biotin-dependent acetyl-CoA carboxylase and propionyl-CoA carboxylase as well as phosphoenolpyruvate carboxylase. The specific enzyme activities of the carboxylases were high enough to explain the autotrophic growth rate via the 3-hydroxypropionate cycle. Extracts catalyzed the CO2-, MgATP-, and NADPH-dependent conversion of acetyl-CoA to 3-hydroxypropionate via malonyl-CoA and the conversion of this intermediate to succinate via propionyl-CoA. The labelled intermediates were detected in vitro with either 14CO2 or [14C]acetyl-CoA as precursor. These reactions are part of the 3-hydroxypropionate cycle, the autotrophic pathway proposed for C. aurantiacus. The investigation was extended to the autotrophic archaea Sulfolobus metallicus and Acidianus infernus, which showed acetyl-CoA and propionyl-CoA carboxylase activities in extracts of autotrophically grown cells. Acetyl-CoA carboxylase activity is unexpected in archaea since they do not contain fatty acids in their membranes. These aerobic archaea, as well as C. aurantiacus, were screened for biotin-containing proteins by the avidin-peroxidase test. They contained large amounts of a small biotin-carrying protein, which is most likely part of the acetyl-CoA and propionyl-CoA carboxylases. Other archaea reported to use one of the other known autotrophic pathways lacked such small biotin-containing proteins. These findings suggest that the aerobic autotrophic archaea M. sedula, S. metallicus, and A. infernus use a yet-to-be-defined 3-hydroxypropionate cycle for their autotrophic growth. Acetyl-CoA carboxylase and propionyl-CoA carboxylase are proposed to be the main CO2 fixation enzymes, and phosphoenolpyruvate carboxylase may have an anaplerotic function. The results also provide further support for the occurrence of the 3-hydroxypropionate cycle in C. aurantiacus.  相似文献   

14.
2,3-Butanediol (BDO) is an important chemical with broad industrial applications and can be naturally produced by many bacteria at high levels. However, the pathogenicity of these native producers is a major obstacle for large scale production. Here we report the engineering of an industrially friendly host, Saccharomyces cerevisiae, to produce BDO at high titer and yield. By inactivation of pyruvate decarboxylases (PDCs) followed by overexpression of MTH1 and adaptive evolution, the resultant yeast grew on glucose as the sole carbon source with ethanol production completely eliminated. Moreover, the pdc- strain consumed glucose and galactose simultaneously, which to our knowledge is unprecedented in S. cerevisiae strains. Subsequent introduction of a BDO biosynthetic pathway consisting of the cytosolic acetolactate synthase (cytoILV2), Bacillus subtilis acetolactate decarboxylase (BsAlsD), and the endogenous butanediol dehydrogenase (BDH1) resulted in the production of enantiopure (2R,3R)-butanediol (R-BDO). In shake flask fermentation, a yield over 70% of the theoretical value was achieved. Using fed-batch fermentation, more than 100 g/L R-BDO (1100 mM) was synthesized from a mixture of glucose and galactose, two major carbohydrate components in red algae. The high titer and yield of the enantiopure R-BDO produced as well as the ability to co-ferment glucose and galactose make our engineered yeast strain a superior host for cost-effective production of bio-based BDO from renewable resources.  相似文献   

15.
The characteristics of PHB production from carbon dioxide by autotrophic culture of Alcaligenes eutrophus ATCC 17697T using a recycled gas closed circuit culture system under the condition of oxygen limitation were investigated. Cell concentration increased to more than 60 g/l after 60 h of cultivation, while the PHB concentration reached 36 g/l. PHB accumulation in the oxygen-limited culture was superior than that in an ammonium-deficient culture. The PHB produced was identified as a homopolymer of d-3-hydroxybutyrate by 1H and 13C NMR analysis. The stoichiometry for PHB production from CO2 under the oxygen limitation condition was indicated to be as follows: 33H2 + 12O2 + 4CO2 → C4H6O2 + 30H2O. This stoichiometry shows that the hydrogen consumption per one mole of CO2 for PHB production is larger than that for cell formation.  相似文献   

16.
The 3-hydroxypropionate (3-HPA) bicycle is unique among CO2-fixing systems in that none of its enzymes appear to be affected by oxygen. Moreover, the bicycle includes a number of enzymes that produce novel intermediates of biotechnological interest, and the CO2-fixing steps in this pathway are relatively rapid. We expressed portions of the 3-HPA bicycle in a heterologous organism, E. coli K12. We subdivided the 3-HPA bicycle into four sub-pathways: (1) synthesis of propionyl-CoA from acetyl-CoA, (2) synthesis of succinate from propionyl-CoA, (3) glyoxylate production and regeneration of acetyl-CoA, and (4) assimilation of glyoxylate and propionyl-CoA to form pyruvate and regenerate acetyl-CoA. We expressed the novel enzymes of the 3-HPA bicycle in operon form and used phenotypic tests for activity. Sub-pathway 1 activated a propionate-specific biosensor. Sub-pathway 2, found in non-CO2-fixing bacteria, was reassembled in E. coli using genes from diverse sources. Sub-pathway 3, operating in reverse, generated succinyl-CoA sufficient to rescue a sucAD double mutant of its diaminopimelic acid (DAP) auxotrophy. Sub-pathway 4 was able to reduce the toxicity of propionate and allow propionate to contribute to cell biomass in a prpC(2 methylcitrate synthase) mutant strain. These results indicate that all of the sub-pathways of the 3-HPA bicycle can function to some extent in vivo in a heterologous organism, as indicated by growth tests. Overexpression of certain enzymes was deleterious to cell growth, and, in particular, expression of MMC-CoA lyase caused a mucoid phenotype. These results have implications for metabolic engineering and for bacterial evolution through horizontal gene transfer.  相似文献   

17.
In spite of numerous advantages on operating fermentation at elevated temperatures, very few thermophilic bacteria with polyhydroxyalkanoates (PHAs)-accumulating ability have yet been found in contrast to the tremendous mesophiles with the same ability. In this study, a thermophilic poly(3-hydroxybutyrate) (PHB)-accumulating bacteria (Chelatococcus daeguensis TAD1), isolated from the biofilm of a biotrickling filter used for NOx removal, was extensively investigated and compared to other PHB-accumulating bacteria. The results demonstrate that C. daeguensis TAD1 is a growth-associated PHB-accumulating bacterium without obvious nutrient limitation, which was capable of accumulating PHB up to 83.6 % of cell dry weight (CDW, w/w) within just 24 h at 45 °C from glucose. Surprisingly, the PHB production of C. daeguensis TAD1 exhibited strong tolerance to high heat stress as well as nitrogen loads compared to that of other PHB-accumulating bacterium, while the optimal PHB amount (3.44?±?0.3 g l?1) occurred at 50 °C and C/N?=?30 (molar) with glucose as the sole carbon source. In addition, C. daeguensis TAD1 could effectively utilize various cheap substrates (starch or glycerol) for PHB production without pre-hydrolyzed, particularly the glycerol, exhibiting the highest product yield (Y P/S, 0.26 g PHB per gram substrate used) as well as PHB content (80.4 % of CDW, w/w) compared to other carbon sources. Consequently, C. daeguensis TAD1 is a viable candidate for large-scale production of PHB via utilizing starch or glycerol as the raw materials.  相似文献   

18.
Avoidable or inappropriate nitrogen (N) fertilizer rates harmfully affect the yield production and ecological value. Therefore, the aims of this study were to optimize the rate and timings of N fertilizer to maximize yield components and photosynthetic parameter of soybean. This field experiment consists of five fertilizer N rates: 0, 75, 150, 225 and 300 kg N ha−1 arranged in main plots and four N fertilization timings: V5 (trifoliate leaf), R2 (full flowering stage) and R4 (full poding stage), and R6 (full seeding stage) growth stages organized as subplots. Results revealed that 225 kg N ha−1 significantly enhanced grain yield components, total chlorophyll (Chl), photosynthetic rate (PN), and total dry biomass and N accumulation by 20%, 16%, 28%, 7% and 12% at R4 stage of soybean. However, stomatal conductance (gs), leaf area index (LAI), intercellular CO2 concentration (Ci) and transpiration rate (E) were increased by 12%, 88%, 10%, 18% at R6 stage under 225 kg N ha−1. Grain yield was significantly associated with photosynthetic characteristics of soybean. In conclusion, the amount of nitrogen 225 kg ha−1 at R4 and R6 stages effectively promoted the yield components and photosynthetic characteristics of soybean.  相似文献   

19.
《Inorganica chimica acta》1988,154(2):209-214
The diastereoisomeric complex Δ-(+)-tris(cyclicO,O′, 1 (R), 2(R)(−)dimethylethylene dithiophosphato)chromium(III), was synthesized stereoselectively in tetrahydrofuran (THF) solution. The complex proves optically labile, [α]D=+106, in CHCl3, changing quickly to [α]D=+211. The CD spectra in THF enable us to characterize the complex and show a configuration inversion which gives the diastereoisomeric equilibrium Λ⇌Δ with an excess of the Λ-(R,R)(R,R)(R,R) diastereoisomeric form. The equilibrium constant K=0.86 at 25 °C is indicative of a different thermodynamic stability between the two diastereoisomers in THF solution, Λ-(R,R)> Δ-(R,R), δΔH°=1.5 kJ mol−1, δΔG°=0.3 kJ mol−1, δΔS°=4 J mol−1 K−1. The kinetic diastereoisomer Δ-(R,R)(R,R)(R,R) is stabilized in CHCl3, CH2Cl2, EtOH solvents where it is highly soluble and optically stable with a maximum negative chirality factor, g=−5×10−3, in CHCl3.  相似文献   

20.
A mixed fermentation strategy based on exponentially fed-batch cultures (EFBC) and nutrient pulses with sucrose and yeast extract was developed to achieve a high concentration of PHB by Azotobacter vinelandii OPNA, which carries a mutation on the regulatory systems PTSNtr and RsmA-RsmZ/Y, that negatively regulate the synthesis of PHB. Culture of the OPNA strain in shake flaks containing PY-sucrose medium significantly improved growth and PHB production with respect to the results obtained from the cultures with the parental strain (OP). When the OPNA strain was cultured in a batch fermentation keeping constant the DOT at 4%, the maximal growth rate (0.16 h−1) and PHB yield (0.30 gPHB gSuc−1) were reached. Later, in EFBC, the OPNA strain increased three fold the biomass and 2.2 fold the PHB concentration in relation to the values obtained from the batch cultures. Finally, using a strategy of exponential feeding coupled with nutrient pulses (with sucrose and yeast extract) the production of PHB increased 7-fold to reach a maximal PHB concentration of 27.3 ± 3.2 g L−1 at 60 h of fermentation. Overall, the use of the mutant of A. vinelandii OPNA, impaired in the PHB regulatory systems, in combination with a mixed fermentation strategy could be a feasible strategy to optimize the PHB production at industrial level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号