首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As crucial mediators and regulators of our immune system, cytokines are involved in a broad range of biological processes and are implicated in various disease pathologies. The field of cytokine therapeutics has gained much momentum from the maturation of conventional protein engineering methodologies such as structure-based designs and/or directed evolution, which is further aided by the advent of in silico protein designs and characterization. Just within the past 5 years, there has been an explosion of proof-of-concept, preclinical, and clinical studies that utilize an armory of protein engineering methods to develop cytokine-based drugs. Here, we highlight the key engineering strategies undertaken by recent studies that aim to improve the pharmacodynamic and pharmacokinetic profile of interferons and other cytokines as therapeutics.  相似文献   

2.
Central proinflammatory cytokines and pain enhancement   总被引:11,自引:0,他引:11  
Enhanced pain is a component of the 'sickness response' which is an evolutionarily adaptive constellation of responses that enhance the survival of the host. Proinflammatory cytokines mediate these sickness behaviors, and whether proinflammatory cytokines are involved in exaggerated pain has become an intriguing question. Studies suggest that spinal cord glial cells (astrocytes and microglia) are activated in conditions that lead to enhanced pain. Not only is glial activation associated with enhanced pain, but it is also integral to the induction and maintenance of these pain states. Proinflammatory cytokines can be released by activated astrocytes and microglia within the central nervous system. This review will discuss the role of proinflammatory cytokines in experimental models of prolonged pain states. Administration of exogenous proinflammatory cytokines facilitates pain, and agents that antagonize proinflammatory cytokine actions have been shown to block and/or reverse enhanced pain. These findings suggest that blocking the synthesis and/or release of proinflammatory cytokines may be viable strategies for the treatment of pathological pain. Gene therapy to augment the endogenous anti-inflammatory cytokine, interleukin-10, is one of the more promising therapies currently under study.  相似文献   

3.
4.
Recombinant immunotherapeutics are important biologics for the treatment and prevention of various diseases. Immunotherapy can be divided into two categories, passive and active. For passive immunotherapy, the successes of antibody and cytokine therapeutics represent a promising future and opportunities for improvements. Efforts, such as cell engineering, antibody engineering, human-like glycosylation in yeast, and Fab fragment development, have led the way to improve antibody efficacy while decreasing its high manufacturing costs. Both new cytokines and currently used cytokines have demonstrated therapeutic effects for different indications. As for active immunotherapy, recently approved HPV vaccines have encouraged the development of preventative vaccines for other infectious diseases. Immunogenic antigens of pathogenic bacteria can now be identified by genomic means (reverse vaccinology). Due to the recent outbreaks of pandemic H1N1 influenza virus, recombinant influenza vaccines using virus-like particles and other antigens have also been engineered in several different recombinant systems. However, limitations are found in existing immunotherapeutics for cancer treatment, and recent development of therapeutic cancer vaccines such as MAGE-A3 and NY-ESO-1 may provide alternative therapeutic strategy.  相似文献   

5.
Cytokines are key players in stimulating and regulating immune responses in physiological and pathophysiological processes. Various cytokines have been approved for therapy of cancer and other diseases and many more are under development. However, therapeutic efficacy is often hampered by severe side effects and poor pharmacokinetic properties. Fusion of cytokines to antibodies or antibody fragments allows for a targeted delivery and should, therefore, improve efficacy and pharmacokinetics. This review provides a comprehensive summary of the developments in the field of targeted cytokine delivery by genetic engineering of antibody-cytokine fusion proteins.  相似文献   

6.
The novel generation of sensitive T-cell assays facilitates the direct quantitation and characterization of specific T-cell responses. Functional T-cell assays such as the ELISPOT assay and the intracellular cytokine cytometry (ICC) employ the antigen-specific induction of cytokines to detect specific T-cells on a single cell level. ICC has the advantage that the simultaneous phenotypic characterization of the antigen-specific T-cells is possible. There is evidence now from clinical cancer vaccination trials, that there is a relationship between the detection of vaccine-induced T-cells by cytokine-based assays and clinical responses. As these assays become increasingly relevant in clinical practice to suggest issues of assay validation and quality control become of major importance.  相似文献   

7.
Recently, cytokine-based pro-tumourigenic signalling has been found to play a major role in the immune system's pro-tumourigenic activity. On the other hand, other recent findings have shown that immunogenic cancer cell death triggered by certain anticancer modalities might reset the dysfunctional immune system towards the activation of a long-lasting protective anti-tumour response. Therefore, using inducers of immunogenic cell death (ICD) that can prevent or impede tumour-promoting cytokine signalling is one of the best ways of instigating or restoring efficient anti-tumour immunity. In this review it is discussed, how the different ICD inducers interact with the immune system and influence cytokine-based pro-tumourigenic signalling. We believe that it is crucial to discover or develop new anti-cancer therapeutic modalities that can induce ICD and impede tumour-promoting cytokine signalling.  相似文献   

8.
The use of cytokines from the IL-2 family (also called the common γ chain cytokine family) such as interleukin (IL)-2, IL-7, IL-15, and IL-21 to activate the immune system of cancer patients is one of the most important areas of current cancer immunotherapy research. The infusion of IL-2 at low or high doses for multiple cycles in patients with metastatic melanoma and renal cell carcinoma was the first successful immunotherapy for cancer proving that the immune system could completely eradicate tumor cells under certain conditions. The initial clinical success observed in some IL-2-treated patients encouraged further efforts focused on developing and improving the application of other IL-2 family cytokines (IL-4, IL-7, IL-9, IL-15, and IL-21) that have unique biological effects playing important roles in the development, proliferation, and function of specific subsets of lymphocytes at different stages of differentiation with some overlapping effects with IL-2. IL-7, IL-15, and IL-21, as well as mutant forms or variants of IL-2, are now also being actively pursued in the clinic with some measured early successes. In this review, we summarize the current knowledge on the biology of the IL-2 cytokine family focusing on IL-2, IL-15 and IL-21. We discuss the similarities and differences between the signaling pathways mediated by these cytokines and their immunomodulatory effects on different subsets of immune cells. Current clinical application of IL-2, IL-15 and IL-21 either as single agents or in combination with other biological agents and the limitation and potential drawbacks of these cytokines for cancer immunotherapy are also described. Lastly, we discuss the future direction of research on these cytokines, such as the development of new cytokine mutants and variants for improving cytokine-based immunotherapy through differential binding to specific receptor subunits.  相似文献   

9.
The clinical translation of tissue engineering approaches is limited by the requirement of a cell source. Cell guidance is a new concept that provides an alternative approach, obviating a requirement for an external cell source. This relies on site-specific homing and differentiation of the patient??s own cells to an implanted scaffold through controlled delivery of cytokines. In this study, we used stromal-cell-derived factor 1-alpha (SDF-1??) in combination with bone morphogenic protein (BMP)-2 or transforming growth factor (TGF)-??1 to induce cell migration and osteogenic or chondrogenic differentiation, respectively, in implanted scaffolds in a rat model. A customized cytokine microdelivery apparatus was used to ensure the constant rate and concentration of cytokine delivery around the scaffold. The formation of osteoid or early cartilage was observed after 4?weeks in specimens treated with SDF-1?? and either BMP-2 or TGF-??1. The density of cellular infiltrate and formation of differentiated tissue were lower in scaffolds treated only with BMP-2 or TGF-??1. Thus, controlled SDF-1?? delivery induces cell migration into scaffolds and can result in enhanced osteogenesis and chondrogenesis when used in combination with differentiation cytokines for purposes of tissue engineering.  相似文献   

10.
The ability of cultured, antigen-loaded dendritic cells (DCs) to induce antigen-specific T cell immunity in vivo has previously been demonstrated and confirmed. Immune monitoring naturally focuses on immunity against vaccine antigens and may thus ignore other effects of DC vaccination. Here we therefore focused on antigen-independent responses induced by DC vaccination of renal cell carcinoma patients. In addition to the anticipated response against the vaccine antigen KLH, vaccination with CD83+ monocyte-derived DCs resulted in a strong increase in the ex vivo proliferative and cytokine responses of PBMCs stimulated with LPS or BCG. In addition, LPS strongly enhanced the KLH-induced proliferative and cytokine response of PBMCs. Moreover, proliferative and cytokine responses of PBMCs stimulated with the homeostatic cytokines IL-7 and IL-15 were also clearly enhanced after DC vaccination. In contrast to LPS induced proliferation, which is well known to depend on monocytes, IL-7 induced proliferation was substantially enhanced after monocyte depletion indicating that monocytes limit IL-7 induced lymphocyte expansion. Our data indicate that DC vaccination leads to an increase in the ex vivo responsiveness of patient PBMCs consistent with a DC vaccination induced enhancement of T cell memory. Our findings also suggest that incorporation of bacterial components and homeostatic cytokines into immunotherapy protocols may be useful in order to enhance the efficacy of DC vaccination and that monocytes may limit DC vaccination induced immunity. Supported by a grant to Martin Thurnher from the kompetenzzentrum medizin tirol (kmt), a center of excellence.  相似文献   

11.
《Cytotherapy》2023,25(9):913-919
Immunomodulatory cytokines can alter the tumor microenvironment and promote tumor eradication. Interleukin (IL)-27 is a pleiotropic cytokine that has potential to augment anti-tumor immunity while also facilitating anti-myeloma activity. We engineered human T cells to express a recombinant single-chain (sc)IL-27 and a synthetic antigen receptor targeting the myeloma antigen, B-cell maturation antigen, and evaluated the anti-tumor function of T cells bearing scIL-27 in vitro and in vivo. We discovered that T cells bearing scIL-27 sustained anti-tumor immunity and cytotoxicity yet manifested a profound reduction in pro-inflammatory cytokines granulocyte-macrophage colony-stimulating factor and tumor necrosis factor alpha. IL-27–expressing T cells therefore present a potential avenue to avert treatment-related toxicities commonly associated with engineered T-cell therapy due to the reduced pro-inflammatory cytokine profile.  相似文献   

12.
Aminobisphosphonates are drugs used in the treatment of hypercalcemia, Paget's disease, osteoporosis, and malignancy. Some patients treated with aminobisphosphonates have a transient febrile reaction that may be caused by an increased serum concentration of proinflammatory cytokines. Aminobisphosphonates induce the production of certain proinflammatory cytokines in vitro, especially in cells of monocytic lineage. A unique feature of aminobisphosphonates is that they bind the Vgamma2Vdelta2 class of T cells, which are found only in primates, and stimulate cytokine production. The effects of aminobisphosphonates on other cells, including macrophages, are incompletely understood. We show in this study that treatment of murine macrophages with pamidronate, a second generation aminobisphosphonate, induces TNF-alpha production. Furthermore, pretreatment of murine macrophages with pamidronate before stimulation with IFN-gamma significantly augments IFN-gamma-dependent production of TNF-alpha. This pamidronate-mediated augmentation of TNF-alpha production results in sustained phosphorylation of the tyrosine residue at position 701 of STAT1 after IFN-gamma treatment. Our data suggest that this sustained phosphorylation results from inhibition of protein tyrosine phosphatase activity. We also show that pamidronate treatment increases TNF-alpha production in vivo in mice. Pamidronate-augmented TNF-alpha production by macrophages might be a useful strategy for cytokine-based anticancer therapy.  相似文献   

13.
BACKGROUND: Recently, it has been realized that TH1/TH2 cytokine production offer the unique possibility to predict drug efficacy. However, there is still an incessant need to explore assay conditions and techniques of analyzing cytokines, which are specific and reliable for monitoring drug efficacy. METHODS: In this study we used the multiplex bead array technique to detect cytokines of TH1/TH2 cells in whole blood of heart transplanted (HTx) recipients. RESULTS: We found significantly different levels of cytokine expression in HTx recipients compared with cytokine levels in patients prior to HTx. Furthermore, particular cytokine levels were significantly decreased 2 h after drug dosing, compared with cytokine levels before dosing in mitogen-stimulated whole blood. CONCLUSIONS: Cytokine analysis with the multiplex array technique in mitogen-stimulated whole blood provides the possibility to predict immunosuppression.  相似文献   

14.
Objective: While previous reports clearly demonstrated antiproliferative effects of IL-4 on renal cell carcinoma (RCC) in vitro, the administration of IL-4 to patients with metastatic RCC in clinical trials could not recapitulate the promising preclinical results. In the present study we wanted to examine the context of IL-4 action and to establish conditions of enhanced IL-4 efficacy. Methods: Primary and permanent human RCC cells were cultured in either serum-supplemented or chemically defined, serum-free culture medium in the presence or absence of cytokines. Cell proliferation was assessed as [3H]-thymidine incorporation. Cell apoptosis was measured using the fluorescent DNA intercalator 7-aminoactinomycin D and flow cytometry. In addition, culture media conditioned by RCC were subjected to cytokine antibody array and cytokine multiplex analysis. Results: Our results indicate that the previously reported antiproliferative effects of IL-4 are serum-dependent. Under serum-free conditions, IL-4 failed to exhibit growth-inhibitory effects or was even growth-stimulatory. In a chemically defined, serum-free medium (AIM-V), however, IL-4 inhibited the TNF-α induced proliferation of RCC. IL-4 and TNF-α synergistically induced apoptosis of RCC as well as a complex cytokine response by RCC, which included the synergistic upregulation of RANTES and MCP-1. Conclusions: IL-4 alone has little effect on the spontaneous proliferation of RCC but can prevent the enhancement of proliferation induced by growth promoters like FBS and TNF-α. The concomitant growth inhibitory, apoptosis-inducing, and cytokine-enhancing effects of IL-4 in combination with TNF-α on RCC support the view that Th2 cytokines may be required for productive immune responses against RCC.  相似文献   

15.
新型双分子细胞因子融合蛋白研究进展   总被引:7,自引:0,他引:7  
细胞因子通过相互协调、相互制约在体内发挥着重要的免疫调节作用,利用细胞因子的这一特点,近年来国内外设计并构建了新型的第二代细胞因子,即利用基因工程技术和蛋白质工程技术将两种细胞因子合二为一,使之成为具有多功能的嵌合蛋白新品种,为细胞因子的理论研究及临床应用提供了新的手段与方法.  相似文献   

16.
It has been already known that human diploid fibroblasts are able to produce not only high levels of IFN-beta but also various kinds of cytokines by poly rI: poly rC, and some inflammatory cytokines are induced by IFN-beta gene activation. We also obtained similar results. However, in our system, cytokine productions were extremely enhanced by treating the cells with a low dose of type 1 IFN and the priming effects on cytokine productions were blocked by cycloheximide similar to those on IFN-beta productions. Most of cytokines were produced later than IFN-beta and synthesis patterns of their mRNA showed the same phenomena. We made clear that cytokine productions by poly rI: poly rC are mediated by secreted IFN-beta at a protein level using a monoclonal antibody against human IFN-beta. Further, it was shown that intra-cellular IFN-beta which is not secreted might also participate in cytokine productions. Meanwhile, IL-1beta induced various kinds of cytokines in human fibroblasts and production time courses of these cytokines were similar to those of poly rI: poly rC induced cytokines. Although secreted IFN-beta was not detected in IL-1beta stimulated culture, expression of IFN-beta mRNA was augmented. These results showed that priming effects of type 1 IFN on cytokine productions by poly rI: poly rC might not be the direct action, but successive IFN-beta production might be essential in the production processes of other cytokines. Further, it was suggested that inducible IFN-beta might also take part in IL-1beta-induced cytokine productions.  相似文献   

17.
We examined the interplay between cytokines and adjuvants to optimize the induction of CTL by a mucosal HIV peptide vaccine. We show synergy between IL-12 and GM-CSF when administered together with the HIV peptide PCLUS3-18IIIB and cholera toxin (CT) in the induction of CTL activity and protection against mucosal viral transmission. Further, we examine the efficacy of mutant Escherichia coli labile toxin, LT(R192G), as a less toxic adjuvant than CT. LT(R192G) was as effective as or more effective than CT at inducing a mucosal CTL response. Moreover, LT(R192G) was as effective without IL-12 as CT was when combined with IL-12, and the response elicited by LT(R192G) with the vaccine was not further enhanced by the addition of IL-12. GM-CSF synergized with LT(R192G) without exogenous IL-12. Therefore, LT(R192G) may induce a more favorable cytokine response by not inhibiting IL-12 production. In particular, less IL-4 is made after LT(R192G) than CT immunization, and the response is less susceptible to anti-IL-12 inhibition. Thus, the choice of mucosal adjuvant affects the cytokine environment, and the mucosal response and protection can be enhanced by manipulating the cytokine environment with synergistic cytokine combinations incorporated in the vaccine.  相似文献   

18.
Maxwell JR  Wilson AG 《Cytokine》2006,33(6):362-366
Genetic variation plays a significant role in the normal functioning of the immune system, and also in the interaction between many common drugs and cellular pathways. With a growing number of cytokine-based therapies now in mainstream clinical use, the prospect of targeting these agents to the individuals likely to benefit from them most is an appealing one. This review outlines the potential clinical impact of cytokine pharmacogenetics in targeting these therapies to individuals with favourable genetic profiles. The use of such approaches may have important pharmacoeconomic benefits and lead to improved therapeutic profiles for these treatments.  相似文献   

19.
20.
Cytokine combinations in immunotherapy for solid tumors: a review   总被引:1,自引:0,他引:1  
The use of cytokines alone or in combination with other cytokines or cytotoxic drugs has had a profound effect upon widely metastatic disease in many cases. However, despite the encouraging results in early trials, there is much room for improvement. Few responses to these combinations are complete, and toxicity has in some cases been quite severe. Changes in dose, route, or schedule of administration of the drugs, or the development of cytokine analogs may lead to more efficacious and less toxic regimens. In addition, new cytokines such as interleukin (IL)-7 and IL-12 are currently under investigation for potential use in future immunotherapy trials. These prospects and the use of cytokine combinations are promising advances in the treatment of human cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号