首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeThe main aim of medical physics training in radiology residency is to have appropriate and safer imaging of patients and safety of personnel. The need to have adequate coverage of medical physics and radiation safety in curricula of radiology residency is well perceived, but it is not known how far it is implemented in practice.MethodsWe have analysed the data from 67 countries on medical physics teaching and assessment of residents in radiology programs, considering differences between countries in function of their human development index (HDI).ResultsThe results indicate that teaching of medical physics by radiologists rather than by medical physicists is very common and there is relationship with the developmental status of a country. The majority of countries with very high HDI used a written test (69%) for medical physics topics, often in combination with other subjects (63%). Further, there is lack of direct involvement of medical physicists during the examination phase of residents. Geographically, it can be seen that Latin American countries in particular lack involvement of medical physicists during both the teaching and examination phase.ConclusionThe lack of adequate involvement of medical physicists in training and in the formal examination of radiology residents in both developed and developing countries is a matter of concern with likely implications on patient and staff safety.  相似文献   

2.
PurposeESTRO-EFOMP intend to update the core curriculum (CC) for education and training of medical physicists in radiotherapy in line with the European Commission (EC) guidelines on Medical Physics Experts (MPE), the CanMEDS methodology and recent developments in radiotherapy. As input, a survey of the current structure of radiotherapy MPE national training schemes (NTS) in Europe was carried out.MethodsA 35-question survey was sent to all European medical physics national societies (NS) with a focus on existence of an NTS, its format and duration, required entry-level education, and financial support for trainees.ResultsTwenty-six of 36 NS responded. Twenty had an NTS. Minimum required pre-training education varied from BSc in physics or related sciences (5/2) to MSc in medical physics, physics or related sciences (6/5/2) with 50–210 ECTS in fundamental physics and mathematics. The training period varied from 1 to 5 years (median 3 years with 50% dedicated to radiotherapy). The ratio of time spent on university lectures versus hospital training was most commonly 25%/75%. In 14 of 20 countries with an NTS, a research project was mandatory. Residents were paid in 17 of 20 countries. The recognition was mostly obtained by examination. Medical physics is recognised as a healthcare profession in 19 of 26 countries.ConclusionsThe NTS entrance level, duration and curriculum showed significant variations. This survey serves to inform the design of the updated CC to define a realistic minimum training level for safe and effective practice aiming at further harmonization in line with EC guidelines.  相似文献   

3.
PurposeThis paper covers recent developments and applications of the TOPAS TOol for PArticle Simulation and presents the approaches used to disseminate TOPAS.Materials and methodsFundamental understanding of radiotherapy and imaging is greatly facilitated through accurate and detailed simulation of the passage of ionizing radiation through apparatus and into a patient using Monte Carlo (MC). TOPAS brings Geant4, a reliable, experimentally validated MC tool mainly developed for high energy physics, within easy reach of medical physicists, radiobiologists and clinicians. Requiring no programming knowledge, TOPAS provides all of the flexibility of Geant4.ResultsAfter 5 years of development followed by its initial release, TOPAS was subsequently expanded from its focus on proton therapy physics to incorporate radiobiology modeling. Next, in 2018, the developers expanded their user support and code maintenance as well as the scope of TOPAS towards supporting X-ray and electron therapy and medical imaging. Improvements have been achieved in user enhancement through software engineering and a graphical user interface, calculational efficiency, validation through experimental benchmarks and QA measurements, and either newly available or recently published applications. A large and rapidly increasing user base demonstrates success in our approach to dissemination of this uniquely accessible and flexible MC research tool.ConclusionsThe TOPAS developers continue to make strides in addressing the needs of the medical community in applications of ionizing radiation to medicine, creating the only fully integrated platform for four-dimensional simulation of all forms of radiotherapy and imaging with ionizing radiation, with a design that promotes inter-institutional collaboration.  相似文献   

4.
Medical physicists have long had an integral role in radiotherapy. In recent decades, medical physicists have slowly but surely stepped back from direct clinical responsibilities in planning radiotherapy treatments while medical dosimetrists have assumed more responsibility. In this article, I argue against this gradual withdrawal from routine therapy planning. It is essential that physicists be involved, at least to some extent, in treatment planning and clinical dosimetry for each and every patient; otherwise, physicists can no longer be considered clinical specialists. More importantly, this withdrawal could negatively impact treatment quality and patient safety. Medical physicists must have a sound understanding of human anatomy and physiology in order to be competent partners to radiation oncologists. In addition, they must possess a thorough knowledge of the physics of radiation as it interacts with body tissues, and also understand the limitations of the algorithms used in radiotherapy. Medical physicists should also take the lead in evaluating emerging challenges in quality and safety of radiotherapy. In this sense, the input of physicists in clinical audits and risk assessment is crucial. The way forward is to proactively take the necessary steps to maintain and advance our important role in clinical medicine.  相似文献   

5.
AimTo evaluate the state of graduate education in medical physics and progress in radiation oncology (RO) equipment in Mexico since 2000, when conferring degrees from two master’s-degree programs in Medical Physics began.BackgroundMedical physics is a Health Profession and there are international recommendations for education, training, and certification. Both programs follow these education guidelines. The most common clinical occupation of graduates is in RO services. Techniques in Mexican RO include traditional and high-precision procedures.MethodsAcademic and occupational information about the programs and their graduates were obtained from official websites. Graduates were invited to respond to a survey that requested information about their present job. We obtained data on RO equipment and human resources from public databases and estimated staffing requirements of medical physicists (MPs).ResultsMedical physics programs have graduated a total of 225 MPs. Half of them work in a clinical environment and, of these, about 90 work in RO services. MPs with M.Sc. degrees constitute 36% of the current MP workforce in RO, estimated to be 250 individuals. Survey responses pointed out the main merits and limitations of the programs. The number of MPs in RO has increased fivefold and the number of linacs sixfold in 15 years. The present number of MPs is insufficient, according to published guidelines.ConclusionAll MPs in RO services with advanced modalities must be trained following international recommendations for graduate education and post-graduation clinical training. Education and health institutions must find incentives to create more graduate programs and clinical residencies.  相似文献   

6.
BackgroundThere is a continuous and dynamic discussion on artificial intelligence (AI) in present-day society. AI is expected to impact on healthcare processes and could contribute to a more sustainable use of resources allocated to healthcare in the future. The aim for this work was to establish a foundation for a Swedish perspective on the potential effect of AI on the medical physics profession.Materials and methodsWe designed a survey to gauge viewpoints regarding AI in the Swedish medical physics community. Based on the survey results and present-day situation in Sweden, a SWOT analysis was performed on the implications of AI for the medical physics profession.ResultsOut of 411 survey recipients, 163 responded (40%). The Swedish medical physicists with a professional license believed (90%) that AI would change the practice of medical physics but did not foresee (81%) that AI would pose a risk to their practice and career. The respondents were largely positive to the inclusion of AI in educational programmes. According to self-assessment, the respondents’ knowledge of and workplace preparedness for AI was generally low.ConclusionsFrom the survey and SWOT analysis we conclude that AI will change the medical physics profession and that there are opportunities for the profession associated with the adoption of AI in healthcare. To overcome the weakness of limited AI knowledge, potentially threatening the role of medical physicists, and build upon the strong position in Swedish healthcare, medical physics education and training should include learning objectives on AI.  相似文献   

7.
Medical physics has been an indispensable and strategic stakeholder in the delivery of radiological services to the healthcare system of Ghana. The practice has immensely supported radiation oncology and medical imaging facilities over the years, while the locally established training programme continues to produce human resource to feed these facilities. The training programme has grown to receive students from other African countries in addition to local students. Ghana has been recognised by the International Atomic Energy Agency as Regional Designated Centre for Academic Training of Medical Physicists in Africa. The Ghana Society for Medical Physics collaborates with the School of Nuclear and Allied Sciences of the University of Ghana to ensure that training offered to medical physicists meet international standards, making them clinically qualified. The Society has also worked together with other bodies for the passage of the Health Profession’s Regulatory Bodies Act, giving legal backing to the practice of medical physics and other allied health professions in Ghana. The country has participated in a number of International Atomic Energy Agency’s projects on medical physics and has benefited from its training courses, fellowships and workshops, as well as those of other agencies such as International Organization for Medical Physics. This has placed Ghana’s medical physicists in good position to practice competently and improve healthcare.  相似文献   

8.
ObjectiveOur study aims to assess and track work load, working conditions and professional recognition of radiation oncology medical physicists (ROMPs) in the Asia Pacific Region over time.MethodsA structured questionnaire was mailed in 2008, 2011 and 2014 to senior medical physicists representing 23 countries. The questionnaire covers 7 themes: education and training including certification; staffing; typical tasks; professional organisations; resources; research and teaching; job satisfaction.ResultsAcross all surveys the response rate was >85% with the replies representing practice affecting more than half of the world’s population. The expectation of ROMP qualifications (MSc and between 1 and 3 years of clinical experience) has not changed much over the years.However, compared to 2008, the number of medical physicists in many countries has doubled. Formal professional certification is only available in a small number of countries. The number of experienced ROMPs is small in particular in low and middle income countries. The increase in staff numbers from 2008 to 2014 is matched by a similar increase in the number of treatment units which is accompanied by an increase in treatment complexity. Many ROMPs are required to work overtime and not many find time for research. Resource availability has only improved marginally and ROMPs still feel generally overworked, but professional recognition, while varying widely, appears to be improving slowly.ConclusionWhile number of physicists and complexity of treatment techniques and technologies have increased significantly, ROMP practice remains essentially unchanged over the last 6 years in the Asia Pacific Region.  相似文献   

9.
10.
PurposeTo investigate and report on the diffusion and clinical use of automated radiotherapy planning systems in Italy and to assess the perspectives of the community of Italian medical physicists involved in radiotherapy on the use of these tools.Materials and MethodsA survey of medical physicists (one per Institute) of 175 radiotherapy centers in Italy was conducted between February 21st and April 1st, 2021. The information collected included the institute’s characteristics, plan activity, availability/use of automatic tools and related issues regarding satisfaction, criticisms, expectations, and perceived professional modifications. Responses were analysed, including the impact of a few variables such as the institute type and experience.Results125 of the centers (71%) answered the survey, with regional variability (range: 47%–100%); among these, 49% have a TPS with some automatic option. Clinical use of automatic planning is present in 33% of the centers, with 13% applying it in >50% of their plans.Among the 125 responding centres the most used systems are Pinnacle (16%), Raystation (9%) and Eclipse (4%). The majority of participants consider the use of automated techniques to be beneficial, while only 1% do not see any advantage; 83% of respondents see the possibility of enriching their professional role as a potential benefit, while 3% see potential threats.ConclusionsOur survey shows that 49% of the responding centres have an automatic planning solution although clinically used in only 33% of the cases. Most physicists consider the use of automated techniques to be beneficial and show a prevalently positive attitude.  相似文献   

11.
Medical physics, both as a scientific discipline and clinical service, hugely contributed and still contributes to the advances in the radiotherapy of prostate cancer. The traditional translational role in developing and safely implementing new technology and methods for better optimizing, delivering and monitoring the treatment is rapidly expanding to include new fields such as quantitative morphological and functional imaging and the possibility of individually predicting outcome and toxicity. The pivotal position of medical physicists in treatment personalization probably represents the main challenge of current and next years and needs a gradual change of vision and training, without losing the traditional and fundamental role of physicists to guarantee a high quality of the treatment. The current focus issue is intended to cover traditional and new fields of investigation in prostate cancer radiation therapy with the aim to provide up-to-date reference material to medical physicists daily working to cure prostate cancer patients. The papers presented in this focus issue touch upon present and upcoming challenges that need to be met in order to further advance prostate cancer radiation therapy. We suggest that there is a smart future for medical physicists willing to perform research and innovate, while they continue to provide high-quality clinical service. However, physicists are increasingly expected to actively integrate their implicitly translational, flexible and high-level skills within multi-disciplinary teams including many clinical figures (first of all radiation oncologists) as well as scientists from other disciplines.  相似文献   

12.
BackgroundRadiotherapy is one of the most important and common therapies for cancer patients. Selenium has been shown to be capable of reducing the side effects of radiotherapy because selenoproteins have anti-oxidative functions against reactive oxygen species that are induced by the radiation. They also function in DNA-repair and cytokine control.PurposeWe explored the benefits and risks of selenium supplementation in radiotherapy in our previous review to establish guidelines. In the current study, we expanded the search to cover recent advances in clinical studies of selenium supplementation in radiotherapy.MethodsWe conducted an initial screening in the PubMed using the MeSH terms and keywords “selenium”, “radiation”, “therapy”, and “radiotherapy” using the same methodology applied in our previous review. We identified 121 articles published between January 2013 and December 2019. We then identified eight articles (six studies) on selenium and radiotherapy by excluding 113 articles.ResultsIn selenium supplementation studies, selenium doses of 300−500 μg/day with duration of 10 days to 6 months were used. Selenium supplementation improved the selenium nutritional conditions of the patients and reduced the side effects of radiotherapy. Selenium supplementation did not reduce the effectiveness of radiotherapy, and no toxicities were reported.ConclusionThe results of our previous and current reviews showed that selenium supplementation offers specific benefits for several cancer types treated with radiotherapy. Here, we suggest a new guideline for selenium supplementation in radiotherapy. We recommend determining the selenium status of the patients before radiotherapy, and in cases of deficiency (<100 μg/L serum selenium level), selenium supplement can be beneficial.  相似文献   

13.

Background and purpose

To evaluate the current status of radiotherapy facilities, staffing, and equipment, treatment and patients in Poland for the years 2005–2011 following implementation of the National Cancer Programme.

Methods

A survey was sent to the radiotherapy centres in Poland to collect data on available equipment, staffing, and treatments in the years 2005–2011.

Results

In 2011, 76,000 patients were treated with radiotherapy at 32 centres vs. 63,000 patients at 23 centres in 2005. Number of patients increased by 21%. In 2011, there were 453 radiation oncologists – specialists (1 in 168 patients), 325 medical physicists (1 in 215 patients), and 883 radiotherapy technicians (1 in 86 patients) vs. 320, 188, and 652, respectively, in 2005. The number of linear accelerators increased by 60%, from 70 units in 2005 to 112 in 2011. The current linac/patient ratio in Poland is 1 linac per 678 patients. Waiting times from diagnosis to the start of treatment has decreased.

Conclusion

Compared to 2005, there are more treatment facilities, more and better equipment (linacs), and more cancer care specialists. There are still large differences between the 16 Polish provinces in terms of equipment availability and ease of access to treatment. However, radiotherapy services in Poland have improved dramatically since the year 2005.  相似文献   

14.
PurposeAutomated treatment planning is a new frontier in radiotherapy. The Auto-Planning module of the Pinnacle3 treatment planning system (TPS) was evaluated for liver stereotactic body radiation therapy treatments.MethodsTen cases were included in the study. Six plans were generated for each case by four medical physics experts. The first two planned with Pinnacle TPS, both with manual module (MP) and Auto-Planning one (AP). The other two physicists generated two plans with Monaco TPS (VM). Treatment plan comparisons were then carried on the various dosimetric parameters of target and organs at risk, monitor units, number of segments, plan complexity metrics and human resource planning time. The user dependency of Auto-Planning was also tested and the plans were evaluated by a trained physician.ResultsStatistically significant differences (Anova test) were observed for spinal cord doses, plan average beam irregularity, number of segments, monitor units and human planning time. The Fisher-Hayter test applied to these parameters showed significant statistical differences between AP e MP for spinal cord doses and human planning time; between MP and VM for monitor units, number of segments and plan irregularity; for all those between AP and VM. The two plans created by different planners with AP were similar to each other.ConclusionsThe plans created with Auto-Planning were comparable to the manually generated plans. The time saved in planning enables the planner to commit more resources to more complex cases. The independence of the planner enables to standardize plan quality.  相似文献   

15.
16.
The 4D Treatment Planning Workshop for Particle Therapy, a workshop dedicated to the treatment of moving targets with scanned particle beams, started in 2009 and since then has been organized annually. The mission of the workshop is to create an informal ground for clinical medical physicists, medical physics researchers and medical doctors interested in the development of the 4D technology, protocols and their translation into clinical practice. The 10th and 11th editions of the workshop took place in Sapporo, Japan in 2018 and Krakow, Poland in 2019, respectively.This review report from the Sapporo and Krakow workshops is structured in two parts, according to the workshop programs. The first part comprises clinicians and physicists review of the status of 4D clinical implementations. Corresponding talks were given by speakers from five centers around the world: Maastro Clinic (The Netherlands), University Medical Center Groningen (The Netherlands), MD Anderson Cancer Center (United States), University of Pennsylvania (United States) and The Proton Beam Therapy Center of Hokkaido University Hospital (Japan). The second part is dedicated to novelties in 4D research, i.e. motion modelling, artificial intelligence and new technologies which are currently being investigated in the radiotherapy field.  相似文献   

17.
Stereotactic body radiation therapy (SBRT) has become a standard treatment for non-operable patients with early stage non-small cell lung cancer (NSCLC). In this context, medical physics community has largely helped in the starting and the growth of this technique. In fact, SBRT requires the convergence of many different features for delivering large doses in few fractions to small moving target in an heterogeneous medium. The special issue of last month, was focused on the different physics challenges in lung SBRT. Eleven reviews were presented, covering: imaging for treatment planning and for treatment assessment; dosimetry and planning optimization; treatment delivery possibilities; image guidance during delivery; radiobiology. The current cutting edge role of medical physics was reported. We aimed to give a complete overview of different aspects of lung SBRT that would be of interest to both physicists implementing this technique in their institutions and more experienced physicists that would be inspired to start research projects in areas that still need further developments. We also feel that the role that medical physicists have played in the development and safe implementation of SBRT, particularly in lung region, can be taken as an excellent example to be translated to other areas, not only in Radiation Oncology but also in other health sectors.  相似文献   

18.
The National University of Ireland in Galway established a Master in Science (MSc.) program in medical physics in 2002. The course was designed to be 90 ECTS1 credits and of one calendar year duration. From the outset the MSc. was designed to be part of an overall medical physics training program. MSc. programs are now widely used as part of the training and education of medical physicists. There is however paucity of data on the effectiveness of such courses and the purpose of the study reported here is to provide information on one particular MSc. course in medical physics. This is relevant to medical physicists who are involved in the development and running of medical physics training programs. The study used as methodology the Kirkpatrick levels of professional training. It was conducted through an online survey, both from students who graduated from the course and from students who were in the process of completing the course.The survey proved to be an effective way to determine attributes of modules such as learning outcomes, knowledge imparted, quality of teaching materials and others. The survey proved to be remarkably able to demonstrate interventions in the individual course modules. Although the course was shown to be effective in the imparting of the knowledge required to become a qualified medical physicist several areas for improvement were identified. These are mainly in the areas of increased practical experience and in course delivery.  相似文献   

19.
PurposeIn this article we report on the results of a survey of physics plan review practices conducted by the Cancer Care Ontario Communities of Practice and the variations in practice between and within centers.MethodsThe medical physicists at each center worked together to complete the survey and submit a single response for that center. A 4-point Likert scale, used to report the variation in practice at each center, was quantified into two parameters: “Intra-center variation”, the distribution of responses within the center, and “Variation between centers”, the difference between the center’s response and the provincial mean. These metrics were correlated with center characteristics to identify factors that impacted on variations in practice.ResultsBolus and heterogeneity correction were the only two items checked by all physicists in all centers. In more than half of the centers, image registration and DVH binning are not likely checked by physics. A significant difference in the variation between centers is observed for centers that used a single vendor’s products. Centers that used an official checklist indicated higher levels and a wider range of Intra-center variation. Higher workload did not affect the variation in checking patterns between physicists in the same center.ConclusionsThe effect of a center’s resources on their checking practice suggest that local environment and workflow be accounted for when implementing TG275 guidelines. The observation that standardized checklists did not reduce checking variability point to the importance of following the checklist development guidelines in MPPG4 to avoid ineffective checklists.  相似文献   

20.
目的:研究胸部肿瘤患者放疗中肺功能指标的变化并分析放射性肺炎的影响因素。方法:将2018年3月至2019年3月于我院接受放疗的胸部肿瘤患者100例记为观察对象,按照是否发生放射性肺炎分为肺炎组28例与无肺炎组72例。分别比较两组的临床资料、放疗前后肺功能及放疗参数,并采用多因素Logistic回归分析放射性肺炎的影响因素。结果:放疗后两组第1秒用力呼气容积(FEV_1)、FEV_1/用力肺活量(FVC)、一氧化碳弥散量(DLCO)均高于放疗前,且肺炎组放疗前、后FEV_1、FEV_1/FVC、DLCO均低于无肺炎组(均P0.05)。两组年龄、肿瘤类型、化疗史、美国东部肿瘤合作组(ECOG)评分、放疗靶区比较差异有统计学意义(均P0.05)。肺炎组计划靶区(PTV)、受到一定剂量以上照射的肺体积占全肺总体积的百分数(V_(dose))、平均肺计量(MLD)、正常组织并发症概率(NTCP)、总射野数高于无肺炎组(均P0.05)。经多因素Logistic回归分析可得:胸部肿瘤放疗患者放射性肺炎的独立危险因素有肺癌、化疗史、ECOG评分为2分、放疗靶区以肺野为主、PTV、MLD、V_(dose)、NTCP、总射野数、FEV_1、FEV_1/FVC(均P0.05)。结论:放疗可有效改善胸部肿瘤患者的肺功能,其中肺癌、化疗史、ECOG评分为2分、放疗靶区以肺野为主以及PTV、MLD、V_(dose)、NTCP、总射野数、FEV_1、FEV_1/FVC是放射性肺炎的影响因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号