首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Viral infection is an early stage of its life cycle and represents a promising target for antiviral drug development. Here we designed and characterized three peptide inhibitors of hepatitis C virus (HCV) infection based on the structural features of the membrane-associated p7 polypeptide of HCV. The three peptides exhibited low toxicity and high stability while potently inhibiting initial HCV infection and suppressed established HCV infection at non-cytotoxic concentrations in vitro. The most efficient peptide (designated H2-3), which is derived from the H2 helical region of HCV p7 ion channel, inhibited HCV infection by inactivating both intracellular and extracellular viral particles. The H2-3 peptide inactivated free HCV with an EC50 (50% effective concentration) of 82.11 nm, which is >1000-fold lower than the CC50 (50% cytotoxic concentration) of Huh7.5.1 cells. H2-3 peptide also bound to cell membrane and protected host cells from viral infection. The peptide H2-3 did not alter the normal electrophysiological profile of the p7 ion channel or block viral release from Huh7.5.1 cells. Our work highlights a new anti-viral peptide design strategy based on ion channel, giving the possibility that ion channels are potential resources to generate antiviral peptides.  相似文献   

2.
胞膜窖(caveolae)是细胞质膜内陷形成的凹陷小窝,参与细胞内多种重要的生理活动的调节.近年研究表明,电压门控钾离子通道、钙离子 激活的电压门控钾离子通道和ATP敏感的钾离子通道等多种钾离子通道家族 成员的功能调节与胞膜窖有关.本文概括介绍了胞膜窖和钾离子通道调节关系的研究进展.  相似文献   

3.
病毒离子通道——一种新的抗病毒靶   总被引:1,自引:0,他引:1  
病毒离子通道蛋白是一种在病毒生命周期中起多种作用的小跨膜蛋白,可在宿主细胞膜上形成选择性离子通道,一些离子通道阻滞剂能阻滞这些离子通道,从而抑制这些病毒的繁殖,因而病毒离子通道蛋白可作为新的抗病毒作用靶.  相似文献   

4.
Water-filled hydrophobic cavities in channel proteins serve as gateways for transfer of ions across membranes, but their properties are largely unknown. We determined water distributions along the conduction pores in two tetrameric channels embedded in lipid bilayers using neutron diffraction: potassium channel KcsA and the transmembrane domain of M2 protein of influenza A virus. For the KcsA channel in the closed state, the distribution of water is peaked in the middle of the membrane, showing water in the central cavity adjacent to the selectivity filter. This water is displaced by the channel blocker tetrabutyl-ammonium. The amount of water associated with the channel was quantified, using neutron diffraction and solid state NMR. In contrast, the M2 proton channel shows a V-shaped water profile across the membrane, with a narrow constriction at the center, like the hourglass shape of its internal surface. These two types of water distribution are therefore very different in their connectivity to the bulk water. The water and protein profiles determined here provide important evidence concerning conformation and hydration of channels in membranes and the potential role of pore hydration in channel gating.  相似文献   

5.
钾离子通道是分布最为广泛、种类繁多的一类离子通道,因其生理功能的多样性,已成为许多疾病的药物作用靶点。近年来,许 多化学结构不同的药物均因钾离子通道阻滞引起的严重心肌毒性而被撤出市场,使得小分子药物的钾通道抑制活性筛选面临重大挑战。 介绍检测钾离子通道的小分子荧光探针的研究进展,并总结小分子荧光探针的作用机制,为今后小分子荧光探针的设计提供思路,使得 小分子荧光探针可以广泛应用于候选药物的高通量筛选、钾离子通道的活体成像与检测。  相似文献   

6.
M-current-mediating KCNQ (Kv7) channels play an important role in regulating the excitability of neuronal cells, as highlighted by mutations in Kcnq2 and Kcnq3 that underlie certain forms of epilepsy. In addition to their expression in brain, KCNQ2 and -3 are also found in the somatosensory system. We have now detected both KCNQ2 and KCNQ3 in a subset of dorsal root ganglia neurons that correspond to D-hair Aδ-fibers and demonstrate KCNQ3 expression in peripheral nerve endings of cutaneous D-hair follicles. Electrophysiological recordings from single D-hair afferents from Kcnq3−/− mice showed increased firing frequencies in response to mechanical ramp-and-hold stimuli. This effect was particularly pronounced at slow indentation velocities. Additional reduction of KCNQ2 expression further increased D-hair sensitivity. Together with previous work on the specific role of KCNQ4 in rapidly adapting skin mechanoreceptors, our results show that different KCNQ isoforms are specifically expressed in particular subsets of mechanosensory neurons and modulate their sensitivity directly in sensory nerve endings.  相似文献   

7.
ATP-sensitive potassium (KATP) channels are heteromultimeric complexes of an inwardly rectifying Kir channel (Kir6.x) and sulfonylurea receptors. Their regulation by intracellular ATP and ADP generates electrical signals in response to changes in cellular metabolism. We investigated channel elements that control the kinetics of ATP-dependent regulation of KATP (Kir6.2 + SUR1) channels using rapid concentration jumps. WT Kir6.2 channels re-open after rapid washout of ATP with a time constant of ∼60 ms. Extending similar kinetic measurements to numerous mutants revealed fairly modest effects on gating kinetics despite significant changes in ATP sensitivity and open probability. However, we identified a pair of highly conserved neighboring amino acids (Trp-68 and Lys-170) that control the rate of channel opening and inhibition in response to ATP. Paradoxically, mutations of Trp-68 or Lys-170 markedly slow the kinetics of channel opening (500 and 700 ms for W68L and K170N, respectively), while increasing channel open probability. Examining the functional effects of these residues using φ value analysis revealed a steep negative slope. This finding implies that these residues play a role in lowering the transition state energy barrier between open and closed channel states. Using unnatural amino acid incorporation, we demonstrate the requirement for a planar amino acid at Kir6.2 position 68 for normal channel gating, which is potentially necessary to localize the ϵ-amine of Lys-170 in the phosphatidylinositol 4,5-bisphosphate-binding site. Overall, our findings identify a discrete pair of highly conserved residues with an essential role for controlling gating kinetics of Kir channels.  相似文献   

8.
以烟草和AM真菌菌株摩西球囊霉(Glomous mosseae,G.m)为材料,研究了不同外界K+浓度条件下AM真菌对烟草生长、K+含量以及根中K+-通道基因NtKT1、NtKT2和转运体基因NtHAK1、NtHA1相对表达量的影响。结果表明,在低钾和常钾条件下,接种G.m均可提高烟草的株高,增加根系长度,提高烟草根部和叶片中的K+含量,在低钾条件下接种G.m使烟草根部和叶片的K+含量分别提高了50.5%和24.5%。在常钾条件下,接种G.m 50 d后烟草根系中NtKT1和NtKT2的相对表达量显著提高;而低钾条件下,钾转运体基因NtHAK和NtHA1的相对表达量显著升高。由此推测,AM真菌能够调控烟草根中K+-通道基因和钾转运体基因的表达进而促进其对K+的吸收。  相似文献   

9.
β-Adrenergic Modulation of Glial Inwardly Rectifying Potassium Channels   总被引:1,自引:0,他引:1  
Abstract: Cultured spinal cord astrocytes (2–13 days in vitro) express several different potassium current types, including delayed rectifier, transient A-type, and inward rectifier (Kir) K+ currents. Of these, Kir is believed to be of critical importance in the modulation of extracellular [K+] in the CNS. Using the whole-cell patch-clamp technique, we analyzed modulation of Kir currents by β-adrenergic receptor activation. The selective β-adrenergic agonist isoproterenol (1–100 µM) and epinephrine (1–100 µM) each reduced peak Kir current amplitudes to 52.7 ± 12.5 and 63.6 ± 7.0%, respectively, at 100 µM. Forskolin (KD of ~25 µM), an activator of adenylate cyclase (AC), and dibutyryl-cyclic AMP (1 mM), a membrane-permeable analogue of cyclic AMP (cAMP), were each used to increase [cAMP]i, the product of AC, and resulted in similar reductions of Kir currents. By contrast, 1,9-dideoxyforskolin (1–50 µM), a forskolin analogue that does not activate AC, did not affect Kir currents, indicating that AC activity is a required element for Kir modulation. Three inhibitors of PKA—Rp-adenosine 3′,5′-cyclic monophosphothioate, H-7, and adenosine 3′,5′-cyclic monophosphate-dependent protein kinase inhibitor—failed to inhibit Kir current reduction by β-adrenergic agonists. These results indicate that β-adrenergic receptor ligands can modulate Kir currents and suggest that this modulation involves activation of AC but not protein kinase A. Such modulation may provide a mechanism by which neurons can modulate glial Kir currents and thereby may affect glial K+“spatial buffering” in the CNS.  相似文献   

10.
In the present study, the whole-cell patch-clamp technique was applied to follow the inhibitory effect of genistein — a tyrosine kinase inhibitor and a natural anticancer agent—on the activity of voltage-gated potassium channels Kv1.3 expressed in human T lymphocytes (TL). Obtained data provide evidence that genistein application in the concentration range of 1–80 μM reversibly decreased the whole-cell potassium currents in TL in a concentration-dependent manner to about 0.23 of the control value. The half-blocking concentration range of genistein was from 10 to 40 μM. The current inhibition was correlated in time with a significant decrease of the current activation rate. The steady-state activation of the currents was unchanged upon application of genistein, as was the inactivation rate. The inhibitory effect of genistein on the current amplitude and activation kinetics was voltage-independent. The current inhibition was not changed significantly in the presence of 1 mM of sodium orthovanadate, a tyrosine phosphatase inhibitor. Application of daidzein, an inactive genistein analogue, did not affect significantly either the current amplitudes or the activation kinetics. Possible mechanisms of the observed phenomena and their significance for genistein-induced inhibition of cancer cell proliferation are discussed.  相似文献   

11.
Ion channels control the electrical properties of neurons and other excitable cell types by selectively allowing ions to flow through the plasma membrane1. To regulate neuronal excitability, the biophysical properties of ion channels are modified by signaling proteins and molecules, which often bind to the channels themselves to form a heteromeric channel complex2,3. Traditional assays examining the interaction between channels and regulatory proteins require exogenous labels that can potentially alter the protein''s behavior and decrease the physiological relevance of the target, while providing little information on the time course of interactions in living cells. Optical biosensors, such as the X-BODY Biosciences BIND Scanner system, use a novel label-free technology, resonance wavelength grating (RWG) optical biosensors, to detect changes in resonant reflected light near the biosensor. This assay allows the detection of the relative change in mass within the bottom portion of living cells adherent to the biosensor surface resulting from ligand induced changes in cell adhesion and spreading, toxicity, proliferation, and changes in protein-protein interactions near the plasma membrane. RWG optical biosensors have been used to detect changes in mass near the plasma membrane of cells following activation of G protein-coupled receptors (GPCRs), receptor tyrosine kinases, and other cell surface receptors. Ligand-induced changes in ion channel-protein interactions can also be studied using this assay. In this paper, we will describe the experimental procedure used to detect the modulation of Slack-B sodium-activated potassium (KNa) channels by GPCRs.  相似文献   

12.
Mutations of the pore-region residue T442 in Shaker channels result in large effects on channel kinetics. We studied mutations at this position in the backgrounds of NH2-terminal–truncated Shaker H4 and a Shaker -NGK2 chimeric channel having high conductance (Lopez, G.A., Y.N. Jan, and L.Y. Jan. 1994. Nature (Lond.). 367: 179–182). While mutations of T442 to C, D, H, V, or Y resulted in undetectable expression in Xenopus oocytes, S and G mutants yielded functional channels having deactivation time constants and channel open times two to three orders of magnitude longer than those of the parental channel. Activation time courses at depolarized potentials were unaffected by the mutations, as were first-latency distributions in the T442S chimeric channel. The mutant channels show two subconductance levels, 37 and 70% of full conductance. From single-channel analysis, we concluded that channels always pass through the larger subconductance state on the way to and from the open state. The smaller subconductance state is traversed in ∼40% of activation time courses. These states apparently represent kinetic intermediates in channel gating having voltage-dependent transitions with apparent charge movements of ∼1.6 e0. The fully open T442S chimeric channel has the conductance sequence Rb+ > NH4 + > K+. The opposite conductance sequence, K+ > NH4 + > Rb+, is observed in each of the subconductance states, with the smaller subconductance state discriminating most strongly against Rb+.  相似文献   

13.
In this and the following paper we have examined the kinetic and steady-state properties of macroscopic mslo Ca-activated K+ currents in order to interpret these currents in terms of the gating behavior of the mslo channel. To do so, however, it was necessary to first find conditions by which we could separate the effects that changes in Ca2+ concentration or membrane voltage have on channel permeation from the effects these stimuli have on channel gating. In this study we investigate three phenomena which are unrelated to gating but are manifest in macroscopic current records: a saturation of single channel current at high voltage, a rapid voltage-dependent Ca2+ block, and a slow voltage-dependent Ba2+ block. Where possible methods are described by which these phenomena can be separated from the effects that changes in Ca2+ concentration and membrane voltage have on channel gating. Where this is not possible, some assessment of the impact these effects have on gating parameters determined from macroscopic current measurements is provided. We have also found that without considering the effects of Ca2+ and voltage on channel permeation and block, macroscopic current measurements suggest that mslo channels do not reach the same maximum open probability at all Ca2+ concentrations. Taking into account permeation and blocking effects, however, we find that this is not the case. The maximum open probability of the mslo channel is the same or very similar over a Ca2+ concentration range spanning three orders of magnitude indicating that over this range the internal Ca2+ concentration does not limit the ability of the channel to be activated by voltage.  相似文献   

14.
Calmodulin (CaM), a Ca2+-sensing protein, is constitutively bound to IQ domains of the C termini of human Kv7 (hKv7, KCNQ) channels to mediate Ca2+-dependent reduction of Kv7 currents. However, the mechanism remains unclear. We report that CaM binds to two isoforms of the hKv7.4 channel in a Ca2+-independent manner but that only the long isoform (hKv7.4a) is regulated by Ca2+/CaM. Ca2+/CaM mediate reduction of the hKv7.4a channel by decreasing the channel open probability and altering activation kinetics. We took advantage of a known missense mutation (G321S) that has been linked to progressive hearing loss to further examine the inhibitory effects of Ca2+/CaM on the Kv7.4 channel. Using multidisciplinary techniques, we demonstrate that the G321S mutation may destabilize CaM binding, leading to a decrease in the inhibitory effects of Ca2+ on the channels. Our study utilizes an expression system to dissect the biophysical properties of the WT and mutant Kv7.4 channels. This report provides mechanistic insights into the critical roles of Ca2+/CaM regulation of the Kv7.4 channel under physiological and pathological conditions.  相似文献   

15.
王曦  张磊  周士胜  邹伟 《微生物学报》2008,24(3):521-524
介绍了一种如何合理的利用蛋白质免疫沉淀和蛋白质免疫印迹相结合的方法检测大鼠心肌细胞钾离子通道蛋白Kv1.2和Kv1.5的表达与活化水平。实验结果表明, 与单独利用免疫印迹的方法相比较, 本实验是对钾离子通道蛋白及其它亚家族的钾通道蛋白磷酸化表达水平检测方法的一种优化, 从而获得一套可行、简单、合理的实验方案, 同时也提高了检测的准确性, 敏感性及特异性。  相似文献   

16.
介绍了一种如何合理的利用蛋白质免疫沉淀和蛋白质免疫印迹相结合的方法检测大鼠心肌细胞钾离子通道蛋白Kv1.2和Kv1.5的表达与活化水平.实验结果表明,与单独利用免疫印迹的方法相比较,本实验是对钾离子通道蛋白及其它亚家族的钾通道蛋白磷酸化表达水平检测方法的一种优化,从而获得一套可行、简单、合理的实验方案,同时也提高了检测的准确性,敏感性及特异性.  相似文献   

17.
酸敏感离子通道(acid-Sensing ion channels,ASlCs)是一类由细胞外质子(H )激活的配体门控阳离子通道.迄今为止,人们在哺乳动物体内已经发现了6种ASICs亚基蛋白,它们分布在多种组织器官中.越来越多的研究表明:ASICs参与了机体的生理、病理过程,如:学习、记忆、痛觉、脑中风和肿瘤.在过去的10年中,人们发现多种内源性或外源性分子可以调控ASICs通道活性.由于这些细胞外调控分子与多种生理和病理功能有关,因此研究细胞外调控分子对ASICs的调控及其分子机制,可以帮助我们更多地了解ASICs功能以及结构信息,也为人们设计ASICs靶点特异性药物提供了理论依据.文章将系统地介绍细胞外调控分子对ASICs的功能调控及其作用机制,特别是该研究领域的最新进展.  相似文献   

18.
Human rotavirus is the leading cause of severe gastroenteritis in infants and children under the age of 5 years in both developed and developing countries. Human lactadherin, a milk fat globule membrane glycoprotein, inhibits human rotavirus infection in vitro, whereas bovine lactadherin is not active. Moreover, it protects breastfed infants against symptomatic rotavirus infections. To explore the potential antiviral activity of lactadherin sourced by equines, we undertook a proteomic analysis of milk fat globule membrane proteins from donkey milk and elucidated its amino acid sequence. Alignment of the human, bovine, and donkey lactadherin sequences revealed the presence of an Asp-Gly-Glu (DGE) α2β1 integrin-binding motif in the N-terminal domain of donkey sequence only. Because integrin α2β1 plays a critical role during early steps of rotavirus host cell adhesion, we tested a minilibrary of donkey lactadherin-derived peptides containing DGE sequence for anti-rotavirus activity. A 20-amino acid peptide containing both DGE and RGD motifs (named pDGE-RGD) showed the greatest activity, and its mechanism of antiviral action was characterized; pDGE-RGD binds to integrin α2β1 by means of the DGE motif and inhibits rotavirus attachment to the cell surface. These findings suggest the potential anti-rotavirus activity of equine lactadherin and support the feasibility of developing an anti-rotavirus peptide that acts by hindering virus-receptor binding.  相似文献   

19.
Modulation of acetylcholine (ACh) release from superfused hippocampal slices was examined when the release of ACh was stimulated by exposure of slices to elevated K+ concentration. Evoked release was not sensitive to inhibition by 0.1 microM tetrodotoxin, but it could be inhibited in a dose-dependent manner by a muscarinic agonist (10-100 nM oxotremorine) and a purinergic agonist (10-100 nM 2-chloroadenosine). The alpha-dendrotoxin (100 nM), which selectively blocks voltage-gated inactivating K+ channels in nerve endings, did not affect the release of ACh under resting or depolarized conditions. However, alpha-dendrotoxin reduced the 2-chloroadenosine-induced inhibition of release, but did not alter the oxotremorine-induced inhibition. These results suggest that an alpha-dendrotoxin-sensitive K+ channel may be activated as an obligatory step in the modulation of ACh release by presynaptic purinergic receptor activation, but not in the modulation by presynaptic muscarinic receptors.  相似文献   

20.
Slo2 potassium channels have a very low open probability under normal physiological conditions, but are readily activated in response to an elevated [Na+]i (e.g. during ischemia). An intracellular Na+ coordination motif (DX(R/K)XXH) was previously identified in Kir3.2, Kir3.4, Kir5.1, and Slo2.2 channel subunits. Based loosely on this sequence, we identified five potential Na+ coordination motifs in the C terminus of the Slo2.1 subunit. The Asp residue in each sequence was substituted with Arg, and single mutant channels were heterologously expressed in Xenopus oocytes. The Na+ sensitivity of each of the mutant channels was assessed by voltage clamp of oocytes using micropipettes filled with 2 m NaCl. Wild-type channels and four of the mutant Slo2.1 channels were rapidly activated by leakage of NaCl solution into the cytoplasm. D757R Slo2.1 channels were not activated by NaCl, but were activated by the fenamate niflumic acid, confirming their functional expression. In whole cell voltage clamp recordings of HEK293 cells, wild-type but not D757R Slo2.1 channels were activated by a [NaCl]i of 70 mm. Thus, a single Asp residue can account for the sensitivity of Slo2.1 channels to intracellular Na+. In excised inside-out macropatches of HEK293 cells, activation of wild-type Slo2.1 currents by 3 mm niflumic acid was 14-fold greater than activation achieved by increasing [NaCl]i from 3 to 100 mm. Thus, relative to fenamates, intracellular Na+ is a poor activator of Slo2.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号