首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dexras1, a brain-enriched member of the Ras subfamily of GTPases, as a novel physiologic nitric oxide (NO) effector, anchor neuronal nitric oxide synthase (nNOS) that increased after spinal cord injury (SCI), to specific targets to enhance NO signaling, and is strongly and rapidly induced during treatment with dexamethasone. It is unknown how the central nervous system (CNS) trauma affects the expression of Dexras1. Here we used spinal cord transection (SCT) model to detect expression of Dexras1 at mRNA and protein level in spinal cord homogenates by real-time PCR and Western blot analysis. The results showed that Dexras1 mRNA upregulated at 3 day, 5 day, and 7 day significantly (P < 0.05) that was consistent with the protein level except at 7 day. Immunofluorescence revealed that both neurons and glial cells showed Dexras1 immunoreactivivty (IR) around SCT site, but the proportion is different. Importantly, injury-induced expression of Dexras1 was co-labeled by caspase-3 (apoptotic marker) and Tau-1 (marker for pathological oligodendrocyte). Furthermore, colocalization of Dexras1, carboxy-terminal PSD95/DLG/ZO-1 (PDZ) ligand of nNOS (CAPON) and nNOS was observed in neurons and glial cells, supporting the existence of ternary complexes in this model. Thus, the results that the transient high expression of Dexras1 which localized in apoptotic neurons and pathological oligodendrocytes might provide new insight into the secondary response after SCT. Xin Li, Chun Cheng, and Min Fei contributed equally to this work.  相似文献   

2.
Stathmin is a ubiquitous soluble protein (Mr approximately 19,000; pI approximately 6.2-5.5) whose phosphorylation is associated with the intracellular mechanisms involved in the regulations of cell differentiation and functions by extracellular effectors. It is present in various tissues and cell types and has several nonphosphorylated and increasingly phosphorylated forms, and it is particularly abundant in brain. Very high concentrations of stathmin were also detected in mouse embryo striatal neurons grown in primary culture, whereas stathmin was barely detectable in astrocytes from the same source. Stathmin appeared in neurons as a major substrate for protein phosphorylation and, in particular, for the cyclic AMP (cAMP)-dependent protein kinase, because its phosphorylation was stimulated by cAMP in cell-free preparations and in intact cells by forskolin, a potent activator of adenylate cyclase. During brain ontogenesis, stathmin was first detected at embryonic day 12; its concentration increased until birth and then decreased from postnatal day 10 to adulthood. In parallel, its molecular forms shifted from the least phosphorylated to the more phosphorylated ones. This result may reflect the evolution of the activity of stathmin during development and the subsequent maturation of the brain. In conclusion, our results substantiate the likely role of stathmin as an intracellular relay of extracellular regulations, as they point out its specific importance related to neuronal functions and brain differentiation.  相似文献   

3.
We have cloned and characterized a novel gene from both human and mouse that encodes a new member of the immunoglobulin superfamily. The gene is preferentially expressed in both brain and testis, and hence, termed BT-IgSF (brain- and testis-specific immunoglobulin superfamily). The predicted protein consists of V-type and C2-type immunoglobulin domains as well as a hydrophobic signal sequence, a single transmembrane region, and a cytoplasmic domain. Human BT-IgSF protein (431 amino acids) is 88% identical to the mouse protein (428 amino acids) and both show significant homology to coxsackie and adenovirus receptor (CAR) and endothelial cell-selective adhesion molecule (ESAM). We examined the expression of BT-IgSF with various cultured cells and found that the gene was expressed in both neurons and glial cells in vitro. Furthermore, the expression was preferentially detected in pyramidal cell layers of the dentate gyrus and hippocampus and in commissure fibers of the corpus callosum, in brain tissue sections examined. These findings suggest that BT-IgSF plays a role in the development or function of the central nervous system.  相似文献   

4.
5.
The morphology of dissociated single cerebellar Purkinje cells obtained from wild-type P1 CD1 mice was assessed in the absence and in the presence of glia. A dedicated noninvasive technique based on optical microscopy was developed. Image processing algorithms were implemented to extract metrical features characterizing cell structure and dendritic arborization. The morphological features were analyzed in order to identify quantitative differences in Purkinje cell morphology due to interactions with astrocytes.  相似文献   

6.
Abstract: Expression of different α subunits of G proteins was studied in hypothalamic primary cultures grown in defined medium and enriched in either neurons or glial (astrocyte) cells. In parallel, the cellular distribution of Gi, Gs, and GoA subunits was visualized by in situ hybridization. Immunoblots using specific antisera and hybridization of mRNAs with specific oligonucleotide probes allowed us to characterize Gs, Gi2, and GoA as major neuronal G proteins in the hypothalamus, whereas the glial cells expressed mostly Gs, Gi2, and GoB forms. Gi was found to be expressed very early and transiently in the culture, whereas expression of Gs and GoA increased regularly with time.  相似文献   

7.
8.
The neuroprotective effects of flavonoids will ultimately depend on their interaction with both neuronal and glial cells. In this study, we show that the potential neurotoxic effects of quercetin are modified by glial cell interactions. Specifically, quercetin is rapidly conjugated to glutathione within glial cells to yield 2′-glutathionyl-quercetin, which is exported from cells but has significantly reduced neurotoxicity. In addition, quercetin underwent intracellular O-methylation to yield 3′-O-methyl-quercetin and 4′-O-methyl-quercetin, although these were not exported from glia at the same rate as the glutathionyl adduct. The neurotoxic potential of both quercetin and 2′-glutathionyl-quercetin paralleled their ability to modulate the pro-survival Akt/PKB and extracellular signal-regulated kinase (ERK) signalling pathways. These data were supported by co-culture investigation, where the neurotoxic effects of quercetin were significantly reduced when they were cultured alongside glial cells. We propose that glial cells act to protect neurons against the neurotoxic effects of quercetin and that 2′-glutathionyl-quercetin represents a novel quercetin metabolite.  相似文献   

9.
The cytosol fraction from a thoroughly irrigated canine cerebrum was subjected to immunoaffinity chromatography using a monoclonal antibody against porcine leukocyte 12-lipoxygenase. Arachidonate 12-lipoxygenase eluted from the column with some retardation. The enzyme, with a specific activity of 9 nmol/min/mg of protein, converted arachidonic acid to 12(S)-hydroperoxy-5,8,10,14-eicosatetraenoic acid. The enzyme was active not only with arachidonic acid, but also with linoleic and alpha-linolenic acids. In contrast, 12-lipoxygenase of canine platelets was almost inactive with linoleic and alpha-linolenic acids, and the platelet enzyme was also distinguished from the cerebral enzyme in terms of reactivity with the anti-12-lipoxygenase antibody. 12-Lipoxygenase activity was also detected in the cytosol fractions of other parts of canine brain: basal ganglia, hippocampus, cerebellum, olfactory bulb, and medulla oblongata.  相似文献   

10.
Gene PRSS3 on chromosome 9 of the human genome encodes, due to alternative splicing, both mesotrypsinogen and trypsinogen 4. Mesotrypsinogen has long been known as a minor component of trypsinogens expressed in human pancreas, while the mRNA for trypsinogen 4 has recently been identified in brain and other human tissues. We measured the amount of trypsinogen 4 mRNA and the quantity of the protein as well in 17 selected areas of the human brain. Our data suggest that human trypsinogen 4 is widely but unevenly distributed in the human brain. By immunohistochemistry, here we show that this protease is localized in neurons and glial cells, predominantly in astrocytes. In addition to cellular immunoreactivity, human trypsinogen 4 immunopositive dots were detected in the extracellular matrix, supporting the view that human trypsinogen 4 might be released from the cells under special conditions. Júlia Tóth and Erika Siklódi contributed equally to this work.  相似文献   

11.
Transforming growth factor-betas (TGF-betas) are among the most widespread and versatile cytokines. Here, we first provide a brief overview of their molecular biology, biochemistry, and signaling. We then review distribution and functions of the three mammalian TGF-beta isoforms, beta1, beta2, and beta3, and their receptors in the developing and adult nervous system. Roles of TGF-betas in the regulation of radial glia, astroglia, oligodendroglia, and microglia are addressed. Finally, we review the current state of knowledge concerning the roles of TGF-betas in controlling neuronal performances, including the regulation of proliferation of neuronal precursors, survival/death decisions, and neuronal differentiation.  相似文献   

12.
Wu J  Luo S  Jiang H  Li H 《FEBS letters》2005,579(2):421-426
With two tandem repeated cysteine- and histidine-rich domains (designated as CHORD), CHORD-containing proteins (CHPs) are a novel family of highly conserved proteins that play important roles in plant disease resistance and animal development. Through interacting with suppressor of the G2 allele of Skp1 (SGT1) and Hsp90, plant CHORD-containing protein RAR1 (required for Mla resistance 1) plays a critical role in disease resistance mediated by multiple R genes. Yet, the physiological function of vertebrate CHORD-containing protein-1 (Chp-1) has been poorly investigated. In this study, we provide the first biochemical evidence demonstrating that mammalian Chp-1 is a novel Hsp90-interacting protein. Mammalian Chp-1 contains two CHORD domains (I and II) and one CS domain (a domain shared by CHORD-containing proteins and SGT1). With sequence and structural similarity to Hsp90 co-chaperones p23 and SGT1, Chp-1 binds to the ATPase domain of Hsp90, but the biochemical property of the interaction is unique. The Chp-1-Hsp90 interaction is independent of ATP and ATPase-coupled conformational change of Hsp90, a feature that distinguishes Chp-1 from p23. Furthermore, it appears that multiple domains of Chp-1 are required for stable Chp-1-Hsp90 interaction. Unlike SGT1 whose CS domain is sufficient for Hsp90 binding, the CS domain of Chp-1 is essential but not sufficient for Hsp90 binding. While the CHORD-I domain of Chp-1 is dispensable for Hsp90 binding, the CHORD-II domain and the linker region are essential. Interestingly, the CHORD-I domain of plant RAR1 protein is solely responsible for Hsp90 binding. The unique Chp-1-Hsp90 interaction may be indicative of a distinct biological activity of Chp-1 and functional diversification of CHORD-containing proteins during evolution.  相似文献   

13.
Dissociated cell cultures derived from whole brains of foetal rats (17 days of gestation) were maintained for periods of up to 21 days in vitro for the purpose of studying the transmitter-releasing properties of the dopaminergic neuronal cells and glial cells. In the neuron-enriched cultures, after 3 days in vitro, [3H]dopamine was released in response to depolarizing stimuli. Both the potassium and veratrine-evoked release of dopamine was Ca2+ dependent. Veratrine-evoked release was reduced in the presence of the calcium channel blocker verapamil and was tetrodotoxin sensitive. Glial cultures, after 7 days in vitro, did not respond to any depolarizing stimuli, although they displayed a significant ability to take up [3H]dopamine. Comparison between static incubations and perfused cultures showed no difference in the patterns of release resulting from veratrine stimulation. Tyrosine hydroxylase activity increased progressively in neuron-enriched cultures but was not detectable in glial cultures. These results show that neuron-enriched cultures respond to depolarizing stimuli in a manner similar to excised adult basal ganglia tissue, with the appearance of functional ionic channels after 3 days in vitro.  相似文献   

14.
    
Membranes prepared from either neuronal or glial cultures contain alpha 2-adrenergic receptors as determined by the characteristics of [3H]yohimbine [( 3H]YOH) binding. The binding was rapid, reversible, saturable, dependent on the protein concentration used, and reached equilibrium by 5 min in membranes from both neuronal and glial cultures. Scatchard analyses of saturation isotherms revealed similar KD values of 13.7 +/- 1.35 nM (n = 10) for neuronal cultures and 18.42 +/- 2.34 nM (n = 10) for glial cultures. Glial cultures contained many more binding sites for [3H]YOH than neuronal cultures, having a Bmax of 1.6 +/- 0.33 pmol/mg protein (n = 10) compared with 0.143 +/- 0.018 pmol/mg protein (n = 10) in neurons. Drugs selective for alpha 2-adrenergic receptors were the most effective displacers of [3H]YOH binding in both neuronal and glial cultures, i.e., the alpha 2-adrenergic antagonists rauwolscine and yohimbine were better displacers than the other catecholamine antagonists prazosin, corynanthine, or propranolol. The agonists showed the same pattern with the alpha 2-selective drugs clonidine and naphazoline being the most effective competitors for the [3H]YOH site. GTP and its nonhydrolyzable analog. 5'-guanylyl-imidodiphosphate, were able to lower the affinity of the alpha 2-receptors for agonists but not antagonists in membranes from both neuronal and glial cultures, suggesting that the receptors are linked to a G protein in both cell types. The presence of alpha 2-adrenergic receptors in neuronal cultures was also substantiated by light microscopic autoradiography of [3H]YOH binding. In summary, we have demonstrated that both neuronal and glial cultures contain alpha 2-adrenoceptors.  相似文献   

15.
Stem cells from the adult hair follicle bulge can differentiate into neurons and glia, which is advantageous for the development of an autologous cell-based therapy for neurological diseases. Consequently, bulge stem cells from plucked hair may increase opportunities for personalized neuroregenerative therapy. Hairs were plucked from the scalps of healthy donors, and the bulges were cultured without prior tissue treatment. Shortly after outgrowth from the bulge, cellular protein expression was established immunohistochemically. The doubling time was calculated upon expansion, and the viability of expanded, cryopreserved cells was assessed after shear stress. The neuroglial differentiation potential was assessed from cryopreserved cells. Shortly after outgrowth, the cells were immunopositive for nestin, SLUG, AP-2α and SOX9, and negative for SOX10. Each bulge yielded approximately 1 × 104 cells after three passages. Doubling time was 3.3 (±1.5) days. Cellular viability did not differ significantly from control cells after shear stress. The cells expressed class III β-tubulin (TUBB3) and synapsin-1 after 3 weeks of neuronal differentiation. Glial differentiation yielded KROX20- and MPZ-immunopositive cells after 2 weeks. We demonstrated that human hair follicle bulge-derived stem cells can be cultivated easily, expanded efficiently and kept frozen until needed. After cryopreservation, the cells were viable and displayed both neuronal and glial differentiation potential.  相似文献   

16.
Rnd proteins comprise a branch of the Rho family of small GTP-binding proteins, which have been implicated in rearrangements of the actin cytoskeleton and microtubule dynamics. Particularly in the nervous system, Rnd family proteins regulate neurite formation, dendrite development and axonal branching. A secreted form of the co-chaperone Stress-Inducible Protein 1 (STI1) has been described as a prion protein partner that is involved in several processes of the nervous system, such as neurite outgrowth, neuroprotection, astrocyte development, and the self-renewal of neural progenitor cells. We show that cytoplasmic STI1 directly interacts with the GTPase Rnd1. This interaction is specific for the Rnd1 member of the Rnd family. In the COS collapse assay, overexpression of STI1 prevents Rnd1–plexin-A1-mediated cytoskeleton retraction. In PC-12 cells, overexpression of STI1 enhances neurite outgrowth in cellular processes initially established by Rnd1. Therefore, we propose that STI1 participates in Rnd1-induced signal transduction pathways that are involved in the dynamics of the actin cytoskeleton.  相似文献   

17.
  总被引:1,自引:1,他引:1  
The cellular distribution of S100 subunits in human brain and peripheral nerves was studied by means of an immunohistochemical technique using antibodies specific to the alpha subunit or the beta subunit of S100 protein. The results indicate that the distribution of the alpha subunit and the beta subunit is different among cell types in the nervous tissue, and that neurons in the brain and peripheral nerves contain only the alpha subunit, or S100a0 protein. The subunit distribution also appears to be different at an intracellular level, where the immunoreaction products for the alpha subunit show granular arrangement whereas those for the beta subunit are found diffusely in the cytoplasm.  相似文献   

18.
HspBP1 is a co-chaperone that binds to and regulates the chaperone Hsp70 (Hsp70 is used to refer to HSPA1A and HSPA1B). Hsp70 is known to be elevated in breast tumor tissue, therefore the purpose of these studies was to quantify the expression of HspBP1 in primary breast tumors and in serum of these patients with a follow-up analysis after 6 to 7 years. Levels of HspBP1, Hsp70, and anti-HspBP1 antibodies in sera of breast cancer patients and healthy individuals were measured by enzyme-linked immunosorbent assay. Expression of HspBP1 was quantified from biopsies of tumor and normal breast tissue by Western blot analysis. The data obtained were analyzed for association with tumor aggressiveness markers and with patient outcome. The levels of HspBP1 and Hsp70 were significantly higher in sera of patients compared to sera of healthy individuals. HspBP1 antibodies did not differ significantly between groups. HspBP1 levels were significantly higher in tumor (14.46 ng/μg protein, n = 51) compared to normal adjacent tissue (3.17 ng/μg protein, n = 41, p < 0.001). Expression of HspBP1 was significantly lower in patients with lymph node metastasis and positive for estrogen receptors. HspBP1 levels were also significantly lower in patients with a higher incidence of metastasis and death following a 6 to 7-year follow-up. The HspBP1/Hsp70 molar ratio was not associated with the prognostic markers analyzed. Our results indicate that low HspBP1 expression could be a candidate tumor aggressiveness marker. This work was supported by FAPERGS, CNPq, and the National Institute of General Medical Sciences grant number GM072628-02 (V.G.) The expression of HspBP1 (an Hsp70 co-chaperone) was analyzed in tumor samples and sera from breast cancer patients. HspBP1 is over expressed in these tumors and a seven year follow-up analysis found an association with a poor prognosis. Chaperones have been shown to play important roles in tumor biology and immunology; therefore, we believe the data in this study will serve as a basis for the formulation of a new hypothesis on chaperone-co-chaperone interactions and their role in tumor growth.  相似文献   

19.
Hsp90 is critical for the regulation and activation of numerous client proteins critical for diverse functions such as cell growth, differentiation, and reproduction. Cytosolic Hsp90 function is dependent on a battery of co-chaperone proteins that regulate the ATPase activity of Hsp90 function or direct Hsp90 to interact with specific client proteins. Little is known about how Hsp90 complexes vary between different organisms and how this affects the scope of clients that are activated by Hsp90. This study determined whether ten distinct Hsp90 co-chaperones were encoded by genes in 19 disparate eukaryotic organisms. Surprisingly, none of the co-chaperones were present in all organisms. The co-chaperone Hop/Sti1 was most widely dispersed (18 out of 19 species), while orthologs of Cdc37, which is critical for the stability and activation of diverse protein kinases in yeast and mammals, were identified in only nine out of 19 species examined. The organism with the smallest proteome, Encephalitozoon cuniculi, contained only three of these co-chaperones, suggesting a correlation between client diversity and the complexity of the Hsp90 co-chaperone machine. Our results suggest co-chaperones are critical for cytosolic Hsp90 function in vivo, but that the composition of Hsp90 complexes varies depending on the specialized protein folding requirements of divergent species.  相似文献   

20.
    
We have followed 15 HIV-1 chronically infected patients during prolonged highly active antiretroviral treatment (HAART) and subsequent long term structured treatment interruption (STI). We analyzed Nef, Tat, and p24 specific cellular immunity using IFN-gamma enzyme-linked immunospot assays and T cell proliferation assays. Eight HAART patients showed IFN-gamma responses to at least one antigen, but no positive responses were seen during STI. We observed retained or increased p24 specific IFN-gamma responses in most patients during HAART with viral suppression. These results showed persisting HIV-1 specific cellular immunity during HAART; however, in prolonged STI with viral rebound this immunity declined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号