首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abel S  Blume B  Glund K 《Plant physiology》1990,94(3):1163-1171
We have shown that highly purified vacuoles of suspension-cultured tomato (Lycopersicon esculentum) cells contain RNA-oligonucleotides, using two different approaches to label and detect RNA: (a) in vivo labeling of cellular RNA with [5-3H]uridine, followed by preparation of vacuoles from protoplasts and by quantification of radioactively labeled material; and (b) in vitro labeling and analysis on sequencing gels of nucleic acids prepared from tomato vacuoles and their identification as RNA. The intravacuolar location of the RNA found in vacuolar preparations was concluded from analyzing for RNA intact organelles after repeated flotation steps as well as ribonuclease A treatment. About 3% of the RNA in protoplasts was localized within vacuoles, exceeding by severalfold the contribution made by contamination with unlysed protoplasts and subcellular organelles. Investigation of the size distribution of vacuolar RNA revealed an oligonucleotide pattern strikingly different from that which would arise from contaminating protoplasts; vacuolar RNA fragments are considerably shorter than 80 nucleotides. Characterization of these oligoribonucleotides (3′-phosphorylated termini; relatively rich in pyrimidines) as possible products of tomato vacuolar ribonuclease I action, and, in addition, enzymatic hydrolysis of vacuolar RNA by inherent enzyme activities in lysed vacuole preparations support the hypothesis that plant vacuoles are involved in cellular nucleolytic processes.  相似文献   

2.
3.
The secondary structure of a recently identified ATP-binding RNA aptamer consists of apurine-rich 11-residue internal loop positioned opposite a single guanine bulge flanked oneither side by helical stem segments. The ATP ligand targets the internal loop and bulgedomains, inducing a structural transition in this RNA segment on complex formation.Specifically, 10 new slowly exchanging proton resonances in the imino, amino and sugarhydroxyl chemical shift range are observed on AMP–RNA aptamer complex formation.This paper outlines site-specific labeling approaches to identify slowly exchanging imino(guanine) and amino (guanine and adenine) protons in internal loop and bulge segments ofcompact RNA folds such as found in the AMP–RNA aptamer complex. One approachincorporates 15N-labeled guanine (N1 imino and N2 amino positions) and 15N-labeledadenine (N6 amino position), one residue at a time, in the AMP-binding RNA aptamer, withlabeling incorporation through chemical synthesis facilitated by generating the aptamer fromtwo separate strands. The unambiguous assignments deduced from the 15N labeling studieshave been verified from an independent labeling strategy where individual guanines in theinternal loop have been replaced, one at a time, by inosines and assignments were made onthe basis of the large 2 ppm downfield shift of the guanine imino protons on inosinesubstitution. The strengths and limitations of the inosine-for-guanine substitution approachemerge from our studies on the AMP–RNA aptamer complex. The assignment of theinternal loop and bulge imino and amino protons was critical in our efforts to define thesolution structure of the AMP–RNA aptamer complex since these slowly exchangingprotons exhibit a large number of long-range intramolecular NOEs within the RNA, as wellas intermolecular NOEs to the AMP in the complex. The current application of specific 15Nand inosine labeling approaches for exchangeable imino and amino proton assignments in thenonhelical segments of an RNA aptamer complex in our laboratory complements selective 2Hand 13C approaches to assign nonexchangeable base and sugar protons in RNA andligand–RNA complexes reported in the literature.  相似文献   

4.
蛋白质水解是一种重要的翻译后修饰,它在许多生化过程 (如细胞凋亡和肿瘤细胞转移等) 中起着极其重要的作用。鉴定蛋白质水解位点可以进一步加深我们对这些生化过程的认识。尽管蛋白质氨基端标记方法和蛋白质组学在复杂生物体系中鉴定获得了许多蛋白质的水解位点,但这种方法存在固有的缺陷。羧基端标记方法是另一种可行的鉴定蛋白质水解位点的方法。本文优化了蛋白质羧基端生物酶标记方法,提高了亲和标记效率,从而可以更好地利用正向分离方法对蛋白质羧基端多肽进行分离并用质谱鉴定。我们用优化后的羧基端标记方法来标记大肠杆菌Escherichia coli复杂蛋白样品后鉴定到了120多个蛋白质羧基端多肽和内切多肽。在其所鉴定的蛋白质水解位点中,我们发现了许多已知和未知的位点,这些新的水解位点有可能在正常生化过程的调控发挥着重要的作用。该研究提供了一个可以与蛋白质氨基端组学互为补充、可在复杂体系中鉴定蛋白质水解的方法。  相似文献   

5.
6.
7.
8.
人体内各种复杂的生命活动离不开蛋白质之间的相互作用。这种相互作用具有瞬时性和结合力弱等特点,并受到多种动态调节,特别是蛋白质翻译后修饰(post-translation modifications, PTM)。传统的亲和质谱检测方法存在蛋白纯化的局限性,在高效检测到动态变化方面存在不足。邻近标记是一种能够给与靶蛋白质瞬时靠近,或者互作(邻近)的蛋白质加上生物素的技术,它与质谱检测技术的联合使用能检测细胞过程中弱的、瞬时的蛋白质相互作用,有效解决上述问题。本文综述了基于生物素的邻近标记方法的发展现状,从依赖于融合序列的生物素标记开始,依次介绍有关生物素连接酶、过氧化物酶及其进化后的2代标记方法等经典生物素标记的方法和原理,比较各个方法间的差异和优缺点;也列举了一些近年来新出现的标记方法,如将生物素连接酶进行拆分、鉴定蛋白质在不同复合物中功能的方法、抗体靶向的标记方法,以及其他来源的生物素连接酶突变体,例如枯草芽孢杆菌(Bacillus subtilis)的C端氨基酸突变的生物素连接酶,能够应用在苍蝇和蠕虫中的生物素连接酶突变体。本文对这些方法进行归纳总结,旨在为初步接触该领域的科研工作者提供参考,同时也希望能够提供一些新的思路,推动蛋白质相互作用组学的发展。  相似文献   

9.
人体内各种复杂的生命活动离不开蛋白质之间的相互作用。这种相互作用具有瞬时性和结合力弱等特点,并受到多种动态调节,特别是蛋白质翻译后修饰(post-translation modifications, PTM)。传统的亲和质谱检测方法存在蛋白纯化的局限性,在高效检测到动态变化方面存在不足。邻近标记是一种能够给与靶蛋白质瞬时靠近,或者互作(邻近)的蛋白质加上生物素的技术,它与质谱检测技术的联合使用能检测细胞过程中弱的、瞬时的蛋白质相互作用,有效解决上述问题。本文综述了基于生物素的邻近标记方法的发展现状,从依赖于融合序列的生物素标记开始,依次介绍有关生物素连接酶、过氧化物酶及其进化后的2代标记方法等经典生物素标记的方法和原理,比较各个方法间的差异和优缺点;也列举了一些近年来新出现的标记方法,如将生物素连接酶进行拆分、鉴定蛋白质在不同复合物中功能的方法、抗体靶向的标记方法,以及其他来源的生物素连接酶突变体,例如枯草芽孢杆菌(Bacillus subtilis)的C端氨基酸突变的生物素连接酶,能够应用在苍蝇和蠕虫中的生物素连接酶突变体。本文对这些方法进行归纳总结,旨在为初步接触该领域的科研工作者提供参考,同时也希望能够提供一些新的思路,推动蛋白质相互作用组学的发展。  相似文献   

10.
Methods for specific immobilization, isolation and labeling of proteins are central to the elucidation of cellular functions. Based on bacterial repressor proteins, which bind to specific target sequences in response to small molecules (macrolide and tetracycline antibiotics) or environmental parameters (temperature), we have developed a set of protein tags (RepTAGs), which enable reversible immobilization of the protein of interest on a solid support for the isolation and quantification as well as for the specific labeling of target proteins with fluorescent dyes for tracking them within a complex protein mixture. Similarly, live mammalian cells were specifically labeled with a fluorescent operator sequence bound to RepTAGs, which were directed towards the cell surface for easy discrimination between transfected and untransfected cell populations. Based on the drug-responsive RepTAG-DNA interactions, it was also possible to quantify or discover antibiotics in environmental samples or compound libraries by means of rapid, sensitive detection methods involving fluorescence polarization and bioluminescence. We believe that the universally applicable RepTAGs will become essential for the analysis and manipulation of proteins in the most diverse areas of protein chemistry and cell biology.  相似文献   

11.
13C metabolic flux analysis (13C-MFA) is a widely used tool for quantitative analysis of microbial and mammalian metabolism. Until now, 13C-MFA was based mainly on measurements of isotopic labeling of amino acids derived from hydrolyzed biomass proteins and isotopic labeling of extracted intracellular metabolites. Here, we demonstrate that isotopic labeling of glycogen and RNA, measured with gas chromatography-mass spectrometry (GC-MS), provides valuable additional information for 13C-MFA. Specifically, we demonstrate that isotopic labeling of glucose moiety of glycogen and ribose moiety of RNA greatly enhances resolution of metabolic fluxes in the upper part of metabolism; importantly, these measurements allow precise quantification of net and exchange fluxes in the pentose phosphate pathway. To demonstrate the practical importance of these measurements for 13C-MFA, we have used Escherichia coli as a model microbial system and CHO cells as a model mammalian system. Additionally, we have applied this approach to determine metabolic fluxes of glucose and xylose co-utilization in the E. coli ΔptsG mutant. The convenience of measuring glycogen and RNA, which are stable and abundant in microbial and mammalian cells, offers the following key advantages: reduced sample size, no quenching required, no extractions required, and GC-MS can be used instead of more costly LC-MS/MS techniques. Overall, the presented approach for 13C-MFA will have widespread applicability in metabolic engineering and biomedical research.  相似文献   

12.
《Cytotherapy》2014,16(1):74-83
Background aimsThis study was conducted to characterize gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA)-labeled and PKH26-labeled human umbilical cord mesenchymal stromal cells (HuMSCs) and to track them with magnetic resonance imaging (MRI) in vitro and in vivo.MethodsHuMSCs were isolated from umbilical cords and expanded in vitro. Cells were sequentially labeled with Gd-DTPA and PKH26. The labeling efficiency was determined by spectrophotometry measurements, and the longevity of Gd-DTPA maintenance was measured with MRI. The influence of double labeling on cellular biologic properties was assessed by cell proliferation, viability, differentiation, cycle and apoptosis. Transplantation of double-labeled HuMSCs or placebo was performed in 39 female Sprague-Dawley rats. Leak point pressure and maximal bladder capacity were measured in animals 6 weeks after injection.ResultsThe T1 values and signal intensity on T1-weighted imaging of labeled cells were significantly higher than the control group (P < 0.05). The signal intensity on T1-weighted imaging of labeled cells was retained >14 days in vitro and in vivo. There was no significant difference in the cell cycle, cell apoptosis, cell proliferation and cell viability between labeled and unlabeled HuMSCs (P > 0.05). After double labeling, HuMSCs were still capable of differentiating into osteoblasts and adipocytes. Periurethrally injected HuMSCs in the rats significantly improved leak point pressure and maximal bladder capacity.ConclusionsHuMSCs were successfully labeled with Gd-DTPA and PKH26. This labeling method is reliable and efficient and can be applied for tracking cells in vitro and in vivo without altering cellular biologic properties.  相似文献   

13.
14.
We synthesized novel phenylenediamine derivatives and evaluated them as labeling agents to label proteins in close proximity to a single electron transfer catalyst. We found that N’-acyl-N-methylphenylenediamine labels tyrosine effectively in a model experiment using tris(bipyridine)ruthenium (Ru(bpy)32+) as the single electron transfer catalyst. By changing the substituents on the nitrogen atom of the phenylenediamine derivatives, the electrochemical properties of the labeling agent can be drastically changed. On the other hand, horseradish peroxidase (HRP) also catalyzes the reaction with almost the same oxidation potential as Ru(bpy)32+ (~+1.1?V). HRP proximity labeling is applicable to signal amplification in immunohistochemistry. We evaluated the phenylenediamine derivatives as labeling agents for HRP proximity labeling and signal amplification, and found that N’-acyl-N-methylphenylenediamine is a novel and efficient agent for signal amplification using HRP in immunohistochemistry.  相似文献   

15.
High-quality chromosomal DNA is a requirement for many biochemical and molecular biological techniques. To isolate cellular DNA, standard protocols typically lyse cells and separate nucleic acids from other biological molecules using a combination of chemical and physical methods. After a standard chemical-based protocol to isolate chromosomal DNA from Saccharomyces cerevisiae and then treatment with RNase A to degrade RNA, two RNase-resistant bands persisted when analyzed using gel electrophoresis. Interestingly, such resistant bands did not appear in preparations of Escherichia coli bacterial DNA after RNase treatment. Several enzymatic, chemical, and physical methods were employed in an effort to remove the resistant RNAs, including use of multiple RNases and alcohol precipitation, base hydrolysis, and chromatographic methods. These experiments resulted in the development of a new method for isolation of S. cerevisiae chromosomal DNA. This method utilizes selective precipitation of DNA in the presence of a potassium acetate/isopropanol mixture and produces high yields of chromosomal DNA without detectable contaminating RNAs.  相似文献   

16.
Selective protein labeling with a small molecular probe is a versatile method for elucidating protein functions under live-cell conditions. In this Letter, we report the design of the binuclear Ni(II)–iminodiacetic acid (IDA) complex for selective recognition and covalent labeling of His-tag-fused proteins. We found that the Ni(II)–IDA complex 1-2Ni(II) binds to the His6-tag (HHHHHH) with a strong binding affinity (Kd = 24 nM), the value of which is 16-fold higher than the conventional Ni(II)–NTA complex (Kd = 390 nM). The strong binding affinity of the Ni(II)–IDA complex was successfully used in the covalent labeling and fluorescence bioimaging of a His-tag fused GPCR (G-protein coupled receptor) located on the surface of living cells.  相似文献   

17.
Studying nucleic acids often requires labeling. Many labeling approaches require covalent bonds between the nucleic acid and the label, which complicates experimental procedures. Noncovalent labeling avoids the need for highly specific reagents and reaction conditions, and the effort of purifying bioconjugates. Among the least invasive techniques for studying biomacromolecules are NMR and EPR. Here, we report noncovalent labeling of DNA and RNA triplexes with spin labels that are nucleobase derivatives. Spectroscopic signals indicating strong binding were detected in EPR experiments in the cold, and filtration assays showed micromolar dissociation constants for complexes between a guanine‐derived label and triplex motifs containing a single‐nucleotide gap in the oligopurine strand. The advantages and challenges of noncovalent labeling via this approach that complements techniques relying on covalent links are discussed.  相似文献   

18.
Bone is an active tissue, in which bone formation by osteoblast is followed by bone resorption by osteoclasts, in a repeating cycle. Proteomics approaches may allow the detection of changes in cell signal transduction, and the regulatory mechanism of cell differentiation. LC-MS/MS-based quantitative methods can be used with labeling strategies, such as SILAC, iTRAQ, TMT and enzymatic labeling. When used in combination with specific protein enrichment strategies, quantitative proteomics methods can identify various signaling molecules and modulators, and their interacting proteins in bone metabolism, to elucidate biological functions for the newly identified proteins in the cellular context. In this article, we will briefly review recent major advances in the application of proteomics for bone biology, especially from the aspect of cellular signaling. [BMB Reports 2014; 47(3): 141-148]  相似文献   

19.
We have developed a three-component system for microbial identification that consists of (i) a universal syringe-operated silica minicolumn for successive DNA and RNA isolation, fractionation, fragmentation, fluorescent labeling, and removal of excess free label and short oligonucleotides; (ii) microarrays of immobilized oligonucleotide probes for 16S rRNA identification; and (iii) a portable battery-powered device for imaging the hybridization of fluorescently labeled RNA fragments with the arrays. The minicolumn combines a guanidine thiocyanate method of nucleic acid isolation with a newly developed hydroxyl radical-based technique for DNA and RNA labeling and fragmentation. DNA and RNA can also be fractionated through differential binding of double- and single-stranded forms of nucleic acids to the silica. The procedure involves sequential washing of the column with different solutions. No vacuum filtration steps, phenol extraction, or centrifugation is required. After hybridization, the overall fluorescence pattern is captured as a digital image or as a Polaroid photo. This three-component system was used to discriminate Escherichia coli, Bacillus subtilis, Bacillus thuringiensis, and human HL60 cells. The procedure is rapid: beginning with whole cells, it takes approximately 25 min to obtain labeled DNA and RNA samples and an additional 25 min to hybridize and acquire the microarray image using a stationary image analysis system or the portable imager.  相似文献   

20.
Cell-free protein expression plays an important role in biochemical research. However, only recent developments led to new methods to rapidly synthesize preparative amounts of protein that make cell-free protein expression an attractive alternative to cell-based methods. In particular the wheat germ system provides the highest translation efficiency among eukaryotic cell-free protein expression approaches and has a very high success rate for the expression of soluble proteins of good quality. As an open in vitro method, the wheat germ system is a preferable choice for many applications in protein research including options for protein labeling and the expression of difficult-to-express proteins like membrane proteins and multiple protein complexes. Here I describe wheat germ cell-free protein expression systems and give examples how they have been used in genome-wide expression studies, preparation of labeled proteins for structural genomics and protein mass spectroscopy, automated protein synthesis, and screening of enzymatic activities. Future directions for the use of cell-free expression methods are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号