首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PPF1是一个与植物营养生长相关的基因。它编码的产物可能是一个膜蛋白并与拟南芥叶绿体中的类囊体蛋白ALB3有很高的同源性。免疫电镜分析表明PPF1蛋白同样主要定位于类囊体膜 ,而且在短日照G2豌豆开花两周后仍发育良好的叶绿体中有很高的表达 ,在长日照豌豆同时期非正常叶绿体中丰度非常低。对转基因拟南芥和野生型植株的叶片衰老进程比较发现 ,PPF1在拟南芥中的过量表达可以延缓叶片的衰老 ,而用PPF1反义mRNA抑制拟南芥中的同源基因ALB3则明显加快叶片衰老速度。对转基因拟南芥的超微结构分析显示 ,PPF1在拟南芥中过量表达时 ,转基因植株的叶绿体比野生型植株的叶绿体大并含有更多的基粒和基质类囊体膜 ;相反 ,反义PPF1表达抑制其在拟南芥中的同源物时 ,转基因植株的叶绿体比野生型植株的叶绿体小并含有较少的基粒和发育较差的类囊体膜系统。这些数据表明叶绿体的发育状况与PPF1或拟南芥同源物ALB3的表达水平呈正相关。我们的结果提示PPF1基因可能通过控制叶绿体的发育状况来调节植物的发育。  相似文献   

2.
Mesophyll chloroplasts of the C4-pathway grasses Sorghum and Paspalum and of the C3-pathway legume soybean undergo ultrastructural changes under moderate light intensities (170 w·m−2, 400-700 nanometers) at a tme when photosynthesis is much reduced by low temperature (10 C). The pattern of ultrastructural change was similar in these species, despite some differences in the initial sites of low temperature action on photosynthesis and differences in their mechanisms of CO2 fixation. Starch grains in the chloroplasts rapidly reduce in size when chilling stress is applied. At or before the time starch grains completely disappear the membranes of the individual stromal thylakoids close together, reducing the intraspace between them while the chloroplast as a whole begins to swell. Extensive granal stacking appears to hold the thylakoids in position for some time, causing initial swelling to occur in the zone of the peripheral reticulum, when present. At more advanced stages of swelling the thylakoid system unravels while the thylakoid intraspaces dilate markedly. Initial thylakoid intraspace contraction is tentatively ascribed to an increase in the transmembrane hydrogen ion gradient causing movement of cations and undissociated organic acids from the thylakoid intraspace to the stroma. Chloroplast swelling may be caused by a hold-up of some osmotically active photosynthetic product in the chloroplast stroma. After granal unraveling and redilation of the thylakoid intraspaces, chloroplasts appear similar to those isolated in low salt hypotonic media. At the initial stages of stress-induced ultrastructural change, a marked gradient in degree of chloroplast swelling is seen within and between cells, being most pronounced near the surface of the leaf directly exposed to light.  相似文献   

3.
The Vir-c mutation is a virescent chloroplast mutation found in a line of plants derived from protoplast fusions between a Nicotina tabacum line and a line containing N. tabacum nuclei with Nicotiana suaveolens cytoplasm. Vir-c displays a lag period in chlorophyll accumulation and granal stack formation in young leaves. We examined total chloroplast protein in young leaves and showed the mutant contains 1.3 to 2.1 times less stromal protein, and 2.9 to 4.3 times less thylakoid protein when compared to the N. tabacum var “Turkish Samsun” control. Electrophoretic patterns of total thylakoid proteins indicated three polypeptides were specifically decreased in amount within the context of the overall reduction in thylakoid protein. Electrophoresis of thylakoid proteins synthesized by chloroplasts isolated from half-expanded leaves demonstrated that mutant chloroplasts did not synthesize a 37.5 kilodalton polypeptide which was synthesized by “Samsun” chloroplasts. A polypeptide of this molecular weight was synthesized by Vir-c chloroplasts isolated from mature leaves which had recovered the normal phenotype. Restriction digestion and electrophoresis of the mutant's chloroplast DNA produced a pattern of restriction fragments different from either N. tabacum or N. suaveolens chloroplast DNA.  相似文献   

4.
In higher plants, development of the chloroplasts must be coordinated with development of the leaf. In order to study the signals that synchronize these two developmental processes, we have isolated virescent (delayed in greening) mutants of Arabidopsis thaliana. Two such mutants that have pale-green young leaves which gradually green more fully during leaf maturation have been partially characterized. The two, vir1 and vir2, are due to separate nuclear recessive mutations. The pale leaves of vir1 and vir2 both had reduced 77°K fluorescence emission at 730–734 nm relative to that at 686–687 nm, indicating a reduction in the relative amount of LHC I compared to WT. As leaves greened, the amount of LHC I increased to near wildtype levels. The shift in the fluorescence emission peak from 730 nm to 734 nm, characteristic of maturing LHC I, was seen for vir1, but not vir2, suggesting that vir1 is a regulatory mutant while vir2 may be defective in a specific aspect(s) of LHC I function.Abbreviations D dark - EMS ethyl methanesulfonate - er erecta - gl1 glabrous1 - L light - LHC I light harvesting complex of Photosystem I - LHC II light harvesting complex of Photosystem II - M2 second generation of mutagenized seed - M3 third generation of mutagenized seed - vir virescent - WT wildtype  相似文献   

5.
Two well-known pathways for the degradation of chloroplast proteins are via autophagy and senescence-associated vacuoles. Here, we describe a third pathway that was activated by senescence- and abiotic stress-induced expression of Arabidopsis thaliana CV (for chloroplast vesiculation). After targeting to the chloroplast, CV destabilized the chloroplast, inducing the formation of vesicles. CV-containing vesicles carrying stromal proteins, envelope membrane proteins, and thylakoid membrane proteins were released from the chloroplasts and mobilized to the vacuole for proteolysis. Overexpression of CV caused chloroplast degradation and premature leaf senescence, whereas silencing CV delayed chloroplast turnover and senescence induced by abiotic stress. Transgenic CV-silenced plants displayed enhanced tolerance to drought, salinity, and oxidative stress. Immunoprecipitation and bimolecular fluorescence complementation assays demonstrated that CV interacted with photosystem II subunit PsbO1 in vivo through a C-terminal domain that is highly conserved in the plant kingdom. Collectively, our work indicated that CV plays a crucial role in stress-induced chloroplast disruption and mediates a third pathway for chloroplast degradation. From a biotechnological perspective, silencing of CV offers a suitable strategy for the generation of transgenic crops with increased tolerance to abiotic stress.  相似文献   

6.

Background

Cytokinin is a plant hormone that plays a crucial role in several processes of plant growth and development. In recent years, major breakthroughs have been achieved in the elucidation of the metabolism, the signal perception and transduction, as well as the biological functions of cytokinin. An important activity of cytokinin is the involvement in chloroplast development and function. Although this biological function has already been known for 50 years, the exact mechanisms remain elusive.

Results

To elucidate the effects of altered endogenous cytokinin content on the structure and function of the chloroplasts, chloroplast subfractions (stroma and thylakoids) from transgenic Pssu-ipt and 35S:CKX1 tobacco (Nicotiana tabacum) plants with, respectively, elevated and reduced endogenous cytokinin content were analysed using two different 2-DE approaches. Firstly, thykaloids were analysed by blue-native polyacrylamide gel electrophoresis followed by SDS-PAGE (BN/SDS-PAGE). Image analysis of the gel spot pattern thus obtained from thylakoids showed no substantial differences between wild-type and transgenic tobacco plants. Secondly, a quantitative DIGE analysis of CHAPS soluble proteins derived from chloroplast subfractions indicated significant gel spot abundance differences in the stroma fraction. Upon identification by MALDI-TOF/TOF mass spectrometry, these proteins could be assigned to the Calvin-Benson cycle and photoprotective mechanisms.

Conclusion

Taken together, presented proteomic data reveal that the constitutively altered cytokinin status of transgenic plants does not result in any qualitative changes in either stroma proteins or protein complexes of thylakoid membranes of fully developed chloroplasts, while few but significant quantitative differences are observed in stroma proteins.  相似文献   

7.
We studied the involvement of pigment-protein complexes of photosystems (PS) in the development and spatial arrangement of thylakoids in chloroplasts of pea (Pisum sativum L.) leaves. The initial line (cv. Torsdag) and its mutants, chlorotica 2004 displaying primary disturbances in the PSI reaction centers and chlorotica 2014 containing only 50% of chlorophyll and, as a sequence, the reduced amount of all pigment-protein complexes. A proportional decrease in the content of PSI and PSII complexes in the chlorotica 2014 mutant resulted in a partial reduction of the whole chloroplast membrane system, whereas grana and stroma thylakoid regions were well developed. In contrast, a loss of only 20% of chlorophyll and destruction of PSI complexes in the chlorotica 2004 mutant by 50% resulted in the destruction of stroma thylakoid regions and disturbed longitudinal thylakoid and grana orientation. It was concluded that protein-protein interactions in pigment-protein complexes played a key role in the structure of thylakoid membranes and their longitudinal orientation.  相似文献   

8.
Changes in the amounts of thylakoid galactolipids and proteins were monitored for 96 hours following iron resupply to iron-deficient sugar beet (Beta vulgaris L. cv F58-554H1) plants. During this period of iron nutrition-mediated chloroplast development, the amount of galactolipid per leaf area increased linearly with time. Assuming galactolipids are an index for the amount of thylakoids, then there was a linear synthesis of thylakoid membranes during regreening. Total thylakoid protein synthesis, however, lagged behind galactolipid synthesis, suggesting that proteins are inserted secondarily into the galactolipid matrix of the thylakoid membrane during development.

Iron deficiency caused an increase in the free chlorophyll band under the conditions of gel electrophoresis used. Of the chlorophyll proteins resolved, the chlorophyll protein associated with photosystem I was most diminished in iron-deficient tissue, and appeared to recover most rapidly. Changes in the light-harvesting chlorophyll proteins are also discussed.

The number of polypeptides resolved by lithium dodecyl sulfate-polyacrylamide gel electrophoresis was higher in iron-deficient thylakoids. During regreening, the number of resolved polypeptides decreased.

  相似文献   

9.
The first leaves (40 millimeters long) of 4-day-old light-grown Avena sativa L. cv Victory I seedlings contained a complete age sequence of cells from the base to the tip, and within these tissues all stages of chloroplast development could be observed. Although chloroplasts underwent progressive development, a marked increase in number of thylakoids per granum, in chloroplast volume, and in chlorophyll content occurred in the region between 20 and 30 millimeters from the base. Photosynthetic CO2 fixation (per unit chlorophyll) increased markedly during chloroplast development and closely followed structural changes in chloroplasts. It was also found that the partitioning of photosynthates differed greatly in the segment from 30 to 40 millimeters (at the tip of the leaf) compared with the segment nearer to the leaf base, although both total 14CO2 fixation and chlorophyll content per segment did not change significantly along the length of the leaves. As the thylakoid system reached full maturation, partitioning of photosynthates into sucrose increased but partitioning decreased into starch, lipids, and phosphorylated intermediates.  相似文献   

10.
Bondada  B.R.  Oosterhuis  D.M. 《Photosynthetica》2002,40(3):431-436
The progressive decline in cotton leaf photosynthesis with season could be accounted for by gaining an insight into ontogenic changes in chloroplast integrity and epicuticular wax ultrastructure. Therefore, the sequence of ultrastructural changes in chloroplast and epicuticular wax morphology were probed in 10-, 20-, 40-, and 60-d-old cotton (Gossypium hirsutum L.) leaves using electron microscopy. Scanning electron microscopy illustrated that the epicuticular wax on the periclinal walls of the convex epidermal cells occurred as striations and persisted as such during the course of leaf aging. The degree of wax spread, however, increased as the leaf progressed towards senescence. Transmission electron microscopy revealed that a 20-d-old photosynthetically active leaf possessed healthy chloroplasts (6.8 m long and an area of 9.7 m2) with absolute membrane integrity depicted by large appressed grana stacks of thylakoids interconnected by non-appressed stroma lamellae. The thylakoid membrane network was oriented parallel to the long axis of the chloroplast and a few small plastoglobuli (1.85 m2) scattered in the stroma. Conversely, membrane integrity was lost with leaf age after 20 d as evidenced by disruption of the grana and stroma lamellae. Concurrent with the membrane damage, extensive occlusion of chloroplast by several large spherical plastoglobuli (5.68 m2) occurred, the rate of occlusion increased with leafage distending the chloroplast as evidenced by proliferation of its cross-sectional area (12.8 m2). Of particular interest was the finding that the plastoglobuli ensued through the chloroplast envelope into the cytoplasm. The progressive loss of chloroplast membrane integrity coupled with increased leaf waxiness may have limited photosynthetic activities of cotton leaves during senescence.  相似文献   

11.
The chloroplast isoprenoid synthesis of very young leaves is supplied by the plastidic CO2 → pyruvate → acetyl-coenzyme A (C3 → C2) metabolism (D Schulze-Siebert, G Schultz [1987] Plant Physiol 84: 1233-1237) and occurs via the plastidic mevalonate pathway. The plastidic C3 → C2 metabolism and/or plastidic mevalonate pathway of barley (Hordeum vulgare L.) seedlings changes from maximal activity at the leaf base (containing developing chloroplasts with incomplete thylakoid stacking but a considerable rate of photosynthetic CO2-fixation) almost to ineffectivity at the leaf tip (containing mature chloroplasts with maximal photosynthetic activity). The ability to import isopentenyl diphosphate from the extraplastidic space gradually increases to substitute for the loss of endogenous intermediate supply for chloroplast isoprenoid synthesis (change from autonomic to division-of-labor stage). Fatty acid synthesis from NaH14CO3 decreases in the same manner as shown for leaf sections and chloroplasts isolated from these. Evidence has been obtained for a drastic decrease of pyruvate decarboxylase-dehydrogenase activity during chloroplast development compared with other anabolic chloroplast pathways (synthesis of aromatic amino acid and branched chain amino acids). The noncompetition of pyruvate and acetate in isotopic dilution studies indicates that both a pyruvate-derived and an acetate-derived compound are simultaneously needed to form introductory intermediates of the mevalonate pathway, presumably acetoacetyl-coenzyme A.  相似文献   

12.
We have found nuclear, recessive mutants in Zea mays L. where assembly of the major chlorophyll (a/b) light-harvesting complex (LHC) was not delayed relative to most other thylakoid protein complexes during thylakoid biogenesis. This contrasts with the normal development of maize chloroplasts (NR Baker, R Leech 1977 Plant Physiol 60: 640-644). All four mutants examined were allelic and virescent, and displayed visibly higher yields of leaf Chl fluorescence during greening. Fully greened mutants had normal leaf Chl fluorescence yield and normal levels of LHC, and grew to maturity under field conditions. Therefore, delayed LHC assembly is not an obligate feature of thylakoid differentiation.

Assigning the molecular basis for the mutation should provide information concerning reguation of LHC assembly. Several possibilities are discussed. The pleiotropic mutant phenotype is not attributable to defects in thylakoid glycerolipid synthesis. Thylakoids isolated from greening mutant leaf sections had elevated glycerolipid/Chl ratios. In addition, both the molar distribution and acyl composition of four major glycerolipids were normal for developing mutant thylakoids.

  相似文献   

13.
Proplastids and etioplasts are common starting points for monitoring chloroplast development in higher plants. Although proplastids are the primary precursor of chloroplasts, most proplastid to chloroplast systems are cumbersome to study temporally. Conversely, the etioplast to chloroplast transition is initiated by light and is readily examined as a function of time. Etioplasts, however, are found mostly in plants germinated in the dark and are not an obligatory step in chloroplast development. We have chosen to study chloroplast ontogeny in Spirodela oligorrhiza (Kurtz) Hegelm (a C3-monocot) because of its unique ability to grow indefinitely in the dark. Ultrastructural, physiological, and molecular evidence is presented in support of a temporal, light-triggered proplastid to chloroplast transition in Spirodela. The dark-grown plants are devoid of chlorophyll, and upon illumination synchronously green over a 3- to 5-day period. Synthesis of chloroplast proteins involved in photosynthesis is coincident with thylakoid assembly, chlorophyll accumulation, and appearance of CO2 fixation activity. Interestingly, the developmental sequence in Spirodela was slow enough to reveal that biosynthesis of the D1 photosystem II reaction center protein precedes biosynthesis of the major light-harvesting antenna proteins. This, coupled with the high chlorophyll a/b ratio observed early in development, indicated that reaction center assembly occurred prior to accumulation of the light-harvesting complexes. Thus, with Spirodela one can study proplastid to chloroplast conversions temporally in higher plants and follow the process on a time scale that enables a detailed dissection of plastid maturation processes.  相似文献   

14.
The nonchromosomal stripe 2 (NCS2) mutant of maize (Zea mays L.) has a DNA rearrangement in the mitochondrial genome that segregates with the abnormal growth phenotype. Yet, the NCS2 characteristic phenotype includes striped sectors of pale-green tissue on the leaves. This suggests a chloroplast abnormality. To characterize the chloroplasts present in the mutant sectors, we examined the chloroplast structure by electron microscopy, chloroplast function by radiolabeled carbon dioxide fixation and fluorescence induction kinetics, and thylakoid protein composition by polyacrylamide gel electrophoresis. The data from these analyses suggest abnormal or prematurely arrested chloroplast development. Deleterious effects of the NCS2 mutant mitochondria upon the cells of the leaf include structural and functional alterations in the both the bundle sheath and mesophyll chloroplasts.  相似文献   

15.
Spinach seeds (Spinacia oleracea L.) given massive doses of γ-irradiation (500 krad) germinate and form a seedling with two green cotyledons and a radicle, but develop no further. Irradiated cotyledons show no increase in cell number or total DNA over a 7-day period in the light, while in control cotyledons there is a small increase in cell number and large increases in total DNA and chloroplast number. The chloroplasts of irradiated cotyledons are delayed in their division, become greatly enlarged and contain large amounts of starch. The whole population of chloroplasts subsequently undergoes a wave of division. The daughter chloroplasts show normal thylakoid development, but have some abnormal structural features caused by the radiation stress. Information on the effect of X-irradiation, ultraviolet irradiation, and 5-fluorodeoxyuridine on chloroplast replication and on chloroplast and nuclear DNA synthesis was obtained from cultured spinach leaf discs. It appears that chloroplast replication is more resistant to ionizing radiation than cell division and can proceed in the absence of nuclear DNA synthesis and greatly reduced chloroplast DNA synthesis.  相似文献   

16.
The distribution of the large and small subunits of ribulose-1,5-bisphosphate carboxylase in the chloroplast of Chlamydomonas reinhardtii was studied by immunoelectron microscopy by labeling Lowicryl-embedded sections with antibody to each subunit followed by protein A-gold. In light-harvested synchronously dividing cells, antibodies to each subunit heavily labeled the pyrenoid, whereas the thylakoid region of the plastid was lightly labeled. By estimating the volume of each chloroplast compartment, it was determined that approximately 40% of the total small subunit in the plastid and 30% of the large subunit are localized in the thylakoid region, presumably in the stroma. In synchronously dividing cells exposed to an extended dark period, the amount of labeling of the pyrenoid region by antibody to the small subunit stayed constant, but the labeling of the thylakoid region decreased. In stationary phase cells, the proportion of the label over the pyrenoid is higher than in synchronously dividing cells suggesting that the pyrenoid may be a storage organelle.  相似文献   

17.
18.
A rice chlorophyll-deficient mutant w67 was isolated from an ethyl methane sulfonate (EMS)–induced IR64 (Oryza sativa L. ssp. indica) mutant bank. The mutant exhibited a distinct yellow-green leaf phenotype in the whole plant growth duration with significantly reduced levels of chlorophyll and carotenoid, impaired chloroplast development and lowered capacity of photosynthesis compared with the wild-type IR64. Expression of a number of genes associated with chlorophyll metabolism, chloroplast biogenesis and photosynthesis was significantly altered in the mutant. Genetic analysis indicated that the yellow-green phenotype was controlled by a single recessive nuclear gene located on the short arm of chromosome 3. Using map-based strategy, the mutation was isolated and predicted to encode a chloroplast signal recognition particle 43 KD protein (cpSRP43) with 388 amino acid residuals. A single base substitution from A to T at position 160 resulted in a premature stop codon. OscpSRP43 was constitutively expressed in various organs with the highest level in the leaf. Functional complementation could rescue the mutant phenotype and subcellular localization showed that the cpSRP43:GFP fusion protein was targeted to the chloroplast. The data suggested that Oryza sativa cpSRP43 (OscpSRP43) was required for the normal development of chloroplasts and photosynthesis in rice.  相似文献   

19.
An ATP- and temperature-dependent transfer of monogalactosylglycerides from the chloroplast envelope to the chloroplast thylakoids was reconstituted in a cell-free system prepared from isolated chloroplasts of garden pea (Pisum sativum) or spinach (Spinacia oleracea). Isolated envelope membranes, in which the label was present exclusively in monogalactosylglycerides, were prepared radiolabeled in vitro with [14C]galactose from UDP-[14C]galactose to label galactolipids as the donor. ATP-dependent transfer of radioactivity from donor to unlabeled acceptor thylakoids, immobilized on nitrocellulose strips, was observed. In some experiments linear transfer for longer than 30 min of incubation was facilitated by the addition of stroma proteins but in other experiments stroma was without effect or inhibitory suggesting no absolute requirements for a soluble protein carrier. Transfer was donor specific. No membrane fraction tested (plasma membrane, tonoplast, endoplasmic reticulum, nuclei, Golgi apparatus, mitochondria or thylakoids) (isolated from tissue radiolabeled in vivo with [14C]acetate) other than chloroplast envelopes demonstrated any significant ability to transfer labeled membrane lipids to immobilized thylakoids. Acceptor specificity, while not absolute, showed a 3-10-fold greater ATP-dependent transfer of labeled galactolipids from chloroplast envelopes to immobilized thylakoids than to other leaf membranes. The results provide independent confirmation of the potential for transfer of galactolipids between chloroplast envelopes and thylakoids suggested previously from ultrastructural studies and of the known location of thylakoid galactolipid biosynthetic activities in the chloroplast envelope.  相似文献   

20.

Background

Chlorosis of leaf tissue normally observed during pathogen infection may result from the degradation of chloroplasts. There is a growing evidence to suggest that the chloroplast plays a significant role during pathogen infection. Although most degradation of the organelles and cellular structures in plants is mediated by autophagy, its role in chloroplast catabolism during pathogen infection is largely unknown.

Results

In this study, we investigated the function of autophagy in chloroplast degradation during avirulent Pst DC3000 (AvrRps4) infection. We examined the expression of defensive marker genes and suppression of bacterial growth using the electrolyte leakage assay in normal light (N) and low light (L) growing environments of wild-type and atg5-1 plants during pathogen treatment. Stroma-targeted GFP proteins (CT-GFP) were observed with LysoTracker Red (LTR) staining of autophagosome-like structures in the vacuole. The results showed that Arabidopsis expressed a significant number of small GFP-labeled bodies when infected with avirulent Pst DC3000 (AvrRps4). While barely detectable, there were small GFP-labeled bodies in plants with the CT-GFP expressing atg5-1 mutation. The results showed that chloroplast degradation depends on autophagy and this may play an important role in inhibiting pathogen growth.

Conclusion

Autophagy plays a role in chloroplast degradation in Arabidopsis during avirulent Pst DC3000 (AvrRps4) infection. Autophagy dependent chloroplast degradation may be the primary source of reactive oxygen species (ROS) as well as the pathogen-response signaling molecules that induce the defense response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号