首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Media and feed optimization have fueled many-fold improvements in mammalian biopharmaceutical production, but genome editing offers an emerging avenue for further enhancing cell metabolism and bioproduction. However, the complexity of metabolism, involving thousands of genes, makes it unclear which engineering strategies will result in desired traits. Here we present a comprehensive pooled CRISPR screen for CHO cell metabolism, including ~16,000 gRNAs against ~2500 metabolic enzymes and regulators. Using this screen, we identified a glutamine response network in CHO cells. Glutamine is particularly important since it is often over-fed to drive increased TCA cycle flux, but toxic ammonia may accumulate. With the screen we found one orphan glutamine-responsive gene with no clear connection to our network. Knockout of this novel and poorly characterized lipase, Abhd11, substantially increased growth in glutamine-free media by altering the regulation of the TCA cycle. Thus, the screen provides an invaluable targeted platform to comprehensively study genes involved in any metabolic trait, and elucidate novel regulators of metabolism.  相似文献   

2.
A major hurdle in the production of bioethanol with second-generation feedstocks is the high cost of the enzymes for saccharification of the lignocellulosic biomass into fermentable sugars. Simultaneous saccharification and fermentation with Saccharomyces cerevisiae yeast that secretes a range of lignocellulolytic enzymes might address this problem, ideally leading to consolidated bioprocessing. However, it has been unclear how many enzymes can be secreted simultaneously and what the consequences would be on the C6 and C5 sugar fermentation performance and robustness of the second-generation yeast strain. We have successfully expressed seven secreted lignocellulolytic enzymes, namely endoglucanase, β-glucosidase, cellobiohydrolase I and II, xylanase, β-xylosidase and acetylxylan esterase, in a single second-generation industrial S. cerevisiae strain, reaching 94.5 FPU/g CDW and enabling direct conversion of lignocellulosic substrates into ethanol without preceding enzyme treatment. Neither glucose nor the engineered xylose fermentation were significantly affected by the heterologous enzyme secretion. This strain can therefore serve as a promising industrial platform strain for development of yeast cell factories that can significantly reduce the enzyme cost for saccharification of lignocellulosic feedstocks.  相似文献   

3.
Sortilin is a post-Golgi trafficking receptor homologous to the yeast vacuolar protein sorting receptor 10 (VPS10). The VPS10 motif on sortilin is a 10-bladed β-propeller structure capable of binding more than 50 proteins, covering a wide range of biological functions including lipid and lipoprotein metabolism, neuronal growth and death, inflammation, and lysosomal degradation. Sortilin has a complex cellular trafficking itinerary, where it functions as a receptor in the trans-Golgi network, endosomes, secretory vesicles, multivesicular bodies, and at the cell surface. In addition, sortilin is associated with hypercholesterolemia, Alzheimer’s disease, prion diseases, Parkinson’s disease, and inflammation syndromes. The 1p13.3 locus containing SORT1, the gene encoding sortilin, carries the strongest association with LDL-C of all loci in human genome-wide association studies. However, the mechanism by which sortilin influences LDL-C is unclear. Here, we review the role sortilin plays in cardiovascular and metabolic diseases and describe in detail the large and often contradictory literature on the role of sortilin in the regulation of LDL-C levels.  相似文献   

4.
Violacein, a blue-violet compound with a wide range of beneficial bioactivities, is an attractive product for microbial production. Currently, violacein production has been demonstrated in several sugar heterotrophs through metabolic engineering; however, the cost of production remains an obstacle for business ventures. To address this issue, the development of host strains that can utilize inexpensive alternative substrates to reduce production costs would enable the commercialization of violacein. In this study, we engineered a facultative methylotroph, Methylorubrum extorquens AM1, to develop a methanol-based platform for violacein production. By optimizing expression vectors as well as inducer concentrations, 11.7 mg/L violacein production was first demonstrated using methanol as the sole substrate. Considering that unidentified bottlenecks for violacein biosynthesis in the shikimate pathway of M. extorquens AM1 would be difficult to address using generic metabolic engineering approaches, random mutagenesis and site-directed mutagenesis were implemented, and a 2-fold improvement in violacein production was achieved. Finally, by co-utilization of methanol and acetate, a remarkable enhancement of violacein production to 118 mg/L was achieved. Our results establish a platform strain for violacein production from non-sugar feedstocks, which may contribute to the development of an economically efficient large-scale fermentation system for violacein production.  相似文献   

5.
Plastic pollution is a global issue and has become a major concern since Coronavirus disease (COVID)-19. In developing nations, landfilling and illegal waste disposal are typical ways to dispose of COVID-19-infected material. These technologies worsen plastic pollution and other human and animal health problems. Plastic degrades in light and heat, generating hazardous primary and secondary micro-plastic. Certain bacteria can degrade artificial polymers using genes, enzymes, and metabolic pathways. Microorganisms including bacteria degrade petrochemical plastics slowly. High molecular weight, strong chemical bonds, and excessive hydrophobicity reduce plastic biodegradation. There is not enough study on genes, enzymes, and bacteria-plastic interactions. Synthetic biology, metabolic engineering, and bioinformatics methods have been created to biodegrade synthetic polymers. This review will focus on how microorganisms' degrading capacity can be increased using recent biotechnological techniques.  相似文献   

6.
《Fungal biology》2022,126(10):658-673
In northwestern Argentina, sugarcane-derived industrial fermentation is being extensively used for bioethanol production, where highly adaptive native strains compete with the baker's yeast Saccharomyces cerevisiae traditionally used as starter culture. Yeast populations of 10 distilleries from Tucumán (Argentina) were genotypic and phenotypic characterized to select well-adapted bioethanol-producing autochthonous strains to be used as starter cultures for the industrial production of bioethanol fuel. From the 192 isolates, 69.8% were identified as S. cerevisiae, 25.5% as non-Saccharomyces, and 4.7% as Saccharomyces sp. wild yeasts. The majority of S. cerevisiae isolates (68.5%) were non-flocculating yeasts, while the flocculating strains were all obtained from the only continuous fermentation process included in the study. Simple Sequence Repeat analysis revealed a high genetic diversity among S. cerevisiae genotypes, where all of them were very different from the original baker's strain used as starter. Among these, 38 strains multi-tolerant to stress by ethanol (8%), temperature (42.5 °C) and pH (2.0) were obtained. No major differences were found among these strains in terms of ethanol production and residual sugars in batch fermentation experiments with cell recycling. However, only 10 autochthonous strains maintained their viability (more than 80%) throughout five consecutive cycles of sugarcane-based fermentations. In summary, 10 autochthonous isolates were found to be superior to baker's yeast used as starter culture (S. cerevisiae Calsa) in terms of optimal technological, physiological and ecological properties. The knowledge generated on the indigenous yeast populations in industrial fermentation processes of bioethanol-producing distilleries allowed the selection of well-adapted bioethanol-producing strains.  相似文献   

7.
Paenibacillus polymyxa is a Gram-positive, non-pathogenic soil bacterium that has been extensively investigated for the production of R-,R-2,3-butanediol in exceptionally high enantiomeric purity. Rational metabolic engineering efforts to increase productivity and product titers were restricted due to limited genetic accessibility of the organism up to now. By use of CRISPR-Cas9 mediated genome editing, six metabolic mutant variants were generated and compared in batch fermentations for the first time. Downstream processing was facilitated by completely eliminating exopolysaccharide formation through the combined knockout of the sacB gene and the clu1 region, encoding for the underlying enzymatic machinery of levan and paenan synthesis. Spore formation was inhibited by deletion of spoIIE, thereby disrupting the sporulation cascade of P. polymyxa. Optimization of the carbon flux towards 2,3-butanediol was achieved by deletion of the lactate dehydrogenase ldh1 and decoupling of the butanediol dehydrogenase from its natural regulation via constitutive episomal expression. The improved strain showed 45 % increased productivity, reaching a final concentration of 43.8 g L−1 butanediol. A yield of 0.43 g g−1 glucose was achieved, accounting for 86 % of the theoretical maximum.  相似文献   

8.
《Fungal biology》2020,124(1):15-23
Metabolons are dynamic associations of enzymes catalyzing consecutive reactions within a given pathway. Association results in enzyme stabilization and increased metabolic efficiency. Metabolons may use cytoskeletal elements, membranes and membrane proteins as scaffolds. The effects of glucose withdrawal on a putative glycolytic metabolon/F-actin system were evaluated in three Saccharomyces cerevisiae strains: a WT and two different obligate fermentative (OxPhos-deficient) strains, which obtained most ATP from glycolysis. Carbon source withdrawal led to inhibition of fermentation, decrease in ATP concentration and dissociation of glycolytic enzymes from F-actin. Depending on the strain, inactivation/reactivation transitions of fermentation took place in seconds. In addition, when ATP was very low, green fluorescent protein-labeled F-actin reorganized from highly dynamic patches to large, non-motile actin bodies containing proteins and enzymes. Glucose addition restored fermentation and cytoskeleton dynamics, suggesting that in addition to ATP concentration, at least in one of the tested strains, metabolon assembly/disassembly is a factor in the control of the rate of fermentation.  相似文献   

9.
Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.  相似文献   

10.
The yeast plasma membrane is a selective barrier between an erratic environment and the cell's metabolism. Nutrient transporters are the gatekeepers that control the import of molecules feeding into the metabolic pathways. Nutrient import adjusts rapidly to changes in metabolism and the environment, which is accomplished by regulating the surface expression of transporters. Recent studies indicate that the lipid environment in which transporters function regulates ubiquitination efficiency and endocytosis of these proteins. Changes in the lipid environment are caused by lateral movements of the transporters between different membrane domains and by the influence of the extracellular environment on the fluidity of the plasma membrane.  相似文献   

11.
With the emergence of new CRISPR/dCas9 tools that enable site specific modulation of DNA methylation and histone modifications, more detailed investigations of the contribution of epigenetic regulation to the precise phenotype of cells in culture, including recombinant production subclones, is now possible. These also allow a wide range of applications in metabolic engineering once the impact of such epigenetic modifications on the chromatin state is available.In this study, enhanced DNA methylation tools were targeted to a recombinant viral promoter (CMV), an endogenous promoter that is silenced in its native state in CHO cells, but had been reactivated previously (β-galactoside α-2,6-sialyltransferase 1) and an active endogenous promoter (α-1,6-fucosyltransferase), respectively. Comparative ChIP-analysis of histone modifications revealed a general loss of active promoter histone marks and the acquisition of distinct repressive heterochromatin marks after targeted methylation. On the other hand, targeted demethylation resulted in autologous acquisition of active promoter histone marks and loss of repressive heterochromatin marks. These data suggest that DNA methylation directs the removal or deposition of specific histone marks associated with either active, poised or silenced chromatin. Moreover, we show that de novo methylation of the CMV promoter results in reduced transgene expression in CHO cells. Although targeted DNA methylation is not efficient, the transgene is repressed, thus offering an explanation for seemingly conflicting reports about the source of CMV promoter instability in CHO cells.Importantly, modulation of epigenetic marks enables to nudge the cell into a specific gene expression pattern or phenotype, which is stabilized in the cell by autologous addition of further epigenetic marks. Such engineering strategies have the added advantage of being reversible and potentially tunable to not only turn on or off a targeted gene, but also to achieve the setting of a desirable expression level.  相似文献   

12.
Microbial synthesis of wax esters (WE) from low-cost renewable and sustainable feedstocks is a promising path to achieve cost-effectiveness in biomanufacturing. WE are industrially high-value molecules, which are widely used for applications in chemical, pharmaceutical, and food industries. Since the natural WE resources are limited, the WE production mostly rely on chemical synthesis from rather expensive starting materials, and therefore solution are sought from development of efficient microbial cell factories. Here we report to engineer the yeast Yarrowia lipolytica and bacterium Escherichia coli to produce WE at the highest level up to date. First, the key genes encoding fatty acyl-CoA reductases and wax ester synthase from different sources were investigated, and the expression system for two different Y. lipolytica hosts were compared and optimized for enhanced WE production and the strain stability. To improve the metabolic pathway efficiency, different carbon sources including glucose, free fatty acid, soybean oil, and waste cooking oil (WCO) were compared, and the corresponding pathway engineering strategies were optimized. It was found that using a lipid substrate such as WCO to replace glucose led to a 60-fold increase in WE production. The engineered yeast was able to produce 7.6 g/L WE with a yield of 0.31 (g/g) from WCO within 120 h and the produced WE contributed to 57% of the yeast DCW. After that, E. coli BL21(DE3), with a faster growth rate than the yeast, was engineered to significantly improve the WE production rate. Optimization of the expression system and the substrate feeding strategies led to production of 3.7–4.0 g/L WE within 40 h in a 1-L bioreactor. The predominant intracellular WE produced by both Y. lipolytica and E. coli in the presence of hydrophobic substrates as sole carbon sources were C36, C34 and C32, in an order of decreasing abundance and with a large proportion being unsaturated. This work paved the way for the biomanufacturing of WE at a large scale.  相似文献   

13.
14.
Methyl ketones present a group of highly reduced platform chemicals industrially produced from petroleum-derived hydrocarbons. They find applications in the fragrance, flavor, pharmacological, and agrochemical industries, and are further discussed as biodiesel blends. In recent years, intense research has been carried out to achieve sustainable production of these molecules by re-arranging the fatty acid metabolism of various microbes. One challenge in the development of a highly productive microbe is the high demand for reducing power. Here, we engineered Pseudomonas taiwanensis VLB120 for methyl ketone production as this microbe has been shown to sustain exceptionally high NAD(P)H regeneration rates. The implementation of published strategies resulted in 2.1 g Laq−1 methyl ketones in fed-batch fermentation. We further increased the production by eliminating competing reactions suggested by metabolic analyses. These efforts resulted in the production of 9.8 g Laq−1 methyl ketones (corresponding to 69.3 g Lorg−1 in the in situ extraction phase) at 53% of the maximum theoretical yield. This represents a 4-fold improvement in product titer compared to the initial production strain and the highest titer of recombinantly produced methyl ketones reported to date. Accordingly, this study underlines the high potential of P. taiwanensis VLB120 to produce methyl ketones and emphasizes model-driven metabolic engineering to rationalize and accelerate strain optimization efforts.  相似文献   

15.
16.
17.
18.
As the bioconversion of methane becomes increasingly important for bio-industrial and environmental applications, methanotrophs have received much attention for their ability to convert methane under ambient conditions. This includes the extensive reporting of methanotroph engineering for the conversion of methane to biochemicals. To further increase methane usability, we demonstrated a highly flexible and efficient modular approach based on a synthetic consortium of methanotrophs and heterotrophs mimicking the natural methane ecosystem to produce mevalonate (MVA) from methane. In the methane-conversion module, we used Methylococcus capsulatus Bath as a highly efficient methane biocatalyst and optimized the culture conditions for the production of high amounts of organic acids. In the MVA-synthesis module, we used Escherichia coli SBA01, an evolved strain with high organic acid tolerance and utilization ability, to convert organic acids to MVA. Using recombinant E. coli SBA01 possessing genes for the MVA pathway, 61 mg/L (0.4 mM) of MVA was successfully produced in 48 h without any addition of nutrients except methane. Our platform exhibited high stability and reproducibility with regard to cell growth and MVA production. We believe that this versatile system can be easily extended to many other value-added processes and has a variety of potential applications.  相似文献   

19.
The methylation of histidine is a post-translational modification whose function is poorly understood. Methyltransferase histidine protein methyltransferase 1 (Hpm1p) monomethylates H243 in the ribosomal protein Rpl3p and represents the only known histidine methyltransferase in Saccharomyces cerevisiae. Interestingly, the hpm1 deletion strain is highly pleiotropic, with many extraribosomal phenotypes including improved growth rates in alternative carbon sources. Here, we investigate how the loss of histidine methyltransferase Hpm1p results in diverse phenotypes, through use of targeted mass spectrometry (MS), growth assays, quantitative proteomics, and differential crosslinking MS. We confirmed the localization and stoichiometry of the H243 methylation site, found unreported sensitivities of Δhpm1 yeast to nonribosomal stressors, and identified differentially abundant proteins upon hpm1 knockout with clear links to the coordination of sugar metabolism. We adapted the emerging technique of quantitative large-scale stable isotope labeling of amino acids in cell culture crosslinking MS for yeast, which resulted in the identification of 1267 unique in vivo lysine–lysine crosslinks. By reproducibly monitoring over 350 of these in WT and Δhpm1, we detected changes to protein structure or protein–protein interactions in the ribosome, membrane proteins, chromatin, and mitochondria. Importantly, these occurred independently of changes in protein abundance and could explain a number of phenotypes of Δhpm1, not addressed by expression analysis. Further to this, some phenotypes were predicted solely from changes in protein structure or interactions and could be validated by orthogonal techniques. Taken together, these studies reveal a broad role for Hpm1p in yeast and illustrate how crosslinking MS will be an essential tool for understanding complex phenotypes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号