首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, molecular characterization of Fasciola flukes from Spain was performed to reveal the relation with the previously reported Peruvian F. hepatica population. The nuclear DNA markers, phosphoenolpyruvate carboxykinase (pepck) and DNA polymerase delta (pold), were used for species identification of Fasciola flukes. A total of 196 Fasciola flukes were identified as F. hepatica by pepck and pold, and 26 haplotypes were detected in mitochondrial NADH dehydrogenase subunit 1 (nad1). Only one of them was previously found in Spanish samples; which indicates the existence of high genetic diversity and population structure in F. hepatica from Spain. Three haplotypes were identical to those from Peruvian F. hepatica. The pairwise fixation index value confirmed a relatively close relationship between the Spanish and Peruvian F. hepatica samples. The Spanish samples showed clearly higher genetic variability than the Peruvian population. These results are discussed in relation with the hypothesis of the introduction of the parasite in America from Europe and recent evidence of pre-Hispanic F. hepatica from Argentina revealed by ancient DNA.  相似文献   

2.
All 225 Fasciola flukes obtained from domestic animals (73 cattle, 7 sheep and 1 pig) of 18 distinct geographic areas in Ecuador-South America, were identified as Fasciola hepatica, based on molecular analyses of nuclear pepck and pold genes, and mitochondrial nad1gene as well as the morphological observation of sperm within the seminal vesicles. Fasciola gigantica and parthenogenic Fasciola forms endemic to Asian countries were not found in this study, although zebu cattle and water buffalos have introduced into South America from Asia; this could be due to the absence of suitable intermediate host snails. The results of pepck analysis using multiplex PCR developed previously showed that 32 of the flukes could not be confirmed as F. hepatica, suggesting that the method is unreliable for the accurate discrimination of F. hepatica, and that pepck gene of the species consists of multiple loci, not a single locus. The results of genetic diversity, phylogenetic, and network analyses based on mitochondrial nad1 sequences suggest that F. hepatica populations in South America, including Ecuador, formed from the ancestral F. hepatica individuals introduced into the continent along with anthropogenic movement of livestock infected with the species.  相似文献   

3.
This study aimed to identify species of Fasciola flukes in Dali Prefecture (Yunnan Province, China) and analyze their genetic diversity. Fasciola flukes (n = 122) were collected from cattle livers in a farmers' market in Xiaguan Town, Dali Prefecture. Nucleotide sequences of ribosomal internal transcribed spacer (ITS) as well as nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) and mitochondrial cytochrome c oxidase subunit 1 (CO1) were amplified, sequenced, and subjected to homology analysis. The heterozygosity ratios of different ITS alleles were determined using the peak-height ratio of heterozygous loci. Multiplex PCR analysis of the nuclear protein coding gene, phosphoenolpyruvate carboxykinase (pepck), was used to identify Fasciola species. Multiple ND1 sequence alignments enabled further genetic diversity analysis of regional Fasciola flukes. Seven ITS sequences belonged to F. hepatica and 115 belonged to Fh/Fg heterozygous flukes. Sequencing analysis of heterozygous flukes revealed 11 heterozygous loci with double peaks, with significantly variable ratios among individuals. ND1 and CO1 results indicated that one specimen was identical to F. hepatica, while 121 specimens were identical to F. gigantica or contained one variable site. Multiplex PCR results for pepck showed that double bands for F. hepatica and F. gigantica were amplified from Dali Fasciola specimens; hence, they were all heterozygous. By combining ITS, ND1, and CO1 sequences with multiplex pepck PCR results, all 122 specimens were identified as Fh/Fg heterozygous Fasciola flukes. Our experimental results preliminarily confirmed a high degree of Fh/Fg heterozygosity among Fasciola flukes in the Dali area. Selecting multiple molecular markers for concurrent analysis will provide more comprehensive and accurate genetic information.  相似文献   

4.
The aim of the present study is to investigate for the first time the genetic diversity of samples identified morphologically as Fasciola hepatica (Platyhelminthes: Trematoda: Digenea) (n = 66) from sheep and cattle from two localities of Sardinia and to compare them with available data from other localities by partial sequences of the first (ITS-1), the 5.8S, and second (ITS-2) Internal Transcribed Spacers (ITS) of nuclear ribosomal DNA (rDNA) genes, the mitochondrial cytochrome c oxidase subunit I (COI), and nicotinamide adenine dinucleotide dehydrogenase subunit I (ND1) genes. Comparison of the sequences from Sardinia with sequences of Fasciola spp. from GenBank confirmed that all samples belong to the species F. hepatica. The nucleotide sequencing of ITS rDNA showed no nucleotide variation in the ITS-1, 5.8S and ITS-2 rDNA sequences among all Sardinian samples, comparing with two ITS-2 haplotypes in standard F. hepatica, showing a substitution C/T in 20 position 859, reported previously from Tunisia, Algeria, Australia, Uruguay and Spain. The present study shows that in Sardinian sheep and cattle there is the most frequent haplotype (FhITS-H1) of F. hepatica species from South Europe. Considering NDI sequences, the phylogenetic trees showed reliable grouping among the haplotypes of F. hepatica from Sardinia and the mitochondrial lineage I, including the main N1 haplotype, observed previously from Europe (Russia, Belarus, Ukraine and Bulgaria), Armenia, West Africa (Nigeria), America (Uruguay and USA), Asia (Turkey, Japan, and China), Georgia, Turkmenistan, Azerbaijan and Australia. Furthermore, common haplotypes FhCOI-H1 and FhCOI-H2 of F. hepatica from Sardinia also corresponded mostly to the first lineage including the main C1 haplotype reported previously from Eastern European and Western Asian populations, they belonged just to a phylogenically distinguishable clade, as F. hepatica from Australia, France, Turkey, Uruguay, Russia, Armenia, Ukraine, Belarus, Turkmenistan, USA, Tunisia and Algeria, indicating that this is the main haplotype involved in the spread of F. hepatica throughout all continents.  相似文献   

5.
Fascioliasis, a food-borne trematode zoonosis, is a disease primarily in cattle and sheep and occasionally in humans. Water dropwort (Oenanthe javanica), an aquatic perennial herb, is a common second intermediate host of Fasciola, and the fresh stems and leaves are widely used as a seasoning in the Korean diet. However, no information regarding Fasciola species contamination in water dropwort is available. Here, we collected 500 samples of water dropwort in 3 areas in Korea during February and March 2015, and the water dropwort contamination of Fasciola species was monitored by DNA sequencing analysis of the Fasciola hepatica and Fasciola gigantica specific mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear ribosomal internal transcribed spacer 2 (ITS-2). Among the 500 samples assessed, the presence of F. hepatica cox1 and 1TS-2 markers were detected in 2 samples, and F. hepatica contamination was confirmed by sequencing analysis. The nucleotide sequences of cox1 PCR products from the 2 F. hepatica-contaminated samples were 96.5% identical to the F. hepatica cox1 sequences in GenBank, whereas F. gigantica cox1 sequences were 46.8% similar with the sequence detected from the cox1 positive samples. However, F. gigantica cox1 and ITS-2 markers were not detected by PCR in the 500 samples of water dropwort. Collectively, in this survey of the water dropwort contamination with Fasciola species, very low prevalence of F. hepatica contamination was detected in the samples.  相似文献   

6.
Fasciola gigantica is considered to be a major pathogen causing fasciolosis in the Indian subcontinent, resulting in production losses of millions of dollars in the livestock industry. Understading the dispersal origin and the patterns of spread of F. gigantica is important. A total of 53 Fasciola flukes collected from buffaloes and goats in Punjab, Pakistan between 2017 and 2018 were identified as F. gigantica based on the multiplex PCR for the phosphoenolpyruvate carboxykinase (pepck) and the PCR-restriction fragment length polymorphism (RFLP) for DNA polymerase delta (pold). A significant genetic difference between F. gigantica from buffaloes and goats was indicated by the genetic analyses of mitochondrial markers, NADH dehydrogenase subunit 1 (nad1) and cytochrome C oxidase subunit 1 (cox1). Phylogenetic analysis of the seventeen nad1 haplotypes of F. gigantica from Pakistan with those in neighbouring countries of the Indian subcontinent revealed that all the haplotypes identified in Pakistan were clustered in haplogroup A. fasciola gigantica with the eight haplotypes might be expanded in Pakistan from Indian origin, along with the migration of the domestic animals, since they were related to Indian haplotypes. In contrast, the remaining nine haplotypes were not shared with any neighbouring countries, suggesting independent origin, probably from neighbouring Middle East countries. However, cautious interpretation is required due to the very limited samples size of this study. Our study provides a proof of concept for a method that could be used to investigate the epidemiology of F. gigantica.  相似文献   

7.
Ribosomal RNA sequences (361 or 362 bp) of the second internal transcribed spacer 2 (ITS-2) and a portion of mitochondrial cox1 (423 bp) for Fasciola spp. obtained from specimens collected in indigenous and hybrid goats and sheep in Vietnam were characterized for genotypic status and hybridization/introgression. Alignment of 48 ITS-2 sequences (also those from goats and sheep in this study) indicates that F. gigantica and F. hepatica differ typically from each other at seven sites whereas one of these is a distinguishing deletion (T) at the 327th position in F. gigantica relative to F. hepatica. The isolates from the mountainous goats in the North of Vietnam (Yen Bai province) showed the ITS-2 composition relatively identical to that of F. hepatica. The ITS-2 sequences from populations of Fasciola isolates in goats had probably experienced introgression/hybridization as reported previously in other ruminants and humans. All Vietnamese goat-of-origin specimens had high pairwise percentage of mitochondrial cox1 sequences to F. gigantica (97-100%), and very low identity to F. hepatica (91-93%), suggesting their maternal linkage to be traced to F. gigantica. The presence of hybrid and/or introgressed populations of liver flukes bearing genetic material from both F. hepatica and F. gigantica in the goats/sheep in Vietnam, regardless of indigenous or imported hosts, appears to be the first demonstration from a tropical country.  相似文献   

8.
Fasciola hepatica, the liver fluke, is a trematode parasite of considerable economic importance to the livestock industry and is a re-emerging zoonosis that poses a risk to human health in F. hepatica-endemic areas worldwide. Drug resistance is a substantial threat to the current and future control of F. hepatica, yet little is known about how the biology of the parasite influences the development and spread of resistance. Given that F. hepatica can self-fertilise and therefore inbreed, there is the potential for greater population differentiation and an increased likelihood of recessive alleles, such as drug resistance genes, coming together. This could be compounded by clonal expansion within the snail intermediate host and aggregation of parasites of the same genotype on pasture. Alternatively, widespread movement of animals that typically occurs in the UK could promote high levels of gene flow and prevent population differentiation. We identified clonal parasites with identical multilocus genotypes in 61% of hosts. Despite this, 84% of 1579 adult parasites had unique multilocus genotypes, which supports high levels of genotypic diversity within F. hepatica populations. Our analyses indicate a selfing rate no greater than 2%, suggesting that this diversity is in part due to the propensity for F. hepatica to cross-fertilise. Finally, although we identified high genetic diversity within a given host, there was little evidence for differentiation between populations from different hosts, indicating a single panmictic population. This implies that, once those emerge, anthelmintic resistance genes have the potential to spread rapidly through liver fluke populations.  相似文献   

9.
Intermicrosatellite PCR [inter-simple sequence repeat (ISSR)-PCR] markers and cytogenetics criteria were used to assess the level of genetic diversity and genetic structure in 17 populations of Stipa tenacissima (Gramineae) from Algeria. All populations sampled in the steppe area were diploids (2n = 2x = 24), and those sampled in the dry area were hexaploids (2n = 6x = 72). The dendrogram based on ISSR-PCR showed homogeneity within populations and large variability among populations. All individuals of the same population were gathered and formed groups clearly separated in all populations. These groups were separated into two clusters related to biotope, one from the steppe area and the other from the dry area. AMOVA indicated low genetic diversity among populations (30% of variation) and high within populations (70%). This variation pattern would constitute an adaptive strategy to grow in various ecological conditions.  相似文献   

10.
The causative agent of fasciolosis in South America is thought to be Fasciola hepatica. In this study, Fasciola flukes from Peru were analyzed to investigate their genetic structure and phylogenetic relationships with those from other countries. Fasciola flukes were collected from the three definitive host species: cattle, sheep, and pigs. They were identified as F. hepatica because mature sperms were observed in their seminal vesicles, and also they displayed Fh type, which has an identical fragment pattern to F. hepatica in the nuclear internal transcribed spacer 1. Eight haplotypes were obtained from the mitochondrial NADH dehydrogenase subunit 1 (nad1) sequences of Peruvian F. hepatica; however, no special difference in genetic structure was observed between the three host species. Its extremely low genetic diversity suggests that the Peruvian population was introduced from other regions. Nad1 haplotypes identical to those of Peruvian F. hepatica were detected in China, Uruguay, Italy, Iran, and Australia. Our results indicate that F. hepatica rapidly expanded its range due to human migration. Future studies are required to elucidate dispersal route of F. hepatica from Europe, its probable origin, to other areas, including Peru.  相似文献   

11.
Fasciolosis is an economically important disease of livestock caused by Fasciola hepatica, Fasciola gigantica, and aspermic Fasciola flukes. The aspermic Fasciola flukes have been discriminated morphologically from the two other species by the absence of sperm in their seminal vesicles. To date, the molecular discrimination of F. hepatica and F. gigantica has relied on the nucleotide sequences of the internal transcribed spacer 1 (ITS1) region. However, ITS1 genotypes of aspermic Fasciola flukes cannot be clearly differentiated from those of F. hepatica and F. gigantica. Therefore, more precise and robust methods are required to discriminate Fasciola spp. In this study, we developed PCR restriction fragment length polymorphism and multiplex PCR methods to discriminate F. hepatica, F. gigantica, and aspermic Fasciola flukes on the basis of the nuclear protein-coding genes, phosphoenolpyruvate carboxykinase and DNA polymerase delta, which are single locus genes in most eukaryotes. All aspermic Fasciola flukes used in this study had mixed fragment pattern of F. hepatica and F. gigantica for both of these genes, suggesting that the flukes are descended through hybridization between the two species. These molecular methods will facilitate the identification of F. hepatica, F. gigantica, and aspermic Fasciola flukes, and will also prove useful in etiological studies of fasciolosis.  相似文献   

12.
Haemosporida is a diverse group of vector-borne parasitic protozoa, ubiquitous in terrestrial vertebrates worldwide. The renewed interest in their diversity has been driven by the extensive use of molecular methods targeting mitochondrial genes. Unfortunately, most studies target a 478?bp fragment of the cytochrome b (cytb) gene, which often cannot be used to separate lineages from different genera found in mixed infections that are common in wildlife. In this investigation, an alignment constructed with 114 mitochondrial genome sequences belonging to four genera (Leucocytozoon, Haemoproteus, Plasmodium and Hepatocystis) was used to design two different sets of primers targeting the cytb gene as well as the other two mitochondrial DNA genes: cytochrome c oxidase subunit 1 and cytochrome c oxidase subunit 3. The design of each pair of primers required consideration of different criteria, including a set for detection and another for differential amplification of DNA from parasites belonging to different avian haemosporidians. All pairs of primers were tested in three laboratories to assess their sensitivity and specificity under diverse practices and across isolates from different genera including single and natural mixed infections as well as experimental mixed infections. Overall, these primers exhibited high sensitivity regardless of the differences in laboratory practices, parasite species, and parasitemias. Furthermore, those primers designed to separate parasite genera showed high specificity, as confirmed by sequencing. In the case of cytb, a nested multiplex (single tube PCR) test was designed and successfully tested to differentially detect lineages of Plasmodium and Haemoproteus parasites by yielding amplicons with different sizes detectable in a standard agarose gel. To our knowledge, the designed assay is the first test for detection and differentiation of species belonging to these two genera in a single PCR. The experiments across laboratories provided recommendations that can be of use to those researchers seeking to standardise these or other primers to the specific needs of their field investigations.  相似文献   

13.
14.
Fasciola hepatica is a trematode that causes zoonosis mainly in cattle and sheep and occasionally in humans. Fascioliasis has been reported in Korea; however, determining F. hepatica infection in snails has not been done recently. Thus, using PCR, we evaluated the prevalence of F. hepatica infection in snails at 4 large water-dropwort fields. Among 349 examined snails, F. hepatica-specific internal transcribed space 1 (ITS-1) and/or ITS-2 markers were detected in 12 snails and confirmed using sequence analysis. Morphologically, 213 of 349 collected snails were dextral shelled, which is the same aperture as the lymnaeid snail, the vectorial host for F. hepatica. Among the 12 F. hepatica-infected snails, 6 were known first intermediate hosts in Korea (Lymnaea viridis and L. ollula) and the remaining 6 (Lymnaea sp.) were potentially a new first intermediate host in Korea. It has been shown that the overall prevalence of the snails contaminated with F. hepatica in water-dropwort fields was 3.4%; however, the prevalence varied among the fields. This is the first study to estimate the prevalence of F. hepatica infection using the vectorial capacity of the snails in Korea.  相似文献   

15.
Fasciolosis is a parasitic disease of medical and economic importance. This retrospective study was conducted on 110 Fasciola flukes collected from livers of 14 infected Naimi sheep slaughtered at Riyadh abattoir in Saudi Arabia during winter season of 2016. Collected specimens were analyzed for their species identification on the basis of partial sequences of mitochondrial 28S rRNA gene. Results have shown the presence of both Fasciola hepatica (F. hepatica) and Fasciola gigantica (F. gigantica) species. Where Fasciola hepatica was predominate (80%). Both intra-species and interspecies genetic distance was studied and results showed that the intraspecific variability among individuals of both species i.e., F. hepatica and F. gigantica, ranging between 0 and 1% while the interspecific diversity between F. hepatica and F. gigantica was only 1%. In conclusion, mitochondrial 28S rRNA gene is a proved as a good marker in identifying Fasciola of different species. Where, the F. hepatica and F. gigantica are present in sheep breed in Riyadh region, Saudi Arabia.  相似文献   

16.

Background

Fasciola hepatica, along with Fasciola gigantica, is the causative agent of fasciolosis, a foodborne zoonotic disease affecting grazing animals and humans worldwide. Pathology is directly related to the release of parasite proteins that facilitate establishment within the host. The dominant components of these excretory-secretory (ES) products are also the most promising vaccine candidates, the cathepsin L (Cat L) protease family.

Methodology/Principal Findings

The sub-proteome of Cat L proteases from adult F. hepatica ES products derived from in vitro culture and in vivo from ovine host bile were compared by 2-DE. The individual Cat L proteases were identified by tandem mass spectrometry with the support of an in-house translated liver fluke EST database. The study reveals plasticity within the CL1 clade of Cat L proteases; highlighted by the identification of a novel isoform and CL1 sub-clade, resulting in a new Cat L phylogenetic analysis including representatives from other adult Cat L phylogenetic clades. Additionally, for the first time, mass spectrometry was shown to be sufficiently sensitive to reveal single amino acid polymorphisms in a resolved 2-DE protein spot derived from pooled population samples.

Conclusions/Significance

We have investigated the sub-proteome at the population level of a vaccine target family using the Cat L proteases from F. hepatica as a case study. We have confirmed that F. hepatica exhibits more plasticity in the expression of the secreted CL1 clade of Cat L proteases at the protein level than previously realised. We recommend that superfamily based vaccine discovery programmes should screen parasite populations from different host populations and, if required, different host species via sub-proteomic assay in order to confirm the relative expression at the protein level prior to the vaccine development phase.  相似文献   

17.
Fascioliasis is a parasitic infection caused by liver flukes. Although several cases have been reported in Korea, phylogenetic analysis of isolates is lacking. In this study, a 66-year-old woman with right upper quadrant (RUQ) abdominal pain was diagnosed as fascioliasis involving abdominal muscle by imaging study. She received praziquantel treatment, but symptoms were not improved. Lateral movement of the abscess lesion was followed. Trematode parasite was surgically removed from the patient’s rectus abdominis muscle. The fluke was identified as Fasciola hepatica based on sequence analysis of 18S rDNA. To determine the phylogenetic position of this Fasciola strain (named Korean Fasciola 1; KF1), the cox1 gene (273 bp) was analyzed and compared with the genes of 17 F. hepatica strains isolated from cows, sheep, goats, and humans from various countries. Phylogenetic analysis showed that KF1 was closely related with the isolates from China goat.  相似文献   

18.
The Defined Antigen Substrate Spheres (DASS) system, using Fasciola hepatica antigens, proved to be a promising immunofluorescent antibody test for fascioliasis. The antigen bound beads could be freeze-dried and reconstituted to a spherical form for measurement.Sera of individuals with F. hepatica infections were examined with the Indirect Fluorescent Antibody (IFA) technique on frozen sections of the adult parasite and with the DASS system.Sera of experimentally F. hepatica infected rabbits were examined with the IFA technique, the DASS system, and the Soluble Antigen Fluorescent Antibody (SAFA) technique. A few bovine sera with F. hepatica infection were examined with the DASS system.  相似文献   

19.
The majority of individuals in the chronic phase of Chagas disease are asymptomatic (indeterminate form, IF). Each year, ∼3% of them develop lesions in the heart or gastrointestinal tract. Cardiomyopathy (CCHD) is the most severe manifestation of Chagas disease. The factors that determine the outcome of the infection are unknown, but certainly depend on complex interactions amongst the genetic make-up of the parasite, the host immunogenetic background and environment. In a previous study we verified that the maxicircle gene NADH dehydrogenase (mitochondrial complex I) subunit 7 (ND7) from IF isolates had a 455 bp deletion compared with the wild type (WT) ND7 gene from CCHD strains. We proposed that ND7 could constitute a valuable target for PCR assays in the differential diagnosis of the infective strain. In the present study we evaluated this hypothesis by examination of ND7 structure in parasites from 75 patients with defined pathologies, from Southeast Brazil. We also analysed the structure of additional mitochondrial genes (ND4/CR4, COIII and COII) since the maxicircle is used for clustering Trypanosoma cruzi strains into three clades/haplogroups. We conclude that maxicircle genes do not discriminate parasite populations which induce IF or CCHD forms. Interestingly, the great majority of the analysed isolates belong to T. cruzi II (discrete typing unit, (DTU) IIb) genotype. This scenario is at variance with the prevalence of hybrid (DTU IId) human isolates in Bolivia, Chile and Argentina. The distribution of WT and deleted ND7 and ND4 genes in T. cruzi strains suggests that mutations in the two genes occurred in different ancestrals in the T. cruzi II cluster, allowing the identification of at least three mitochondrial sub-lineages within this group. The observation that T. cruzi strains accumulate mutations in several genes coding for complex I subunits favours the hypothesis that complex I may have a limited activity in this parasite.  相似文献   

20.
Test systems using multiplex PCR and restriction analysis have been designed for the simple and rapid identification of two widespread species of roach, Rutilus rutilus and R. lacustris, characterized by the sympatric zone. This method is based on the variation of nucleotide sequences of the mitochondrial markers (cytochrome oxidase I subunit and cytochrome b); it allows identifying the species omitting the DNA sequencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号