首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecosystem services provided by agricultural ecosystems include natural pest control and pollination, and these are important to ensure crop productivity. This study investigates the use of the banker plant Calendula officinalis L. to provide multiple ecosystem services by increasing the abundance of natural enemies for biological control of tomato pests, providing forage resources to wild bees, and improving crop yield. C. officinalis was selected for this experiment as it is used as a banker plant for Dicyphini (Hemiptera: Miridae) predators. Strips of flowering C. officinalis were established in the field edges of tomato fields and arthropod visitation to C. officinalis strips and tomato was measured. Crop damage from multiple pests of tomato was assessed in fields with C. officinalis strips and control sites. The contribution of pollination to crop yield was assessed through a pollinator exclusion experiment. The inclusion of C. officinalis in tomato fields was associated with increased abundance of Dicyphini, parasitoids, bees and other arthropod groups within these strips. A reduction in the total leaf crop damage from Lepidoptera pests was recorded in fields with C. officinalis strips. Increased fruit set and biomass were recorded in open-pollinated tomato but this was not significantly different between control and C. officinalis fields. Results presented here demonstrate that the inclusion of a companion plant can improve the conservation of beneficial arthropods and the delivery of agroecosystem services but efficacy is likely to be improved with the addition of plants, with different functional traits, and with improved attractiveness to crop pollinators.  相似文献   

2.
Insect species inventories along with pest prevalence, foraging behavior of pollinators and their effect on fruit set of mango were studied in a mango‐based agroforestry area in Bangladesh during January to June 2013. Of 1751 collected insects, 11 species in five orders and nine families were pests, 13 species in six orders and eight families were predators and eight species belonging to three orders and seven families were found as pollinators. The pests exerted significantly higher abundance but lower diversity than pollinator, predator and other insects. The pollinator richness was found to be lowest but showed higher as well as similar diversity to other category insects. Three pest species prevailed throughout the season and hoppers showed significant abundance. Among the predators, ants were most abundant. Sulphur butterfly and syrphid fly revealed statistically identical and higher abundance than other pollinators. During the flowering season, pests were dominant and the abundance of insects was observed to peak at 11.00 h. The pollinators differed in their landing duration on flowers and their activity led to higher levels of fruit set. This study provides baseline information on insect abundance in an agroforestry system, which stresses the importance of conservation of beneficial insects.  相似文献   

3.
Pollination is an essential ecosystem service for pollinator-dependent crops and plant communities. Apis mellifera L. is by far the most commonly used species to obtain this service in agriculture. However, there is growing evidence of the importance for crop yields of the service provided by wild bees and non-bee insect pollinators. Establishing flower resources in agricultural landscapes is a management practice that can increase insect pollinator populations and improve crop yields. We established perennial native flower strips (NFS) in four avocado orchards in central Chile during autumn 2017. We monitored flower visitors and counted newly formed fruits in avocados near and far from NFS in spring 2019, to assess flower visitor groups, flower visitation rates and fruit numbers. Only A. mellifera visited avocado flowers within bees, whereas both the managed A. mellifera and wild bees were the main visitors to the NFS. NFS increased visitation rates to adjacent avocado of flies, and with a trend for the sum of all non-managed flower visitors (i.e. excluding A. mellifera). However, there were no differences in the rates of A. mellifera visitation to avocados near and far from NFS. Avocado fruit numbers were higher among avocados near NFS than among those farther away. This difference could be due to better pollination by the increased visits to avocado flowers by flies or other wild insects. Therefore, NFS could contribute to crop fruit number, as well as conservation of native flora, wild bees and non-bee pollinators on fruit farms in the “Central Chile” biodiversity hotspot.  相似文献   

4.
Animal-mediated pollination is essential for the production and quality of fruits and seeds of many crops consumed by humans. However, crop pollination services might be compromised when wild pollinators are scarce. Managed pollinators are commonly used in crops to supplement such services with the assumption that they will enhance crop yield. However, information on the spatiotemporal pollinator-dependence of crops is still limited. We assessed the contribution of commercial bumble bee colonies compared to the available pollinator community on strawberry (‘Fortuna’ variety) flower visitation and strawberry quality across a landscape gradient of agricultural intensification (i.e. polytunnel berry crop cover). We used colonies of bumble bees in winter and in spring, i.e. when few and most wild pollinators are in their flight period, respectively. The placement of colonies increased visits of bumble bees to strawberry flowers, especially in winter. The use of bumble bee colonies did not affect flower visitation by other insects, mainly honey bees, hoverflies and other Diptera. Flower visitation by both honey bees and wild insects did not vary between seasons and was unrelated to the landscape gradient of berry crop cover. Strawberries were of the highest quality (i.e. weight) when insect-mediated pollination was allowed, and their quality was positively related to wild flower visitors in winter but not in spring. However, increased visits to strawberry flowers by managed bumble bees and honey bees had no effect on strawberry weight. Our results suggest that the pollination services producing high quality strawberry fruits are provided by the flower visitor community present in the study region without the need to use managed bumble bees.  相似文献   

5.
Predators of apple and pear pests in northern and central Europe and their use as biological control agents are reviewed. Many natural enemy species are specialized feeders and are able to respond to the population dynamics of particular pest species. The most oustandingly successful example of this is the use of phytoseiid mites, particularly Typhlodromus pyri , against phytophagous pest mites in apple. This mite management strategy is now widespread throughout European apple growing regions. Another example is the use of Anthocoris nemoralis against pear psyllids, Cacopsylla pyricola and C. pyri . Several groups of naturally occurring polyphagous predators, such as chrysopids, coccinellids, syrphids and spiders, also prey on a number of pest species in orchards, contributing generally to the reduction in pest populations. However, they are unlikely alone to prevent pest damage fully and reliably. In seeking biological control opportunities for a particular pest, these polyphagous natural enemies are unlikely to be a high priority. An exception, due to its abundance in orchards, is the common earwig, Forficula auricularia , although this predator may also cause some fruit injury. Another option to consider when reviewing possibilities for biological control in orchards is the introduction of biological control agents. The success rate of this approach, using arthropod predators to control pests of field crops, has been generally poor. Furthermore, mass production methods for predators are likely to be difficult and very costly. The biological supplies industry is constantly seeking culture techniques, largely for arthropod biological control agents of pests of protected crops. It is possible that some future advance may be relevant to orchards, though currently available predators do not appear promising. A careful economic appraisal of the feasibility of use of any potential biological control agent would be prudent before embarking on research.  相似文献   

6.
A meta-analysis of predation risk effects on pollinator behaviour   总被引:1,自引:0,他引:1  
Flower-visiting animals are constantly under predation risk when foraging and hence might be expected to evolve behavioural adaptations to avoid predators. We reviewed the available published and unpublished data to assess the overall effects of predators on pollinator behaviour and to examine sources of variation in these effects. The results of our meta-analysis showed that predation risk significantly decreased flower visitation rates (by 36%) and time spent on flowers (by 51%) by pollinators. The strength of the predator effects depended neither on predator taxa and foraging mode (sit-and-wait or active hunters) nor on pollinator lifestyle (social vs. solitary). However, predator effects differed among pollinator taxa: predator presence reduced flower visitation rates and time spent on flowers by Squamata, Lepidoptera and Hymenoptera, but not by Diptera. Furthermore, larger pollinators showed weaker responses to predation risk, probably because they are more difficult to capture. Presence of live crab spiders on flowers had weaker effects on pollinator behaviour than presence of dead or artificial crab spiders or other objects (e.g. dead bees, spheres), suggesting that predator crypsis may be effective to some extent. These results add to a growing consensus on the importance of considering both predator and pollinator characteristics from a community perspective.  相似文献   

7.
BACKGROUND AND AIMS: Herbivory on floral structures has been postulated to influence the evolution of floral traits in some plant species, and may also be an important factor influencing the occurrence and outcome of subsequent biotic interactions related to floral display. In particular, corolla herbivory may affect structures differentially involved in flower selection by pollinators and fruit predators (specifically, those ovopositing in ovaries prior to fruit development); hence floral herbivores may influence the relationships between these mutualistic and antagonistic agents. METHODS: The effects of corolla herbivory in Linaria lilacina (Scrophulariaceae), a plant species with complex flowers, were considered in relation to plant interactions with pollinators and fruit predators. Tests were made as to whether experimentally created differences in flower structure (resembling those occurring naturally) may translate into differences in reproductive output in terms of fruit or seed production. KEY RESULTS: Flowers with modified corollas, particularly those with lower lips removed, were less likely to be selected by pollinators than control flowers, and were less likely to be successfully visited and pollinated. As a consequence, fruit production was also less likely in these modified flowers. However, none of the experimental treatments affected the likelihood of visitation by fruit predators. CONCLUSIONS: Since floral herbivory may affect pollinator visitation rates and reduce seed production, differences among plants in the proportion of flowers affected by herbivory and in the intensity of the damage inflicted on affected flowers may result in different opportunities for reproduction for plants in different seasons.  相似文献   

8.
Many food crops depend on animal pollination to set fruit. In light of pollinator declines there is growing recognition of the need for agro-ecosystems that can sustain wild pollinator populations, ensuring fruit production and pollinator conservation into the future. One method of supporting resident wild pollinator populations within agricultural landscapes is to encourage and maintain floral diversity. However, pollinator visitation to crop plants can be affected either positively (facilitation) or negatively (competition) by the presence of co-flowering plants. The strength and direction of the facilitative/competitive relationship is driven by multiple factors, including floral abundance and the degree of overlap in pollinator visitation networks. We sought to determine how plant-pollinator networks, within and surrounding sweet cherry (Prunus avium) orchards, change across key time points during the cherry flowering season, in three growing regions in Australia. We found significant overlap in the suite of flower visitors, with seven taxa (including native bees, flies, hoverflies and introduced honey bees, Apis mellifera) observed visiting cherry and other co-flowering species within the orchard and/or the wider surrounding matrix. We found evidence of pollinator facilitation with significantly more total cherry flower visits with increasing percent cover of co-flowering plants within the wider landscape matrix and increased visitation to cherry by honey bees with increasing co-flowering plant richness within the orchard. During the cherry flowering period there was a significant positive relationship between pollinator richness on cherry and pollinator richness on co-flowering plants within the orchard and the area of native vegetation surrounding orchards. Outside of the crop flowering season, co-flowering plants within the orchard and wider landscape matrix supported the same pollinator taxa that were recorded visiting cherry when the crop was flowering. This shows wild plants help support the pollinators important to crop pollination, outside of the crop flowering season, highlighting the role of co-flowering plants within pollinator-dependent cropping systems.  相似文献   

9.
Increased plant diversity in cropping systems can play an important role in agriculture by enhancing arthropod‐mediated ecosystem services, including biological control and pollination. However, there is limited research investigating the concurrent influence of plant functional diversity within cultivated systems on different arthropod functional groups, the provision of multiple ecosystem services, and crop yield. During a field experiment, repeated over 2 years, we measured the effect of increasing plant functional diversity on community structure of arthropod visitors, the abundance of multiple pests and induced crop damage, and fruit production in two varieties of tomato. Plant resources (floral and extra‐floral nectar and pollen) were included within experimental plots in four levels, with each level increasing the plant functional group richness, based on floral morphology and availability of resources, in a replacement series. The presence of sown flower mixtures in experimental plots was associated with increased abundance and diversity of natural enemy functional groups and an enhanced abundance of bees (Hymenoptera: Apiformes). However, we only detected relatively small variability in arthropod visitors among types of mixtures, and increased abundance of natural enemies did not translate into stronger pest suppression or reduced crop damage. Lepidoptera pest damage was significantly higher in plots adjacent to wildflower strips, an ecosystem disservice, but a significantly higher crop productivity was recorded from these plots. Our results provide evidence that inclusion of non‐crop plant resources in agroecosystems can improve the conservation of beneficial arthropods and may lead to increased crop productivity.  相似文献   

10.
Hedgerows are agro-ecological infrastructures that are assumed to enhance biodiversity in an agro-ecosystem and the control of crop pests. However, local movements of arthropod predators from hedgerows to crops remain poorly understood. In this research, these movements were analysed in eleven commercial apple orchards over two weeks in the spring of 2014. Predators were indirectly marked by spraying ovalbumin on the hedgerows. Canopy and ground predators were captured using beating and pitfall traps, respectively, in both the orchards and the hedgerows, and individuals marked by ovalbumin were detected using ELISAs. Approximately 20% of the 1272 captured predators were identified as marked. Movements between the orchards and the hedgerows of the most abundant predator taxa (Forficula auricularia, Chrysoperla sp., Philodromus spp., Cheiracanthium mildei, and Nebria brevicollis) and of four guilds (ground spiders, ground beetles, canopy spiders and canopy insects) captured across the eleven locations were estimated using a Bayesian model. On one hand, canopy insects and ground spiders were less likely to stay in the hedgerows than were the canopy spiders and ground beetles. On the other hand, the canopy spiders and ground beetles were less likely to stay in the orchard than were the canopy insects and ground spiders. However, there were exceptions within these groups: F. auricularia and N. brevicollis exhibited a high probability of staying in the hedgerow and in the orchard, respectively. Overall, these results demonstrate the frequent movements that occurred between the orchard and the adjacent hedgerow in a diverse range of predator taxa. The probabilities of movement were further affected by the characteristics of the orchard for most taxa. Therefore, agro-environmental measures that focus on hedgerow management require consideration of the local arthropod predator communities and their characteristics to enhance pest control in apple orchards.  相似文献   

11.
Wild bees provide a free and potentially diverse ecosystem service to farmers growing pollination‐dependent crops. While many crops benefit from insect pollination, soft fruit crops, including strawberries are highly dependent on this ecosystem service to produce viable fruit. However, as a result of intensive farming practices and declining pollinator populations, farmers are increasingly turning to commercially reared bees to ensure that crops are adequately pollinated throughout the season. Wildflower strips are a commonly used measure aimed at the conservation of wild pollinators. It has been suggested that commercial crops may also benefit from the presence of noncrop flowers; however, the efficacy and economic benefits of sowing flower strips for crops remain relatively unstudied. In a study system that utilizes both wild and commercial pollinators, we test whether wildflower strips increase the number of visits to adjacent commercial strawberry crops by pollinating insects. We quantified this by experimentally sowing wildflower strips approximately 20 meters away from the crop and recording the number of pollinator visits to crops with, and without, flower strips. Between June and August 2013, we walked 292 crop transects at six farms in Scotland, recording a total of 2826 pollinators. On average, the frequency of pollinator visits was 25% higher for crops with adjacent flower strips compared to those without, with a combination of wild and commercial bumblebees (Bombus spp.) accounting for 67% of all pollinators observed. This effect was independent of other confounding effects, such as the number of flowers on the crop, date, and temperature. Synthesis and applications. This study provides evidence that soft fruit farmers can increase the number of pollinators that visit their crops by sowing inexpensive flower seed mixes nearby. By investing in this management option, farmers have the potential to increase and sustain pollinator populations over time.  相似文献   

12.
1. The ability of pollinating insects to discover and evade their predators can affect plant–pollinator mutualisms and have cascading ecosystem effects. Pollinators will avoid flowers with predators, but it is not clear how far away they will move to continue foraging. If these distances are relatively small, the impact of predators on the plant–pollinator mutualism may be lessened. The plant could continue to receive some pollination, and pollinators would reduce the time and energy needed to search for another patch. 2. A native crab spider, Xysticus elegans, was placed on one cluster in a small array of Baccharis pilularis inflorescence clusters, and the preferred short‐range foraging distances of naturally visiting pollinators was determined. 3. Nearly all pollinator taxa (honey bees, wasps, other Hymenoptera, and non‐bombyliid flies) spent less time foraging on the predator cluster. 4. The key result of this study is that inflorescences within 90 mm of the crab spider were avoided by visiting honey bees and wasps, which spent three‐ and 18‐fold more time, respectively, foraging on more distant flower clusters. 5. Whether honey bees can use olfaction to detect spiders was then tested, and this study provides the first demonstration that honey bees will avoid crab spider odour alone at a food source.  相似文献   

13.
In the face of global biodiversity declines, surveys of beneficial and antagonistic arthropod diversity as well as the ecological services that they provide are increasingly important in both natural and agro-ecosystems. Conventional survey methods used to monitor these communities often require extensive taxonomic expertise and are time-intensive, potentially limiting their application in industries such as agriculture, where arthropods often play a critical role in productivity (e.g. pollinators, pests and predators). Environmental DNA (eDNA) metabarcoding of a novel substrate, crop flowers, may offer an accurate and high throughput alternative to aid in the detection of these managed and unmanaged taxa. Here, we compared the arthropod communities detected with eDNA metabarcoding of flowers, from an agricultural species (Persea americana—‘Hass’ avocado), with two conventional survey techniques: digital video recording (DVR) devices and pan traps. In total, 80 eDNA flower samples, 96 h of DVRs and 48 pan trap samples were collected. Across the three methods, 49 arthropod families were identified, of which 12 were unique to the eDNA dataset. Environmental DNA metabarcoding from flowers revealed potential arthropod pollinators, as well as plant pests and parasites. Alpha diversity levels did not differ across the three survey methods although taxonomic composition varied significantly, with only 12% of arthropod families found to be common across all three methods. eDNA metabarcoding of flowers has the potential to revolutionize the way arthropod communities are monitored in natural and agro-ecosystems, potentially detecting the response of pollinators and pests to climate change, diseases, habitat loss and other disturbances.  相似文献   

14.
To manage agroecosystems for multiple ecosystem services, we need to know whether the management of one service has positive, negative, or no effects on other services. We do not yet have data on the interactions between pollination and pest‐control services. However, we do have data on the distributions of pollinators and natural enemies in agroecosystems. Therefore, we compared these two groups of ecosystem service providers, to see if the management of farms and agricultural landscapes might have similar effects on the abundance and richness of both. In a meta‐analysis, we compared 46 studies that sampled bees, predatory beetles, parasitic wasps, and spiders in fields, orchards, or vineyards of food crops. These studies used the proximity or proportion of non‐crop or natural habitats in the landscapes surrounding these crops (a measure of landscape complexity), or the proximity or diversity of non‐crop plants in the margins of these crops (a measure of local complexity), to explain the abundance or richness of these beneficial arthropods. Compositional complexity at both landscape and local scales had positive effects on both pollinators and natural enemies, but different effects on different taxa. Effects on bees and spiders were significantly positive, but effects on parasitoids and predatory beetles (mostly Carabidae and Staphylinidae) were inconclusive. Landscape complexity had significantly stronger effects on bees than it did on predatory beetles and significantly stronger effects in non‐woody rather than in woody crops. Effects on richness were significantly stronger than effects on abundance, but possibly only for spiders. This abundance‐richness difference might be caused by differences between generalists and specialists, or between arthropods that depend on non‐crop habitats (ecotone species and dispersers) and those that do not (cultural species). We call this the ‘specialist‐generalist’ or ‘cultural difference’ mechanism. If complexity has stronger effects on richness than abundance, it might have stronger effects on the stability than the magnitude of these arthropod‐mediated ecosystem services. We conclude that some pollinators and natural enemies seem to have compatible responses to complexity, and it might be possible to manage agroecosystems for the benefit of both. However, too few studies have compared the two, and so we cannot yet conclude that there are no negative interactions between pollinators and natural enemies, and no trade‐offs between pollination and pest‐control services. Therefore, we suggest a framework for future research to bridge these gaps in our knowledge.  相似文献   

15.
Indirect effects in interactions occur when a species influences a third species by modifying the behaviour of a second one. It has been suggested that indirect effects of crab spiders (Thomisidae) on pollinator behaviour can cascade down the food web and negatively affect plant fitness. However, it is poorly understood how different pollinator groups react to crab spiders and, thus, when a reduction in plant fitness is likely to occur. Using continuous video surveillance, we recorded the behaviour of pollinators on two flower species and the pollinators’ responses to three crab spider treatments: inflorescences (1) with a pinned dried spider, (2) with a spider model made of paper, and (3) without spiders (control). We found that pollinators avoided inflorescences with dried spiders only on one plant species (Anthemis tinctoria). Pollinators showed no significant avoidance of paper spiders. Honeybees and bumblebees did not react to dried spiders, but solitary bees and syrphid flies showed a strong avoidance. Finally, we found no evidence that inflorescences with dried spiders suffered from a decrease in fitness in terms of a reduced seed set. We hypothesise that top-down effects of predators on plants via pollinators depend on the degree of specialisation of pollinators and their tendency to avoid spiders.  相似文献   

16.
Sarah M. Swope 《Oecologia》2014,174(1):205-215
Herbivore damage often deters pollinator visitation and many invasive plants in North America are pollinator-dependent. This has important implications for the biological control of invasive plants because it means that agents that deter pollinators may have a larger than expected impact on the plant. Yet interactions between pollinators and biocontrol agents are rarely evaluated. Centaurea solstitialis, one of the most problematic invasive species in California, is dependent on pollinators for reproduction. I factorially manipulated infection by a biocontrol pathogen and pollen supplementation to test for (1) pollen limitation in C. solstitialis, (2) whether infection increased pollen limitation, and (3) whether this varied across a soil moisture gradient. Plants growing on north-facing slopes where soil moisture was higher experienced mild pollen limitation in the absence of the pathogen and more pronounced pollen limitation when they were infected. Plants on drier south-facing slopes did not suffer from pollen limitation but instead appeared to suffer from resource limitation. Pathogen infection directly reduced seed set in C. solstitialis by 67–72 %. On north-facing slopes, infection had an additional, indirect effect by increasing the degree of pollen limitation plants experienced. The trait that mediates this indirect pathogen–pollinator interaction is the number of inflorescences plants produced: infected plants made fewer inflorescences which led to greater pollen limitation. Although in the present study this outcome is dependent on abiotic factors that vary over small spatial scales, exploiting other invasive plants’ dependence on pollinators by selecting agents that deter visitation may enhance agent impact.  相似文献   

17.
Family farms can benefit from the presence of a diverse set of native pollinators and associated pollination services. In the present study we assessed the effect of flower visitor richness and visitation rate by honeybees and native insects on mandarin production (Citrus reticulata `Criolla´), in ten citrus family farms located in the Dry Chaco region of northwest Argentina. An exclusion experiment was conducted to explore how pollinators influence the fruit set and quality of `Criolla´ mandarin. The influence of features such as local richness and abundance of flowering plants, farm size, and surrounding natural/semi-natural habitats in the diversity of flower visitors was also evaluated. Fruit set in open pollination branches was three times higher than in bagged branches, where flower visitors were excluded. Moreover, the mandarin fruit set increased with a higher native visitation rate, and mandarin quality (fruit weight and size) decreased with a higher honeybee visitation rate. Flower visitor diversity was higher in farmlands with a greater proportion of surrounding natural and semi-natural habitats. Our results demonstrate the negative effects of excessive honeybee visitation on citrus fruit quality and highlight the importance of native pollinators and natural habitat conservation to increase the fruit set and quality of mandarin in family farms.  相似文献   

18.
Biotic and abiotic factors may individually or interactively disrupt plant–pollinator interactions, influencing plant fitness. Although variations in temperature and precipitation are expected to modify the overall impact of predators on plant–pollinator interactions, few empirical studies have assessed if these weather conditions influence anti-predator behaviors and how this context-dependent response may cascade down to plant fitness. To answer this question, we manipulated predation risk (using artificial spiders) in different years to investigate how natural variation in temperature and precipitation may affect diversity (richness and composition) and behavioral (visitation) responses of flower-visiting insects to predation risk, and how these effects influence plant fitness. Our findings indicate that predation risk and an increase in precipitation independently reduced plant fitness (i.e., seed set) by decreasing flower visitation. Predation risk reduced pollinator visitation and richness, and altered species composition of pollinators. Additionally, an increase in precipitation was associated with lower flower visitation and pollinator richness but did not alter pollinator species composition. However, maximum daily temperature did not affect any component of the pollinator assemblage or plant fitness. Our results indicate that biotic and abiotic drivers have different impacts on pollinator behavior and diversity with consequences for plant fitness components. Even small variation in precipitation conditions promotes complex and substantial cascading effects on plants by affecting both pollinator communities and the outcome of plant–pollinator interactions. Tropical communities are expected to be highly susceptible to climatic changes, and these changes may have drastic consequences for biotic interactions in the tropics.  相似文献   

19.
比较了不同作物布局下转基因抗虫棉田节肢动物的群落结构.结果表明,与单作棉田相比,蔬菜-棉花、果树-棉花及花生-棉花布局的棉田节肢动物群落、植食性害虫亚群落和天敌亚群落的物种数均增加,中性节肢动物的数量均有增加;蔬菜-棉花和花生-棉花布局的棉田植食性害虫个体数量增加;蔬菜-棉花和果树-棉花布局的棉田天敌个体数量增加.花生-棉花和果树-棉花布局棉田的节肢动物群落相似性最大;而单作棉田与蔬菜-棉花布局棉田的节肢动物群落相似性最小.R啨nyi多样性指数表明,与单作棉田相比,蔬菜-棉花布局棉田节肢动物群落多样性较低,害虫亚群落多样性较低;果树-棉花布局棉田节肢动物群落多样性较高,天敌亚群落多样性较高;花生-棉花布局棉田节肢动物群落多样性较高,害虫亚群落多样性较高.果树-棉花布局是值得推广的转基因抗虫棉田布局方式.  相似文献   

20.
  • 1 Landscape management for enhanced natural pest control requires knowledge of the ecological function of the habitats present in the landscape mosaic. However, little is known about which habitat types in agricultural landscapes function as reproduction habitats for arthropod pests and predators during different times of the year.
  • 2 We studied the arthropod assemblage on six crops and on the seven most abundant native plant species in two landscapes over 1 year in Australia. Densities of immature and adult stages of pests and their predators were assessed using beat sheet sampling.
  • 3 The native plants supported a significantly different arthropod assemblage than crops. Native plants had higher predator densities than crops over the course of the year, whereas crops supported higher pest densities than the native plants in two out of four seasonal sampling periods. Crops had higher densities of immature stages of pests than native plants in three of four seasonal sampling periods, implying that crops are more strongly associated with pest reproduction than native plants. Densities of immature predators, excluding spiders, were not different between native plants and crops. Spiders were, however, generally abundant and densities were higher on native plants than on crops but, because some species disperse when immature, there is less certainty in identifying their reproduction habitat.
  • 4 Because the predator to pest ratio on native plant species showed little variation, and spatial variation in arthropod assemblages was limited, the predator support function of native vegetation may be a general phenomenon. Incentives that maintain and restore native remnant vegetation can increase the predator to pest ratio at the landscape scale, which could enhance pest suppression in crops.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号