首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A consensus has been established that functional traits rather than taxonomic diversity play a fundamental role in linking biodiversity with ecosystem processes and associated services. This study from Finland addressed an issue of relative values of fallow and field margin biotopes in conservation of plant functional diversity (based on six functional traits of relevance to ecosystem services, and diversity of multiple traits) in agricultural landscapes differing in their structural complexity. Relative covers of plant species were surveyed in sampling plots located in perennial fallow fields and three types of perennial margins (margins between crop fields, along forest edges and by river) in three types of landscape context (simple, intermediate and complex). Fallow fields significantly contributed to the total functional diversity only in simple landscapes. The river margins provided the greatest functional diversity, especially in reproduction and regeneration traits while crop margins were consistently characterized by the lowest functional diversity. Substantial functional diversity of fallow patches in simple landscapes was due to high abundance of functional species, while that of river margins stemmed from presence of unique species. The plant functional diversity progressively declined with agricultural landscapes becoming simplified. The study indicates non-cropped biotopes having complementary roles in ensuring multifunctionality of agro-landscapes and confirms importance of biotope mosaic for functional diversity.  相似文献   

2.
Field margins are an important component of the agri-environment as they contribute to maintaining ecosystem functions and protecting biodiversity. Field margin structure, landscape attributes, and management practices have been examined as determinants of plant species diversity and composition for mainly cereal field margins; however, relatively little is known about their influence on vegetable field margins. We selected three types of field margins (each n = 4; non-managed connected to forests, non-managed isolated, and isolated and managed margins with mowing and organic herbicide) adjacent to organic vegetable crop fields and recorded the species richness and abundance of all vascular plants. The effects of structural connectivity, weed control management, and margin width on the community composition, species richness, and diversity were examined using multivariate statistical techniques. Plant community composition was clearly explained by structural connectivity between field margin and forest, as well as by weed control management. In contrast, species richness of functional guilds was influenced by connectivity and margin width, but not by weed control management. All communities had similar numbers of summer and fall blooming nectar- and pollen-producing plants, an important source of pollination services. In addition, each community of field margin types, despite different species composition, had similar levels of Shannon diversity and evenness. Our results suggest that habitat arrangement is important for determining community composition in field margins. Management practices may be important in determining dominance patterns of individual species. A combination of various margin types and widths may be beneficial for biodiversity conservation and ecosystem services.  相似文献   

3.
Local diversity of arable weeds increases with landscape complexity   总被引:1,自引:0,他引:1  
Patterns of plant diversity are often related to local site conditions and to competitive interactions, but landscape context may also be important for local plant species richness. This is shown here by analysing the relationship between landscape complexity and local species richness of arable weeds in wheat fields. The fields were located in 18 landscapes characterised by a gradient in landscape complexity from structurally complex to structurally simple (39–94% arable land). We quantified local site conditions, field management intensity and landscape characteristics, and used principle component analyses to ordinate the environmental variables. The percentage of arable land was negatively correlated with perimeter–area ratio, habitat-type diversity and topographical heterogeneity, but landscape characteristics did not correlate with local site conditions and field management intensity. The number of plant species was mainly related to landscape characteristics and to a lesser extent to field management intensity (nitrogen fertilisation), whereas local soil characteristics did not contribute to the explanation of arable weed richness. In a geographic scale analysis using circular landscape sectors ranging from 1 km up to 5 km diameter, the predictive power of landscape complexity for local plant species richness was strongest at 2 km indicating a scale-dependent relationship between landscape context and plant species richness. Our results support the hypothesis that local plant species richness in arable fields is greatly influenced by processes operating at the landscape scale. Seed rain from ruderal source habitats and disturbed edges may be the most important underlying process.  相似文献   

4.
Agricultural intensification has led to a systematic erosion of the biodiversity in arable ecosystems. Despite this, densities of plant species in the seedbank of arable fields are still sufficient to provide the potential for recovery of the arable flora and associated fauna. Identification of management practices to achieve this, while minimising negative effects of weed competition on crop yield, requires a mechanistic understanding of functional diversity in arable systems. However, a review of the ecological, physiological and genetic characteristics of 66 representative UK arable weed species revealed major gaps in this knowledge for even the most common species. Even less is known about the degree of variation between individuals within these species that contributes to overall levels of functional diversity. Classification of organisms into functional groups on the basis of species-level taxonomy is inadequate to describe the functional diversity of a system, since variability in a particular physiological trait can be as great between individuals within a species as between species. We therefore propose an individual based approach to examine the functional attributes of arable plants that affect resource acquisition, partitioning and energy transfer through the food web. Capsella (shepherd's purse) is proposed as a key species that is widespread, ecologically important, and physiologically and genetically diverse. Current understanding of Capsella systematics is therefore reviewed and a methodological approach is described that establishes a foundation for studies of biodiversity and function in arable systems.  相似文献   

5.
The effects of weed control practices and fertilisation on weed flora and crop yield were evaluated in crop edges of barley fields in northeastern Spain. The study was carried out in four organic and four conventional barley fields. In each field, four permanent plots were delimited at the crop edge, and fertilisation and weed control treatments in a factorial design were applied over 3 years. Weed composition and the aboveground biomass of weeds and barley were recorded before the crop harvest in the first and the third year. We found relatively low values of species richness per field, as well as low values of weed biomass, especially in the organic crop edges (3.9% of total biomass). Weeds were significantly reduced by herbicide applications on conventional fields and were not affected by weed harrowing on organic fields or fertilisation. These results demonstrate that specific measures are needed to enhance biodiversity at crop edges both in organic and conventional fields. Our results also suggest that under Mediterranean conditions and among impoverished weed communities, limiting the use of herbicides is crucial to enhancing arable diversity and that, contrary to findings found in previous studies in temperate climates, fertilisation and weed harrowing have little effect on weeds.  相似文献   

6.

Questions

Management practices implemented on road verges are partly established to preserve biodiversity in agricultural landscapes. Their evaluation was primarily based on the analysis of the taxonomic structure and composition of communities. What is the relationship between management practices and the functional characteristics of road–field plants within elements?

Location

West‐central France.

Methods

We sampled the berm, the embankment and the field margin of 40 road–field boundaries located in west‐central France, an area where delayed mowing of some berms has been practised since 2009 for biodiversity reasons. We characterized management practices implemented on the different elements, i.e., the frequency and timing of mowing (early summer or late summer), the frequency of herbicide treatment in field margins and the N input rate. We retrieved from databases seven functional traits and types known to be influenced by management practices. To identify relationships between traits or types and environmental variables we first performed partial RLQ analyses to remove any potential confounding effect of the landscape context studied. We then computed fourth‐corner statistics to quantify relationships between traits or types, environmental variables and partial RLQ axes.

Results

Late mowing of the berm promoted nitrophilous species within berms and competitive rather than ruderal species within arable field margins. The frequency of herbicide treatment in field margins promoted broad‐leaf species within this element and, to a lesser extent, within embankments. Finally, the functional characteristics of communities of the three elements were not influenced by the level of N input in field margins.

Conclusions

In our environmental context, managing road verges affected the functional structure of plant assemblages both within them and within their adjacent arable field margins. We suggest a single early mowing of berms as a valuable practice for both conservation purposes and weed risk control in adjacent field margins.  相似文献   

7.
Field margins have considerable ecological significance in agriculture-dominated landscapes by supporting biodiversity and associated services. However, agricultural changes during mid-20th century led to their drastic loss with a serious threat for biodiversity. Using time-series data, we aimed to get better insights into processes underlying plant patterns of field margins through time by i) quantifying plant temporal beta diversity components, ii) assessing whether the observed changes in plant communities can be related to changes in management practices applied to field margins. During the springs of 1994, 1998 and 2001, we surveyed plant communities and management practices of the same 116 field margins in three contrasted landscapes. We estimated temporal beta diversity in plant communities and partitioned it into its two dissimilarity resultant components, accounting for replacement of species (i.e. turnover) and for the nested gain or loss of species (i.e. nestedness). We then tested whether the observed changes in plant communities between 1994 and 1998 and, between 1998 and 2001 were related to changes in management practices using linear models. Plant communities of field margins exhibited strong temporal beta diversity dominated by turnover. Temporal turnover in plant communities was partly related to changes in management practices, i.e., a decrease of grazing concomitant to an increase of herbicide spraying. However, relationships were not consistent between all landscape contexts nor time period, suggesting that other unmeasured deterministic or stochastic processes could be driving the observed plant patterns. Taken together, our results suggest that maintaining a wide diversity of field margins with contrasted management contribute to maintaining plant diversity at a landscape scale. They underline the value of investigating plant temporal diversity patterns using time-series data and thus, the need to develop long-term studies making it possible to understand ecological processes shaping plant communities in agricultural landscapes.  相似文献   

8.
Question: How do local and landscape management contribute to weed diversity in Hungarian winter cereal fields? Location: Central Hungary. Methods: Vascular plants were sampled in 18 winter cereal fields along an intensification gradient according to nitrogen fertilization, in the first cereal rows (edge) and in the interior part of the fields. Weed species were divided into groups according to their residence time in Central Europe (native species, archaeophytes, neophytes) and nitrogen preference (low to medium, LMNP, and high, HNP species). The percentage of semi‐natural habitats was calculated in the 500 m radius circle. Effects of fertilizer use, transect position and semi‐natural habitats were estimated by general linear mixed models. Results: We recorded 149 weed species. Fertilizer had a negative impact on the species richness of archaeophytes and LMNP species, and on the cover of native weeds. There was greater species richness and weed cover at the edge of the fields than in the centre. A higher percentage of seminatural habitats around the arable fields resulted in greater total species richness, especially of archaeophytes and LMNP species. We found an interaction between the percentage of semi‐natural habitats and transect position for species richness of archaeophytes and LMNP species. Conclusions: Reduced use of fertilizers and a high percentage of semi‐natural habitats would support native and archaeophyte weed diversity even in winter cereal fields, while large amounts of fertilizer may promote invasion of neophytes. However, the beneficial effect of the semi‐natural habitats and greater species pool on the arable flora may prevail only in the crop edges.  相似文献   

9.
Land use intensification drives biodiversity loss worldwide. In heterogeneous landscape mosaics, both overall forest area and anthropogenic matrix structure induce changes in biological communities in primary habitat remnants. However, community changes via cross‐habitat spillover processes along forest–matrix interfaces remain poorly understood. Moreover, information on how landscape attributes affect spillover processes across habitat boundaries are embryonic. Here, we quantify avian α‐ and β‐diversity (as proxies of spillover rates) across two dominant types of forest–matrix interfaces (forest–pasture and forest–eucalyptus plantation) within the Atlantic Forest biodiversity hotspot in southeast Brazil. We also assess the effects of anthropogenic matrix type and landscape attributes (forest cover, edge density and land‐use diversity) on bird taxonomic and functional β‐diversity across forest–matrix boundaries. Alpha taxonomic richness was higher in forest edges than within both matrix types, but between matrix types, it was higher in pastures than in eucalyptus plantations. Although significantly higher in forests edges than in the adjacent eucalyptus, bird functional richness did not differ between forest edges and adjacent pastures. Community changes (β‐diversity) related to species and functional replacements (turnover component) were higher across forest–pasture boundaries, whereas changes related to species and functional loss (nested component) were higher across forest–eucalyptus boundaries. Forest edges adjacent to eucalyptus had significant higher species and functional replacements than forest edges adjacent to pastures. Forest cover negatively influenced functional β‐diversity across both forest–pasture and forest–eucalyptus interfaces. We show the importance of matrix type and the structure of surrounding landscapes (mainly forest cover) on rates of bird assemblage spillover across forest‐matrix boundaries, which has profound implications to biological fluxes, ecosystem functioning and land‐use management in human‐modified landscapes.  相似文献   

10.
Questions: The assembly of arable weed communities is the result of local filtering by agricultural management and crop competition. Therefore, soil seed banks can reflect the effects of long‐term cumulative field management and crop sequences on weed communities. Moreover, soil seed banks provide strong estimates of future weed problems but also of potential arable plant diversity and associated ecological functions. For this, we evaluated the effects of different long‐term farming systems under the same crop rotation sequence on the abundance, diversity and community assembly of weed seed bank, as well as on the functional diversity and composition. Location: DOK (biodynamic [D], bioorganic [O], conventional [K]) long‐term trial, Therwil, Switzerland. Methods: The effects of long‐term contrasted farming systems (i.e., biodynamic, organic, conventional, mineral and unfertilised systems) and last crop sown (i.e., wheat and maize) were evaluated on different indicators of species and functional diversity and composition of the weed soil seed bank. Results: The results showed significant influences of 40 years of contrasted farming systems on the diversity and composition of the seed bank, with higher diversities being found in unfertilised and organic farming systems, but also higher abundances than those found under conventional systems. Organic farming also allowed higher functional richness, dispersion and redundancy. Different farming systems triggered shifts in species and functional assemblies. Conclusions: The results highlight the importance of organic management for the maintenance of a diverse arable plant community and its functions. However, such results emphasise the need for appropriate yearly management to reduce the abundance of settled weediness and prevent affecting crop production. The farm management filtered community composition based on functional traits. Although the soil seed bank buffers the long‐term farming and crop sequence, the last crop sown and, thus, the yearly management were important determinants of seed bank composition.  相似文献   

11.
Vegetation effects on arthropods are well recognized, but it is unclear how different vegetation attributes might influence arthropod assemblages across mixed-agricultural landscapes. Understanding how plant communities influence arthropods under different habitat and seasonal contexts can identify vegetation management options for arthropod biodiversity. We examined relationships between vegetation structure, plant species richness and plant species composition, and the diversity and composition of beetles in different habitats and time periods. We asked: (1) What is the relative importance of plant species richness, vegetation structure and plant composition in explaining beetle species richness, activity-density and composition? (2) How do plant-beetle relationships vary between different habitats over time? We sampled beetles using pitfall traps and surveyed vegetation in three habitats (woodland, farmland, their edges) during peak crop growth in spring and post-harvest in summer. Plant composition better predicted beetle composition than vegetation structure. Both plant richness and vegetation structure significantly and positively affected beetle activity-density. The influence of all vegetation attributes often varied in strength and direction between habitats and seasons for all trophic groups. The variable nature of plant-beetle relationships suggests that vegetation management could be targeted at specific habitats and time periods to maximize positive outcomes for beetle diversity. In particular, management that promotes plant richness at edges, and promotes herbaceous cover during summer, can support beetle diversity. Conserving ground cover in all habitats may improve activity-density of all beetle trophic groups. The impacts of existing weed control strategies in Australian crop margins on arthropod biodiversity require further study.  相似文献   

12.

Maximizing biodiversity persistence in heterogeneous human-modified landscapes is hindered by the complex interactions between habitat quality and configuration of native and non-native habitats. Here we examined these complex interactions considering avian diversity across 26 sampling sites, each of which comprised of three sampling points located across a gradient of disturbance: core native habitat fragment, fragment edge, and non-native adjacent matrix. The 78 sampling points were further nested within three neotropical biomes—Amazonia, Cerrado and Pantanal—in central-western Brazil. Matrix type consisted of cattle pastures in the Amazon and teak plantations in the Pantanal and Cerrado. We considered the interactive effects of (1) disturbance-context: fragment core, edge and adjacent matrix, (2) matrix type: tree plantation or cattle pastures, both subject to varying land-use intensity, and (3) native habitat configuration (fragment size, shape and isolation) on bird species richness, abundance and composition. Based on point-count surveys, we recorded 210 bird species. Bird species richness and abundance declined across the disturbance gradient, while genus composition only differed within the adjacent matrix, particularly cattle-pastures. The effect of native habitat area was positive but only detected at fragment edges. Overall bird diversity increased at sites characterized by higher availability of either relict trees within pasture landscapes or old-growth trees within teak plantation landscapes. The core of native fragments played a primary role in ensuring the persistence of bird diversity, regardless of fragment size. In contrast to pastures, tree plantations likely harbour a higher proportion of forest-dependent species while bird diversity can be further enhanced by reduced management intensity in both matrix types. Strategies to maximize avian persistence should not only include retaining native habitats, but also maximizing the size of core native habitats. Likewise, more structurally complex matrix types should be encouraged while maintaining low levels of land-use intensity.

  相似文献   

13.
Some regions and habitats harbour high numbers of plant species at a fine scale. A remarkable example is the grasslands of the White Carpathian Mountains (Czech Republic), which holds world records in local species richness; however, the causes are still poorly understood. To explore the landscape context of this phenomenon and its relationships to diversity patterns at larger scales, we compared diversity patterns in grasslands and other vegetation types in the White Carpathians with those in nearby regions lacking extremely species-rich grasslands, using data from vegetation plots and flora grid mapping of entire landscapes. Although small-scale species richness of grasslands and ruderal/weed vegetation of the White Carpathians was higher than in the nearby regions, the number of grassland and ruderal/weed species in the regional flora of the White Carpathians was not. Diversity of forests was not higher in this region at any scale. Thus the remarkably high local species richness of the White Carpathian grasslands does not result from a larger grassland species pool in the region, but from the fine-scale co-occurrence of many grassland species in this landscape, which results in the formation of grassland communities that are locally rich but with similar species composition when comparing different sites (i.e. high alpha but low beta diversity). This pattern can be partly attributed to the large total area of these grasslands, which reduces random extinctions of rare species, low geological diversity, which enables many species to occur at many sites across the landscape, and high land-cover diversity, which supports mixing of species from different vegetation types.  相似文献   

14.
  • 1 The creation of grassy field margins, as part of the UK Government's Environmental Stewardship (ES) scheme, is one of a number of measures proposed to mitigate the adverse effects of arable intensification on wildlife. Widespread development of these margins will potentially increase the amount of habitat available to small mammals in arable landscapes, as many species do not inhabit the cropped area.
  • 2 The aim of this study was to determine what impact ES-type margins might have on small mammals. We compared small mammal abundance and biomass in spring and autumn on 3-m-wide and 6-m-wide grassy margins with that on conventionally managed field edges that have no margin (0 m wide) and are intensively cultivated to the field edge.
  • 3 Bank voles Clethrionomys glareolus, wood mice Apodemus sylvaticus and common shrews Sorex araneus were the most abundant species; few field voles Microtus agrestis were captured on any margin. In autumn, bank vole and common shrew numbers were higher on the grassy margins than on conventional field edges, and margin width per se was positively associated with bank vole abundance. The number of wood mice captured did not differ among the different margin types.
  • 4 Total small mammal biomass increased between spring and autumn on the 3-m- and 6-m-wide grassy margins, but decreased on the 0-m-wide margins. Total biomass in autumn was three times higher on 6-m-wide margins compared with the conventional arable field edges.
  相似文献   

15.
Aim Understanding the response of species to ecotones and habitat edges is essential to designing conservation management, especially in mosaic agricultural landscapes. This study examines how species diversity and composition change with distance from semi‐natural habitats, over ecotones into agricultural fields, and how within‐site patterns of community transition change across a climatic gradient and differ between crop types. Location A total of 19 sites in Israel where semi‐natural habitats border agricultural fields (wheat fields or olive groves) distributed along a sharp climatic gradient ranging between 100 and 800 mm mean annual rainfall. Methods  We performed butterfly surveys in 2006. We analysed species richness (α‐diversity), diversity, community nestedness and species turnover (β‐diversity) within sites and between sites (γ‐diversity). We also assessed where species of conservation concern occurred. Results In wheat sites, richness and diversity declined abruptly from ecotones to fields and remained homogenously poor throughout the fields, regardless of climate. In olive sites, despite the sharp structural boundary, richness and diversity remained high from the semi‐natural habitat to the grove margins and then declined gradually into groves. Species of conservation concern occurred across all habitats at olive sites, but none were found inside wheat fields or at their ecotones. The contrast in community structure between semi‐natural habitats and fields was affected by both climate and field type. Irrigation in arid regions did not augment species diversity. Main conclusions Our results indicate that consideration of crop type, within a climatic context, should receive high priority in biodiversity conservation in agricultural areas. In ‘hostile’ crops, such as wheat, we suggest favouring a combination of high‐intensity management and wide margins over less intensive management without margins, which may merely aid generalist butterfly species. The scarcity of butterflies in arid irrigated fields suggests a need to carefully assess the effects of irrigation and agrochemicals on species’ communities.  相似文献   

16.
Agricultural intensification in Europe during the past 30 years has led to changes in compositional and functional weed structure in agroecosystems as well as increases in the prominence of alien weeds. Irrigation is a major driver of agricultural intensification, particularly in semi‐arid zones of the Mediterranean. In the past few decades, irrigated land has expanded in semi‐arid agricultural lands in northeastern Spain. The goals of this study were to identify long‐term temporal changes in compositional and functional weed communities in annual (i.e. maize crops) and perennial (i.e. orchards) irrigated crops of this area and determine whether these changes differentially affect native and alien plants. Changes in the diversity, composition and functional groups of the weed communities in fruit‐tree orchards and maize crops were assessed using plant surveys in 1989 and 2009. During the studied period, a decrease was recorded in the diversity of native species in the fruit‐tree orchards; this decrease was accompanied by an increase in alien weed diversity and a general homogenisation of species in the weed community. In the maize crops, the diversity values of native and alien plants changed little during 20 years. The identification of functional groups revealed that most of the species whose cover increased in the fruit‐tree orchards were graminoid alien species that perform C4 photosynthesis and disperse seed via water or a combination of vectors. In the maize crops, the identified functional groups did not differ in the proportion of species whose cover changed between 1989 and 2009. Hence, in irrigated orchards the observed changes in the weed community and the prominence of alien species are mediated by the selection of a set of traits that let species to overcome management filters. Similarly, the stability of functional composition of weed communities in maize fields is the result of the selection of species functionally similar to the crop.  相似文献   

17.
Aim Factors acting at various scales may affect biodiversity, demanding analyses at multiple spatial scales in order to understand how community richness is determined. Here, we adopted a hierarchical approach to test the contribution of region, landscape heterogeneity, local management (organic vs. conventional) and location within field (edge vs. centre) to the species richness and abundance of spiders in cereals. Location Three regions of western and central Germany: Leine Bergland, Soester Boerde, and Lahn‐Dill Bergland. Methods Forty‐two paired organic and conventional winter wheat fields were compared. Field pairs were located in areas ranging from structurally simple to structurally complex landscapes. In May and June 2003, spiders were sampled using pitfall traps. Linear mixed models were used to determine the relationship of spider diversity and abundance with regional spatial factors and landscape heterogeneity within a 500‐m radius, as well as with local management and within‐field location. Results Within‐field location of the traps and landscape heterogeneity were the best predictors of species richness: more species were found in field edges and in heterogeneous landscapes. Region and local management had no effect on species richness. Activity density was higher in field edges and differed among regions. Main conclusions The diversity of farmland spiders was influenced by differences at two of the spatial scales (edge vs. centre, simple vs. complex landscapes), but not at the two others (field management, region), emphasizing the importance of analyses at a variety of spatial scales for an adequate explanation of patterns in biodiversity. Our study suggests that promoting heterogeneity in land use at landscape scales is one of the keys to promoting spider diversity in agroecosystems.  相似文献   

18.
Plant and pollinator diversity have declined concurrently in Europe in the last half century. We studied plant–bumblebee food webs to understand the effects of two agri-environmental schemes (AES, organic farming and environmentally-friendly management practice) vs. conventional farming as control group, landscape structure (heterogeneous vs. homogeneous landscapes) and seasonality (June, July, and August) interactions using Estonian AES monitoring data. In the summer of 2014, we observed foraging bumblebees (20 species) on 64 farms that varied in agricultural management and landscape structure, yielding a total of 2303 flower visits on 76 plant species. We found that both management practice and landscape structure influenced the generality (redundancy in the use of flower resources) of food webs. In homogeneous landscapes, environmentally-friendly management practices, including restrictions on the application of glyphosates, enhancement of bumblebee habitats, such as permanent grassland field margins, the allocation of a minimum of 15% of arable land (including rotational grasslands) to legumes, contributed to a higher number of visited plant species (generality) in July, whereas organic farming did so in August. Therefore, both environmentally-friendly and organic management practices are needed to support plant–bumblebee food webs in agricultural landscapes. Food web generality and diversity (Shannon index) are affected by a significant interaction between landscape structure and seasonality: food web diversity varied in homogeneous landscapes between the three different survey months, whereas food webs were more diverse in heterogeneous landscapes. We did not find any significant interaction effect of management, landscape structure and seasonality on linkage density and vulnerability. A full list of the most visited plant species by bumblebees based on species-specific flower visitation was also assembled. In homogeneous landscapes, resource limitation is an issue for bumblebees in certain time periods. For supporting bumblebees in the agricultural landscapes, avoiding resource limitation is important and this can be secured with a combination of AES management practices.  相似文献   

19.
Predicting the population dynamics of annual plants is a challenge due to their hidden seed banks in the field. However, such predictions are highly valuable for determining management strategies, specifically in agricultural landscapes. In agroecosystems, most weed seeds survive during unfavourable seasons and persist for several years in the seed bank. This causes difficulties in making accurate predictions of weed population dynamics and life history traits (LHT). Consequently, it is very difficult to identify management strategies that limit both weed populations and species diversity. In this article, we present a method of assessing weed population dynamics from both standing plant time series data and an unknown seed bank. We use a Hidden Markov Model (HMM) to obtain estimates of over 3,080 botanical records for three major LHT: seed survival in the soil, plant establishment (including post-emergence mortality), and seed production of 18 common weed species. Maximum likelihood and Bayesian approaches were complementarily used to estimate LHT values. The results showed that the LHT provided by the HMM enabled fairly accurate estimates of weed populations in different crops. There was a positive correlation between estimated germination rates and an index of the specialisation to the crop type (IndVal). The relationships between estimated LHTs and that between the estimated LHTs and the ecological characteristics of weeds provided insights into weed strategies. For example, a common strategy to cope with agricultural practices in several weeds was to produce less seeds and increase germination rates. This knowledge, especially of LHT for each type of crop, should provide valuable information for developing sustainable weed management strategies.  相似文献   

20.
2000~2003年连续4年研究了稻鸭共作条件下田间杂草群落的特征及其动态变化规律。结果表明,在长期稻鸭共作条件下,田间杂草密度逐年降低,下降趋势符合阻滞模型y=k+a·ebx,模型参数b反映了杂草种群的下降速率。在稻田6种主要杂草中,水虱草(Fimbristylis miliaceae)、陌上菜(Lindernia procumbens)、丁香蓼(Ludwigia prostrata)种群数量降低较快,鸭舌草(Monochoria vaginalis)、异型莎草(Cyperus difformis)次之,稗(Echinochloa crusgalli)最慢。稻鸭共作使稻田杂草群落的物种多样性持续降低,群落均匀度提高,群落相似性与稻鸭共作前相比逐年降低。说明稻鸭共作改变了田间杂草的群落结构,有利于限制杂草的发生危害。随着稻鸭共作的连年进行,对田间杂草的控制效果逐渐上升,4年后达99%以上。稻鸭共作是稻田替代化学除草的一种非常有效的生物、生态控草措施,具有显著的经济和生态效益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号